
Visualization and Graphical Layout
in Object-Oriented Systems∗

Volker Haarslev
Xerox Palo Alto Research Center

3333 Coyote Hill Road, Palo Alto, CA 94304, USA
haarslev@parc.xerox.com

and
University of Hamburg, Computer Science Department
Bodenstedtstr. 16, D-2000 Hamburg 50, F.R. Germany

haarslev@rz.informatik.uni-hamburg.dbp.de

Ralf Möller
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Abstract

This report describes a new approach to visualizing program systems within the object-
oriented paradigm. This approach is based on a TEX-like notation which has been extended
and generalized for specifying graphical layout of arbitrary objects. Our simplest scheme of-
fers specifications similar to TEX’s box-and-glue metaphor. Size and position of boxes and
glue can be specified by constraints. The CLOS meta-level architecture is used to associate
visualization and application objects. We propose several useful techniques such as indirect
values, slot and method demons, and instance-specific meta-objects. Our techniques require
no modifications to the systems which are selected for visualization. We demonstrate the
feasibility of our approach using application domains such as CLOS debugging and constraint
systems.

∗ This report combines and extends the following two papers:
A Declarative Formalism for Specifying Graphical Layout, published in: Proceedings, 1990 IEEE Workshop
on Visual Languages, Skokie/IL, Oct. 4-6, 1990, IEEE Computer Society Press, 1990.
A Framework for Visualizing Object-Oriented Systems, published in: Proceedings, ECOOP/OOPSLA’90,
European Conference on Object-Oriented Programming and Object Oriented Programming: Systems, Lan-
guages and Applications, Oct. 21-25, 1990, Ottawa/Canada, ACM Sigplan Notices, 1990.
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1 Introduction

Although programming has mostly been done in textual terms users have always had a no-
tion of visualizing their programs. Programs have been entered as lines of text but soon
users started to indent their programs and also used comments for separating or emphasizing
particular program parts. Tools were developed which pretty-print or format source code.
Modern programming environments offer debugging tools such as browsers and inspectors
providing users with views of program structure and execution states. But these views display
their information more textually than visually (pictorially). A further disadvantage of these
environments is their lack of offering program designers adequate tools for visualizing and
animating programs, which support both structural and conceptual visualization.

This report discusses within the paradigm of object-oriented programming the use of struc-
tural and conceptual visualization techniques. We describe a new approach combining both
techniques, which is based upon TEX-like layout specifications. Furthermore, we discuss the
usefulness of meta-level architectures for implementing visualization techniques. We imple-
mented a prototyping environment consisting of a set of extensible fundamental components
which offer varying degrees of support. It is implemented in Macintosh Allegro Common Lisp
and based upon the PCL implementation of the Common Lisp Object System [Bobrow et al.
88, Keene 89] (CLOS). We applied our visualization techniques to several application domains
such as CLOS debugging, graphical editing, constraint systems, line routing, and concurrent
logic programming (see also Möller 90).

Conceptual visualizations of programs are mostly created by hand. This hand-design is ba-
sically caused by the fundamental problem that geometrical and graphical information nec-
essary to create suitable visualizations cannot automatically be derived from corresponding
data. The major problem is to define interesting events which should be visualized. But very
often interesting events are only indirectly reflected by algorithms. We refer to Brown 88 for
a detailed discussion of these problems.

Structural visualization uses program and data structures to generate relevant geometrical
information. An important problem related to structural interpretation is that conceptual
information about data can only indirectly be derived (e.g. from naming of identifiers). A
very common approach to structural visualization is to guide the visualization process by
underlying programming styles or computational models. Many approaches to visualizing
imperative systems use flow charts or diagrams. The Transparent Prolog Machine [Eisenstadt
& Brayshaw 88] is an example for relational or logic systems. A more radical approach is
presented by Pictorial Janus [Kahn & Saraswat 90]. It defines complete visualizations of
concurrent logic programs and captures static as well as dynamic information about these
programs.

There exist many approaches to visualizing data flow of functional systems, e.g. VIPEX
[Haarslev & Möller 90], Pluribus [Wright et al. 85], and Prograph [Matwin & Pietrzykowski 85,
Cox et al. 89]. A diagramming approach to tracing object-oriented systems as an extension to
a Smalltalk-80 debugger is described in Cunningham & Beck 86 . GraphTrace [Kleyn & Gin-
grich 88] is also intended for understanding behavior of objects. It provides graphical traces
of program executions. Both approaches are primarily focused on structural visualizations.
In contrast to our approach they offer no support for conceptual visualizations.
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Besides structural and conceptual visualization techniques it is also important to support flexi-
ble schemes for aesthetically laying out combinations of units. With respect to forms-oriented
user interfaces allocation of space and position is mostly constrained by the space globally
available. Graphical interfaces usually also add local constraints. A typical application is a
browser generating net-like representations of rule sets, classes, or objects. The spatial alloca-
tion of nodes may depend on adjoining nodes or the topology of edges (e.g. in order to avoid
line crossing or long winding paths). This problem is addressed by many constraint-oriented
systems. ThingLab I [Borning 81] and II [Maloney et al. 89] are examples for describing layout
of graphical objects with constraints. Szekely & Myers 89 also presented a toolkit using con-
straints and active values. In contrast to constraint-oriented approaches we decided to provide
a simpler but more compact and predictable notation for specifying layout. Furthermore, our
approach has the advantage that it requires only 2n+log(n) steps, be n the number of boxes.
Thus, our algorithm has a computational complexity of O(n) (see Section 6 for details).

The remainder of this report is structured as follows. The next two sections introduce our
TEX-like specifications. Section 4 introduces box items which are suited for more general ap-
plications and and a mechanism for specifying references between box items. The next section
demonstrates an extended CLOS class browser and inspector which serves as an example for
the flexibility of our approach. Section 6 explains our box layout algorithm in more detail.
Section 7 discusses some related optimization issues. Afterwards we discuss the use of the
CLOS meta-object protocol for program visualization and demonstrate some of these consid-
erations using a simple constraint system as example. Section 9 compares our approach with
related work. This report concludes with a summary and a discussion of future work.

2 Layout Specifications

We adopted the “box-and-glue” metaphor of TEX [Knuth 79] for specifying layout of objects.
Layouts are composed of a set of rectangular regions, so-called boxes. Laying out boxes and
positioning objects are associated with corresponding box types. Our system offers a set of
predefined layout algorithms and box types. More general box types are discussed in Section 3.

2.1 Vertical and Horizontal Boxes

The fundamental scheme aligns boxes as a list of horizontal and vertical boxes. This layout
technique has been found very useful for standard (forms-oriented) dialog windows (see Section
9 for a discussion of related work). A layout of a dialog window is specified as a combination of
boxes with optional size specifications. Boxes may be arbitrarily nested. The size of boxes and
the spatial relationship between them is expressed by an amount of glue or filler describing
either a horizontal or vertical distance. Fillers can be specified as fixed (e.g. in pixel) or
variable. Variable fillers depend on the space available to their enclosing box. We distinguish
relative and constrained fillers. A relative filler is expressed as a fixed ratio to the size of its
superior box. Constrained fillers can shrink (stretch) to a given lower (upper) limit. Default
constraints are zero as lower limit and box size as upper limit. Several fillers as elements of
the same box work together like springs. They share the available space and in general every
filler claims the same amount of space which is only constrained by its lower and upper limit.
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Figure 1: A DAG graph of a standard class hierarchy.

A vertical or horizontal box (<box-type> either :vbox or :hbox) is specified by the lisp form
(<box-type> (:width h :height v) box-item-1 . . .). Its box items are laid out vertically
resp. horizontally. If the size specification is omitted the width and height of a vertical or
horizontal box are set to a filler with default constraints. In general this layout algorithm
keeps the size of box elements unchanged. If elements require more space than available to
their surrounding box they are allowed to extend beyond their box’s boundaries. Boxes are
also allowed to overlap one another. But this behavior is not always desired. Therefore, we
introduced a frame box (:fbox) which constrains the size of its element in order to match
exactly the frame box size. A frame box contains only one box item: (:fbox (:width h

:height v) box-item).

2.2 Filler Specification

The complete form specifying a filler is (:filler :min m :max n), :min and :max are op-
tional. We defined :filler as short-form of (:filler :min 0 :max <box-size>). It is also
possible to define the (minimal/maximal) size of a box with respect to its elements. Then,
the size of this box is set to the result achieved by laying out its elements and shrinking fillers
to their lower limit (see :as-needed in Figure 5). Thus, the box has a minimal size satisfying
all lower bound constraints.

Figure 1 shows a dialog window for a simple CLOS browser which displays a class hierarchy.
The right table contains all direct subclasses of the class listed in the left table. The tables
can be replaced by direct super resp. subclasses, scrolled, and shifted to focus on “interesting”
classes. The lower part of the window displays a graph of the selected class hierarchy. The
dialog window results from the following (schematic) layout specification.

(let ((left-table (make-dialog-item . . .))
(right-table (make-dialog-item . . .))
(graph-view (make-layout-view . . .)))
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(make-layout-dialog :layout

(:vbox (:width :filler :height :filler)

(:hbox (:height 1/4 :width :filler)

(:fbox () left-table) (:fbox () right-table))

(:fbox () graph-view)))

(setf (layout graph-view) . . .)) ←

The browser dialog is specified as a vertical box with :filler as width and height. Its first
item is a horizontal box whose height is set to 1/4 of that of the vertical box. The horizontal
box contains two scrollable tables which are enclosed by frame boxes. The height of these
frame boxes is constrained by their surrounding horizontal box. Their width is not explicitly
specified, therefore the default value :filler is chosen and half of the width of the horizontal
box is assigned to each frame box (and its inferior table). The second item of the vertical box
is a frame box surrounding the box element graph-view which generates the class graph. A
layout form which is similar to that defining graph-view is shown in Figure 2.

2.3 Local Variables in Layout Forms

We propose local variables in layout forms as a useful extension. These variables could repre-
sent box attributes such as the actual width and height of a box. These variables could serve
as constants within the scope of a form. The following form exemplifies this feature.

(let ((item-1 (make-dialog-item . . .))
(item-2 (make-dialog-item . . .)))

(:vbox (:width (:filler :bind ?total-width)) ; ?total-width is local variable

:filler

(:hbox ()

20

(:fbox (:height (truncate (/ ?total-width 2))) item-1) ; use local variable

:filler

(:fbox (:height (truncate (/ ?total-width 2))) item-2) ; use local variable

20)

:filler))

One interpretation of this specification might be as follows. The evaluation of the form :bind

?total-width depends on its lexical context. In this case the value of ?total-width is set
to the actual width of the vertical box. Then, this value is used to determine the height of
item-1 and item-2. Therefore, the height of item-1 and item-2 depends on the total width
of their outermost vertical box. This dependency cannot be expressed in our current box
layout scheme.

3 Layout Protocols

Our basic layout algorithms are based on an abstract protocol for manipulating boxes and
box items. Therefore, every object conforming to this protocol can be laid out and every
(rectangular) region can be interpreted as a box. The protocol is implemented as a set of
generic functions. Multi-object methods can be supplied for different kinds of boxes and items,
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(let ((upper-offset 10)

(left-offset 10))

(:vbox ()

upper-offset

(:hbox () left-offset

(:gbox (:dag *roots*

#'successors

*max-depth*

#'appearance

. . .)))))

:vbox

:gbox

:hbox

10

10

Figure 2: A general layout specification in combination with a box-style layout.2

which may represent position and size in different ways. The use of multi-object methods also
has the advantage that layout of objects may depend on their context. Our layout protocol
also allows to specify whether the layout algorithm has to be reapplied if global constraints
(e.g. by resizing the window) have been changed.

Apparently it is not reasonable to describe every layout with the box-and-glue metaphor. An
obvious example is a set of nodes arranged as a graph. Therefore, our layout language has the
notion of a general box : (:gbox (<layout-name> <arg-1>. . .<arg-n>)). For instance, this
box is used to specify the layout of directed acyclic graphs (DAGs) (see Figure 2).

In this example the items to be arranged are defined inductively by a set of roots, a successor
function and a maximal depth. The appearance function is used to compute the graphical
representation of nodes (e.g. class objects for an inheritance graph). Position and size of
the general box (:gbox) are defined implicitly by a closure rectangle around all graph items
(see Figure 2). This rectangle defines a box which may be arranged using the box layout
specifications already known.

One may also think of other arrangements of box items in a general box. We use the DAG
example mentioned above in order to explain our protocol for supplying a new layout specifi-
cation interpreter.3

(defmethod layout-spec-p-using-key ((key (eql ':dag)))

t)

(defmethod parse-layout-spec-using-key ((key (eql ':dag)) layout-specs)

"Returns (generated and) laid out :gbox items."

(interpret-dag-layout layout-specs))

The layout name (e.g. :dag) of a general box form is used as a key to discriminate the
corresponding layout interpreter method, the rest of the form is bound to the parameter
layout-specs.

2 The indentation of the boxes is used for demonstration purposes only.
3 Layout forms are usually defined as macros evaluating the right expressions (in the right scope).
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This extension scheme exploits that CLOS methods are not only attached to objects (or their
classes) but can be also discriminated on every Lisp object. Layout forms are represented as
lists, i.e. layout descriptions can easily be manipulated (e.g. by pattern matching algorithms).

4 Interaction Objects and Views

We introduce box items which are suited for more general applications and describe their
application to our class browser which serves as a simple example for describing the basic
features of our layout language. We refer to Möller 90 for a discussion of more sophisticated
user interfaces.

4.1 Interaction Objects

Interaction objects represent box items of layout specifications. Interaction objects (e.g. all
standard elements of the Macintosh Toolbox, graph nodes, graph edges) are instances of CLOS
classes. We defined an additional interaction object, a so-called view. Views provide a frame-
work for handling non-standard interaction components. These components are called view
items . View items can be freely added to and removed from views. The interactive behavior of
view items can easily be modified by adding certain predefined superclasses (mixins) to their
class definitions. Typical desired behaviors are to move, select, or mark items. The algorithms
ensuring a consistent image on the screen are provided by views. Views can also be declared
as scrollable.

The system evaluates generic functions to draw and delete visible items if required. For the
nodes in the class browser example (Figure 1) we might use the following definitions.

(defclass label-view-item (movable-view-item-mixin view-item)

((label :initarg :label :accessor label)))

(defun make-label (. . .) . . .)

Class label-view-item is defined by inheriting the base class for view items and a ‘mixin’
which allows to move items interactively. The generic function view-item-draw is evaluated
to draw view items:

(defmethod view-item-draw :after ((item label-view-item) view dialog)

(let ((position (view-item-position item))

(size (view-item-size item)))

(frame-round-rect dialog std-gcontext . . .)
(move-to dialog . . .)
(draw-string dialog std-gcontext (label item))))

The drawing functions use graphical contexts4 defining coordinate transformations and drawing
attributes. The position and the drawing vector of a view item define a drawing rectangle (see
Figures 3 and 4) which is used as clipping rectangle. Specialized methods depending on
particular drawing contexts (e.g. views or dialogs) can easily be defined.

4 The notion of a graphical context is defined by views.
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vertical component

horizontal component

reference box of a 
referenced item

:filler

:filler

:filler :filler

B

A

Figure 3: Referenced Location of Item B.

4.2 Referencing View Items

View items may reference other view items. References to other view items are also declar-
atively described. The corresponding coordinates are automatically computed. This scheme
defines edges as view items which reference their corresponding nodes. For instance, the
standard drawing function of an edge retrieves the references to its nodes and computes co-
ordinates used to draw the connecting line. References are described by a so-called reference
box (:rbox). A reference box consists of two view item, the referencing item (e.g. A) and
the referenced item (e.g. B), and a pair of horizontal and vertical coordinates specifying the
location which is referenced. Figure 5 shows the complete syntax.

(:rbox A B

(:horizontal :filler :reference :filler)

(:vertical :filler :reference :filler))

This box defines a reference from item A to item B. The keyword :reference specifies the
referenced point. Figure 3 shows an example for this type of reference. The start point of
item A (gray vector) is defined as reference to the center of item B (circle). The reference box
of item B is shown as gray rectangle. It is defined as the drawing rectangle of item B. The
usage of filler specifications in the horizontal and vertical coordinates ensure the centering of
A’s reference point to B. The next example defines a reference point which is 3 pixel left and
above to the lower right corner of item B.

(:rbox A B

(:horizontal :filler :reference 3)

(:vertical :filler :reference 3))

Edges of graphs are also represented as view items. We apply the concepts introduced insofar
to define a class line-view-item representing edges. The end points of an edge are specified as
references to its nodes. The drawing function of line-view-item uses the predefined functions
references-of-this-item and reference-position in order to compute the coordinates of
the two points defining the edge (see Figure 4).
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P1

P2

Class-1

Class-2

drawing rectangle

Figure 4: Location of edges defined by node references.

(defclass line-view-item (view-item)

())

(defmethod view-item-draw :after ((item line-view-item) view dialog)

(let* ((references (references-of-this-item item))

(p1 (reference-position (first references)))

(p2 (reference-position (second references))))

(move-to dialog p1)

(line-to dialog std-gcontext p2)))

References may also be used to define an erase function specialized for edges. Only the line
representing an edge is erased.

(defmethod view-item-undraw ((item line-view-item)

view dialog

position size references)

(using-gcontext ((eraser-gcontext :pen-pattern *white-pattern*))

(let ((p1 (reference-position (first references)))

(p2 (reference-position (second references))))

(move-to dialog p1)

(line-to dialog eraser-gcontext p2)))))

If the location of the rounded rectangles (Class-1, Class-2) is changed the reference points
P1 and P2 are recomputed and the line is redrawn.

The layout specification of our class browser uses reference boxes to define node-connecting
edges. The following specifications replace (at the position marked by ←) and supplement the
specification given in Section 2.2.

(setf (layout graph-view)

(:vbox ()

10 ; 10 Pixel upper border

(:hbox ()

10 ; 10 Pixel left border

(:gbox (:dag (list (find-class class-name)) ; list of DAG roots

#'class-direct-subclasses ; successor function

*hierarchy-depth* ; max. expansion depth

#'(lambda (class) t) ; expansion predicate

#'(lambda (class) ; node-creating function

(make-label (class-name-as-string class)))

#'make-line-view-item ; edge-creating function

#'western-reference ; start point of edge

#'eastern-reference))))) ; end point of edge

8



(defun western-reference (referencing-object referenced-object)

"Definition of reference points with :rbox form"

(:rbox referencing-object

referenced-object

(:vertical :filler :reference :filler)

(:horizontal :reference :filler)))

(defun eastern-reference (referencing-object referenced-object)

"Definition of reference points with :rbox form"

(:rbox referencing-object

referenced-object

(:vertical :filler :reference :filler)

(:horizontal :filler :reference)))

4.3 Named References of View Items

A useful extension might be to assign names to descriptions of reference boxes. They would
enable the user to define higher-level abstractions such as directed references. For instance,
the following specifications define the start and end point of an object arrow which points
from the lower right corner of object node-1 to the upper left corner of object node-2.

(:rbox :arrow-start arrow node-1

(:horizontal :filler :reference)

(:vertical :filler :reference))

(:rbox :arrow-end arrow node-2

(:horizontal :reference :filler)

(:vertical :reference :filler))

The predefined function reference-description can be applied to a reference and may return
the corresponding reference form which defined this reference and/or the reference name (e.g.
:arrow-start). For instance, this feature could be used by an arrow-drawing method for
determining the arrow direction.

(defmethod view-item-draw :after ((item arrow-view-item) view dialog)

(let* ((references (references-of-this-item item))

(rd1 (reference-description (first references)))

(rd2 (reference-description (second references)))

(p1 (reference-position (first references)))

(p2 (reference-position (second references))))

(cond

((and (eq rd1 ':arrow-start) (eq rd2 ':arrow-end)) ; draw arrow

(draw-arrow dialog std-gcontext p1 p2)) ; from p1 to p2

((and (eq rd2 ':arrow-start) (eq rd1 ':arrow-end)) ; draw arrow

(draw-arrow dialog std-gcontext p2 p1)) ; from p2 to p1

(t (error . . .)))))

9



<layout-form> ::= <hbox-form> | <vbox-form> | <fbox-form> |

<gbox-form> | <rbox-form>

<hbox-form> ::= (:hbox <box-size-spec>

{<layout-spec> |

<layout-form> |<item> | <splice>})
<vbox-form> ::= (:vbox <box-size-spec>

{<layout-spec> |

<layout-form> | <item> | <splice>})
<fbox-form> ::= (:fbox <box-size-spec> <item>)

<layout-spec> ::= <size-spec> | <filler-spec>

<box-size-spec> ::= ([:width <layout-spec>] [:height <layout-spec>])

<size-spec> ::= <integer> | <rational> | <float>

<filler-spec> ::= :filler |

(:filler [:min <filler-size-spec>]

[:max <filler-size-spec>])

<filler-size-spec> ::= <integer> | :as-needed5

<item> ::= <S-expression>

<splice> ::= (:splice <S-expression>)

<gbox-form> ::= (:gbox (<user-defined-layout-name>

<arg-1>. . .<arg-n>))

<rbox-form> ::= (:rbox <referencing-object> <referenced-object>

<horizontal-ref> <vertical-ref>6)

<horizontal-ref> ::= (:horizontal <distance-spec> :reference <distance-spec>)

<vertical-ref> ::= (:vertical <distance-ref> :reference <distance-ref>)

<distance-ref> ::= {{:filler} {<abs-distance>} {<rel-distance>}}
<abs-distance> ::= <positive integer>

<rel-distance> ::= <rational> ∈ [0, 1] | <float> ∈ [0, 1]7

<referencing-object> ::= <view-item>

<referenced-object> ::= <view-item>

Figure 5: EBNF Syntax of Layout Specifications.

5 Only valid in <hbox-form> or <vbox-form>.
6 Both components may be exchanged.
7 A relative size of a reference box refers to the enclosing rectangle of its referenced view item.

10



Figure 6: A DAG graph of a class hierarchy with local class slots.

5 Extended Class Browser and Inspector

This section shows an extended class browser and inspector. The modified class browser
additionally displays direct slots of classes (see Figure 6). These extensions were easily achieved
by defining appropriate methods for the generic functions successors and appearance (see
layout form in Figure 2). These modifications serve as an example for the flexibility of our
approach.

(defmethod successors ((any t))

"Do not show arbitrary objects"

nil)

(defmethod successors ((class standard-class))

"Show direct subclasses and slots"

(append (class-direct-subclasses class) (class-direct-slots class)))

(defmethod appearance ((class standard-class))

"Create a graphical class representation"

(make-label class . . .))

(defmethod appearance ((slot standard-slot-description))

"Create a graphical slot representation"

(make-label slot . . .))

The following example is part of a user interface of a CLOS inspector which has been imple-
mented within our framework. The inspector displays a window consisting of tabular subwin-
dows. Figure 7 shows information about a class tv:window. It displays the class precedence
list, direct super and subclasses, slot information, and direct (locally defined) methods. If
necessary, tables may be scrolled provided the space available to a table is not sufficient for
displaying all table elements.

11



Figure 7: CLOS class inspector window (default size).

Figure 8: CLOS class inspector window (vertically and horizontally enlarged).
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level 1 vertically

level 3 vertically

item

level 2 horizontally

Figure 9: Schematic representation of nested boxes. Arrows represent fillers.

The corresponding layout specification is composed of several parts and the constraints are
partially computed at runtime. Therefore, we only explain its general outline. The upper
rows are specified as horizontal boxes containing three frame boxes which represent tables.
The width and height of the frame boxes are defined by constrained fillers. Each filler acts
like a spring. All fillers compete for the space available to them which, in fact, is constrained
by their surrounding horizontal box. Therefore, after a relaxation process each filler acquires
1/3 of the available space. Roughly, the horizontal boxes compete for the vertical space in a
similar manner. Minimal and maximal constraints guarantee that sparse tables have a visually
appealing uniform shape.

Our notion of constrained fillers is important for describing a flexible window layout. For
instance, Figure 8 shows the same window as in Figure 7 except the vertical and horizontal
space available to the window has been enlarged. The table displaying the direct methods
of class tv:window adapted to the new space constraint. The additional vertical space was
completely consumed by this table since it is the only element whose upper filler constraint is
still unsatisfied.8

6 The Box Layout Algorithm Revisited

This section discusses the basic box layout algorithm in more detail. Our formalism provides
the user with a fast layout algorithm which is also easy to understand and anticipate. Impor-
tant features of this algorithm are the allocation of arbitrary (interaction) objects conforming
to the underlying protocol. The size of interaction objects may depend on predefined values
or space constraints. These constraints can be expressed by minimal and maximal expansion
values which are represented as fillers. Boxes may be arbitrarily nested but only fillers at the
same level compete for the available space. Figure 9 exemplifies this feature.

The (vertical) fillers of level 1 are independent of the (vertical) fillers of level 3. This restriction

8 Actually, its upper limit for vertical space is set to a height which would allow to display the whole list of
direct methods at once provided that sufficient screen space is available.
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Figure 10: Water jugs modeling fillers.

reduces considerably the computational complexity of the layout algorithm. Another advan-
tage is that the semantics of constrained fillers are easy to comprehend by the user. Even
this scheme requires a simple relaxation algorithm for satisfying these constraints. Figure 10
illustrates our algorithm.

Each water jug models a filler with its minimal and maximal expansion value. The current
extension of a filler corresponds to the water contents of a jug. The space available to fillers is
modeled by an external water reservoir with capacity R0. The extension of a filler is computed
by the following steps:

1. Initially each water jug j is filled to a level Lj
0. It is guaranteed that every water jug

j is at least filled to its minimum minj. In case of an additional demand for water
which cannot be supplied by an empty water reservoir9, this demand is satisfied by a
“water pipe”. If there is any water R1 in the reservoir left, the remainder of this water
is distributed.

2. Each water jug gets a portion Pi = Ri/Ni of the reservoir (be Ni the number of water
jugs in the ith iteration). Step 1 may have caused for different water levels of the jugs.
Therefore, every jug is filled to a common minimal level

Li = Mi + Pi, with Mi = min
j∈1..Ni

Lj
i−1

3. Caused by the minimum satisfaction guarantee the level of a jug may already be higher
than Li or its maximum maxj. The amount of water of a jug whose level10 exceeds
either Li or maxj is returned to the reservoir. A jug which has reached its maximal level
becomes inactive (Ni = Ni − 1).

4. Start again with step 2 (Ni+1 = Ni; i = i+1) provided the water reservoir is not empty
and there is at least one jug j left whose water level is below maxj . This algorithm
terminates if all jugs have become inactive (Ni = 0) or the water reservoir is empty.

The algorithm’s termination is guaranteed since each cycle either makes one jug inactive or
removes water from the reservoir. If no jug becomes inactive at least one jug is filled to the
level Mi. Rounding errors are summed up. As final step this sum is rounded and added to
the last filler.11

9 This is an indication that the available space is not sufficient to fulfill the space requirements. Items could
extend beyond the boundary of their surrounding box.

10 The capacity of a jug be temporarily unlimited.
11 This is needed for frame boxes which may otherwise not exactly fit to their box’s lower border.
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Figure 11: The right window shows the state after a black circle has been moved.

7 Optimizing Graphical Output

Our framework also supports the easy integration of optimization algorithms. We exemplify
this with Figure 1. If the upper left graph node labeled with TV:VIEW-ITEM is moved, the edges
referencing this node have to be informed about the location change. A simple solution might
be that every edge concerned by this change reevaluates its reference to this node and redraws
its line. The disadvantage of this solution is that each edge performs the same operation.
Furthermore, the erasing and redrawing of all lines is performed in an uncoordinative way.
But our combination of references and views supports a better strategy. Each edge receives
only a translation vector which has to be added to the corresponding reference points.

After a graph node has been moved the edges referencing this node receive a corresponding
translation vector. An uncoordinated redrawing usually causes “ping-pong” effects, e.g. redun-
dant erasing and redrawing of lines which have again to be moved subsequently. Our strategy
avoids this problem by using a drawing cache. This cache is associated with views and totally
transparent to the user. Instead of immediately evaluating the generic drawing functions only
drawing resp. erasing orders are buffered. Particular operations force to empty the cache and
execute the buffered operations. For instance, when a graph node has been moved the cache
will be emptied, i.e. after evaluating only once the coordinate transformations all buffered
erasing functions are executed at first and then all drawing functions.

We conclude this section with another example which again emphasizes that our visualization
algorithms can be applied to every CLOS object conforming to the predefined protocols.
Figure 11 shows a visualization of a line routing algorithm. It is used to explore fast and
visually appealing line routing algorithms which are essential for many visual programming
applications. The windows contain two objects (black circles) which are connected by a line
and an arbitrary number of other objects (gray circles). Each circle may be interactively
moved. Each movement invokes the line routing algorithm in order to adapt the line path.
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Figure 12: The upper and lower bounds are indicated by shaded rectangles [Winston & Horn
89]. The gauges show the estimation interval from 0 (bottom) to 1 (top).

8 Meta-Level Techniques for Separating Application and Visualization

Application and visualization objects have to be separated. In the following we discuss how to
use the meta-object protocol of CLOS for separating application and visualization layers. We
explain these considerations by using an animated visualization of a simple constraint system.

Our approach associates visualization objects with given application objects without requiring
any modifications to the application. We support multiple views as well as controllers for
manipulating the application’s data structures. Several other mechanisms have been developed
(Model-View-Controller-Scheme [Goldberg & Robson 83], CLUE [Kimbrough & LaMotte 89],
Presentation-Types [Symbolics 88]). In this section we also discuss how basic features of these
systems can be realized using our approach.

As example application we chose a simple constraint net. There is no need to present the
application code since everything can be found in detail in Winston & Horn 89 . Our visu-
alization was generated without any modifications to the application code. The application
provides a simple model of a stock exchange scenario. When are some stocks to split? The
participants have uncertain knowledge and are influenced by one another. A constraint net
models these influences by propagating certainty estimation intervals between 0 and 1. This
interval of a ‘broker’ might be visualized by a gauge as found in Winston & Horn 89 . The
implementation distinguishes assertion objects (brokers, mystics, virtual intermediates, etc.)
and constraint objects (or, and). Figure 12 shows an overview of an example configuration
with gauges for assertions and simple nodes for constraints.

The visualization in Figure 12 can be described with the following layout descriptions.

(defun stock-exchange-connections-visualization (participants)

"Opens a window and shows the connections of

the given participants in a scrollable view."
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(let ((stock-exchange-view

(make-layout-view :scroll-bars ':both

:bordered-p nil

:auto-scrolling t)))

(make-stock-exchange-dialog (:fbox () stock-exchange-view))

(setf (layout stock-exchange-view)

(:vbox ()

10

(:hbox () 10 (:gbox (:dag participants

#'stock-exchange-wizard

*max-connection-depth*

#'application-visualization-coupler

. . .)))))))

The whole dialog consists of a view (laid out with an :fbox). The graph is defined by the set
of participants and the successor function stock-exchange-wizard.

The function application-visualization-coupler defines a mapping from application ob-
jects to visualization objects. Both functions are generic, i.e. different mappings may be
specified for different classes of application objects.

(defmethod stock-exchange-wizard ((participant assertion))

"Wizard's information about connection of assertion objects."

(assertion-constraints participant))

(defmethod stock-exchange-wizard ((participant constraint))

"Wizard's information about connection of constraint objects."

(list (constraint-output participant)))

8.1 Indirect Values for Visualization Objects

Visualization objects have to refer to objects of the application side. There should exist a
“dynamic” binding which could be easily maintained provided that classes of visualization
objects offer support for some kind of active values [Bobrow & Stefik 83]. We present a
simplified CLOS metaclass supporting non-nested active values which we call indirect values.
Indirect values are defined by the form #`(object reader writer) where writer is optional.
The following method sketches an implementation using a new metaclass and a corresponding
meta-level method for the generic slot accessor function slot-value-using-class. Writing
to slots with indirect values can be implemented analogously.

(defclass indirect-slots-class (standard-class)

())

(defmethod check-super-metaclass-compatibility ((x indirect-slots-class)

(y standard-class))

t) ; We do not care about that in this report.12

12 We refer to Graube 89.
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(defmethod slot-value-using-class ((class indirect-slots-class) object slot-name)

(let ((direct-slot-value (call-next-method)))

(if (indirectp direct-slot-value)

(funcall (indirect-reader direct-slot-value)

(indirect-object direct-slot-value))

direct-slot-value)))

Visualization objects have indirect-slots-class as metaclass. Using indirect slot values
every slot access is delegated to the corresponding application object if required. Using the
meta-object protocol it would be easy to determine all indirect objects or that indirect object
referred to by a specific slot. The gauges for the stock exchange example use this metaclass
to refer to the exchange participants. But what about the other direction: the gauges have to
be “informed” if the participants’ estimations of stock splits change.

8.2 Slot Demons for Application Objects

An assertion object has one slot for the lower bound and one for the upper bound estimation.
The corresponding visualization objects have to be informed when either of these slot values
change. The most obvious way to achieve this is to define the assertion class with a metaclass
that allows demon functions to be attached to slots. The “real” value of a slot is a structure
that provides a value facet and an if-modified facet [Roberts & Goldstein 77]. All slot demon
functions are evaluated when the slot value changes. The implementation of slot demons is
similar to the one of indirect slot values. We introduce a metaclass demon-slots-class and
define modified versions of slot-value-using-class and (setf slot-value-using-class)

which access the value facet. The latter one evaluates the demons in the if-modified facet.
Slot demons should be made removable.

Thus, the function application-visualization-coupler mentioned above can be defined
as follows.

(defmethod application-visualization-coupler ((participant assertion))

(let ((assertion-gauge (make-two-level-gauge ; indirect values

#`(participant assertion-lower-bound)

#`(participant assertion-upper-bound))))

(add-slot-if-modified-demon

participant ; object

'lower-bound ; slot name

#'(lambda ; demon function

(assertion-obj name-of-modified-slot old-value new-value)

(gauge-update assertion-gauge)))

(add-slot-if-modified-demon

participant ; object

'upper-bound ; slot name

#'(lambda ; demon function

(assertion-obj name-of-modified-slot old-value new-value)

(gauge-update assertion-gauge)))

assertion-gauge))
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Wrapper-Method
   wrapped-method
   before-demons
   after-demons
   method-function
      (lambda (...)
         (dolist (demon (before-demons Wrapper-Method))
           (funcall demon))
         (funcall (method-function
                     (wrapped-method Wrapper-Method)))
         (dolist (demon (after-demons Wrapper-Method))
           (funcall demon)))

Generic function methods

Method
   method-function
      (lambda (...) ...)

Figure 13: Outline of a wrapper method

(defmethod application-visualization-coupler ((participant or-box))

(make-label "OR"))

Demon functions are closures which provide access to the corresponding visualization object.
The gauges for assertion objects (broker, etc.) use indirect values to access assertion objects.
The objects representing labels for constraints are the same as in the class browser example.

8.3 Method Demons

Slot demons offer an elegant way of defining slot accesses as interesting events and hence
updating corresponding visualization objects. Not only slot accesses are subject to updating
a visualization. Every method might define an event of interest. Slot accesses are only special
cases. General method demons can be implemented using the meta-object protocol of CLOS.
The idea13 is to wrap a method with a so-called wrapper method which has slots to refer to
both the demon functions and the original method (see Figure 13). When all demons are
removed the wrapper method itself is removed, too. In this case there is no overhead as with
a metaclass which provides own methods for slots accesses that overwrite the standard slot
accessor methods (e.g. for indirect values).

A major disadvantage of this wrapping slot accessor is that demons are evaluated for all
instances, i.e. they are slot but not instance-specific. Method demons do not solve the problem
of compound slot accesses, either.

13 An implementation proposal for CLOS was originally outlined by Gregor Kiczales.
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slot meta-objects

Figure 14: Meta-objects for instances with metaclass extensible-standard-class.

8.4 Instance-Specific Meta-Objects

The CLOS meta-object system assigns to metaclasses the responsibility for both structure (im-
plementation) and behavior of instances. There are other meta-level systems which distinguish
between structural and computational meta-objects [Ferber 89]. In this section we present
ideas to provide some kind of dynamic meta-level influence in CLOS [Cunis 90]. We implement
meta-objects as instances of the class standard-meta-object which is not a CLOS metaclass.
The standard slot access protocol which uses the method slot-value-using-class is anal-
ogously extended for these “simple” meta-objects.

(defclass standard-meta-object ()

())

(defmethod slot-value-using-meta-object ((mobj standard-meta-object)

object slot-name)

(call-next-meta-method))

(defmethod (setf slot-value-using-meta-object) ((mobj standard-meta-object)

object slot-name)

(call-next-meta-method))

Meta-objects can be assigned to instances with metaclass extensible-standard-class. This
metaclass describes classes with instances that have one additional or implicit slot called
meta-objects (see Figure 14). A set of meta-objects can be assigned to this slot.

An example method handling slot accesses is defined as follows.

(defmethod slot-value-using-class ((class extensible-standard-class)

object slot-name)

(if (eq slot-name 'meta-objects)

(call-next-method)

(let ((*meta-objects* (slot-value object 'meta-objects))
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(*meta-class-generic-function* #'(lambda () (call-next-method)))

(*meta-object-generic-function*

#'(lambda (meta-object) (slot-value-using-meta-object meta-object

object

slot-name))))

(declare (special *meta-objects*

*meta-object-generic-function*

*meta-class-generic-function*))

(if (null *meta-objects*)

(call-next-method)

(call-next-meta-method)))))

The function call-next-meta-method is comparable to the function call-next-method. It
evaluates slot-value-using-meta-object for the “next” meta-object in the list of meta-
objects (see Figure 14). The default behavior of slot-value-using-meta-object is to eval-
uate call-next-meta-method again (s.a.). This default behavior may be augmented or over-
written by subclasses of standard-meta-object (s.b.). When there are no meta-objects (left),
call-next-meta-method invokes the “normal” slot access functionality of standard-class.
There is also some additional code needed to enable passing of different parameters to the
next metamethod just as with call-next-method.

(defun call-next-meta-method ()

(declare (special *meta-objects*

*meta-object-generic-function*

*meta-class-generic-function*))

(if (endp *meta-objects*)

(funcall *meta-class-generic-function*)

(funcall *meta-object-generic-function* (pop *meta-objects*))))

We use these meta-level techniques to extend our constraint example. Using the protocol
described above visualizations of particular instances can be provided with little programming
effort. For instance, a meta-object could be defined by the class visualizer-meta-object.
This class combines a visualization object with a list of interesting slots. Every writing access
to these slots is followed by calling the instance-specific visualization object.

(defclass visualizer-meta-object (standard-meta-object)

((visualizer :initarg :visualizer

:accessor visualizer

:initform #'(lambda (&rest ignore) nil))

(interesting-slots :initarg :interesting-slots

:reader interesting-slots))

(:default-initargs :interesting-slots nil))

(defmethod (setf slot-value-using-meta-object) :after (new-value

(mobj visualizer-meta-object)

object slot-name)

(if (member slot-name (interesting-slots mobj))

(funcall (visualizer mobj) object slot-name)))

We define a new metaclass for assertion objects which combines slot demons and meta-objects.

21



(defclass extensible-standard-class-with-slot-demons (extensible-standard-class

demon-slots-class)

())

Be your-opinion the assertion object of our constraint example. We add only to this ob-
ject a corresponding meta-object which prints your-opinion’s decision about buying stocks.
This behavior can be easily reverted by removing this meta-object from the implicit slot
meta-objects (see Figure 14).

(add-meta-object your-opinion

(make-instance 'visualizer-meta-object

:interesting-slots '(lower-bound upper-bound)

:visualizer

#'(lambda (assertion slot-name)

(if (> (assertion-lower-bound assertion) 0.75)

(print 'buy) ; or any other visual feedback

(print 'donot-buy)))))

Another behavior might be to temporarily modify a reading access to a slot value. After
adding a meta-object of class buying-indicator-meta-object to the object your-opinion

each reading access to the slot lower-bound of your-opinion returns the slot value and a
buying indicator.

(defclass buying-indicator-meta-object (standard-meta-object)

())

(defmethod slot-value-using-meta-object ((mobj buying-indicator-meta-object)

object slot-name)

(if (eq slot-name 'lower-bound)

(let ((slot-value (call-next-meta-method)))

(if (> slot-value 0.75)

(values slot-value 'buy)

(values slot-value 'donot-buy)))

(call-next-meta-method)))

(add-meta-object your-opinion (make-instance 'buying-indicator-meta-object))

One may of course argue that this implementation is a little impure because of using different
mechanisms: metaclasses and meta-objects. Moreover not all meta-objects may be compatible.
There remains also some overhead although no meta-objects are attached to an instance.

9 Related Work

The SymbolicsTM programming environment GeneraTM offers also means for specifying layout
of windows [Symbolics 88]. Subwindows (panes) can be arranged in a frame in columns or rows.
Window sizes can be determined as absolute (fixed), relative, or with respect to objects being
allocated. These features can be compared with our box model. Filler specifications are also
supported. Size specifications can be constrained by minimal and maximal distances. Genera
only supports layouts for panes, but our layout algorithms can be applied to every object
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conforming to the underlying abstract protocol. Genera offers the notion of presentation types
which can be compared with our view item classes. Presentation types are also associated with
handling user input. In contrast to Genera our approach offers a more uniform and orthogonal
layout scheme combined with a compact and elegant TEX-notation.

Recently, two other approaches were proposed which use TEX-like layout schemes for user
interfaces. They also use constructs such as boxes and fillers for expressing window layout.
The InterViews System [Linton et al. 89] is a user-interface toolkit based on X windows and
implemented in C++. Fillers and boxes are implemented as objects. With respect to our
Lisp environment we found the representation of boxes as a combination of ordinary lists and
macros more efficient for manipulation and pattern matching. Our layout scheme is in several
respects more powerful than InterViews’ scheme. A filler-like size specification of boxes is not
possible in InterViews. Important and useful notions such as a frame box which constrains
the size of a its box element or a general box which invokes user-defined parsers for layout
specifications are not available.

The FormsVBT system [Avrahami et al. 89] offers a two-view approach to designing user
interfaces. The layout of a dialog window can be specified using both a TEX-like textual and
a direct-manipulative graphical representation. Changes made in either representation are
immediately updated in the other representation. FormsVBT is implemented in a dialect of
Modula-2. Its specification language supports no macros and offers no support for new box
types and layout schemes. Furthermore, we see the problem that the functionality of the
textual specification notation has to conform with the graphical user interface. Mostly, this
requires to reduce the functionality of the textual notation.

10 Summary and Future Work

This report presented a framework for visualizing object-oriented systems. It consists of a
compact, flexible notation for specifying layout of graphical objects. This notation is fully
integrated into a Lisp environment based on CLOS. Advantages of this TEX-like notation are
its expressiveness, user-predictable layouts, and efficient implementation schemes. The CLOS
meta-level architecture is used to associate visualization and application objects. Supported
techniques are indirect values, slot and method demons, and instance-specific meta-objects.
These visualization techniques require no modifications to the systems which are selected for
visualization.

Next steps might be to combine the advantages of TEX-style notations with the general flexi-
bility of constraint systems. Another useful extensions might be to support local variables in
box specifications (see section 2.3) and naming of references (see Section 4.3). We also plan to
address the problem of interpreting several different generic functions as a single interesting
event. One solution might be to define higher-level demons combining demons of different
methods. Furthermore, research is necessary to extend this approach to 2-1/2 or 3-D layout.
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