Fachbereich Informatik der Universitat Hamburg
Vogt-Kolln-Str. 30 ¢ D-22527 Hamburg / Germany

University of Hamburg - Computer Science Department

Mitteilung Nr. 289 e Memo No. 289

RACE User’s Guide and Reference Manual Version 1.1

Volker Haarslev, Ralf Moller, Anni-Yasmin Turhan

Arbeitsbereich KOGS

FBI-HH-M-289/99

Oktober 1999

RACE User’s Guide and Reference Manual
Version 1.1

Volker Haarslev Ralf Moller Anni-Yasmin Turhan

{haarslev, moeller, turhan}@informatik.uni-hamburg.de
University of Hamburg, Computer Science Department
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany

October 5, 1999

Contents
1 Introduction

2 Obtaining and Running RACE

2.1 System Installation L L
2.2 Sample Session
2.3 Naming Conventions e

RACE Knowledge Bases

3.1 Concept Language
3.2 Concept Axioms and Terminology
3.3 Role Declarations
3.4 ABox Assertions e
3.5 Inference Modes e
3.6 Retraction and Incremental Additions

Knowledge Base Management Functions

4.1 TBox Management e

signature. e
ensure-tbox-signatureo
kcurrent-tbox* Lo
save—tboxo

find-tbox L e e e e e e e

(S

© © o g o O«

4.2

ensure-abox-signature
in-knowledge-base
current-abox

Save—aboX e e e e e e e e e e e e e e

5 Knowledge Base Declarations

5.1

5.2

5.3

5.4

Built-in Conceptso
top,top Lo
bottom, bottom,
Concept Axioms
implies Lo
equivalent

disjoint

define-primitive-concept

define-concept
define-disjoint-primitive-concept
add-concept-axiom
add-disjointness-axiom
Role Declarations
define-primitive-role
define-primitive-attribute
add-role-axiom
Assertions oL oo

instance s

forget-role-assertion

define-distinct-individual

14
14
14
15
15
16
16
17
17
18
18

18
18
18
19
19
19
20
20
20
21
21
22
22
22
23
23
24
24
24
25
25
26
26
27
27
27
28

6 Reasoning Modes

*auto-classify*xo Lo

kauto—realize* L e e e

7 Evaluation Functions and Queries

7.1

7.2

7.3

7.4

7.5

Queries for Concept Terms o
concept-satisfiable? oL o oL
concept-satisfiable-po oo
concept-subsumes? L0 Lo

concept-subsumes-po Lo

concept-disjoint?o Lo
concept-disjoint-po
alc-concept-coherent o000
Role Queries

role-subsumes? e e e e e e e e e

transitive-p. Lo e
feature-p.
TBox Evaluation Functions
classify-tbox
check-tbox-coherence o000
tbox-classified-p Lo Lo
tbox-coherent-p Lo oL
ABox Evaluation Functions oo oL
realize-abox. Lo
abox-realized-p
ABox Queries
abox-consistent-po Lo Lo
check-abox-coherence oo
individual-instance?o
individual-instance-po
individuals-related?o L
individuals-related-p oo

individual-equal?o

iii

28
28
28

28
28
29
29
29
30
30
30
31
31
31
32
32
32
32
32
33
33
33
33
34
34
34
34
35
35
35
35
35
36
36
36
37
37

individual-not-equal?

individual-p. oL oo

8 Retrieval

8.1

8.2

TBox Retrieval L.
TAXONOMY . . . v v v v v e e e e e e
concept—sSynonymso e .
atomic-concept-synonyms
concept-descendants
atomic-concept-descendants
concept-ancestors
atomic-concept-ancestors
concept-childreno
atomic-concept-children
concept-parents
atomic-concept-parents
role-descendants
atomic-role-descendants
role-ancestors
atomic-role-ancestors
role-children oo
atomic-role-children
role-parents. 0oL
atomic-role-parents
loop-over-tboxes
all-tboxes oo
all-atomic-concepts
all-roles. o
all-features.
all-transitive-roles
describe-tbox oo
describe-concepto
describe-roleo
ABox Retrieval
individual-direct-types
most-specific-instantiators
individual-types

instantiators

v

37
38

38
38
38
39
39
39
40
40
40
41
41
41
41
42
42
42
43
43
43
44
44
44
44
45
45
45
45
46
46
46
46
47
47
47
47

concept—instances
retrieve-concept-instanceso
individual-fillers Lo
retrieve-individual-fillers
retrieve-related-individuals
retrieve-individual-relations
retrieve-direct-predecessors
loop-over—aboxes e e
all-aboxes
all-individuals e
all-concept-assertions-for-individual
all-role-assertions-for-individual-in-domain
all-role-assertions-for-individual-in-range.
all-concept-assertions Lo
all-role-assertions o e
describe-abox L.

describe-individual e

A KRSS Sample Knowledge Base

Al
A2

KRSS Sample TBox
KRSS Sample ABox

B Integrated Sample Knowledge Base

C Web Interface

C.1
C.2

Introduction
How to use the interface oL
C.2.1 Register as a new USETo e e
C.2.2 Concept axioms ot
C.2.3 Concept Terms e
C.2.4 Role Declarations
C.2.5 Role Axioms e
C.2.6 Buildingan ABox
C.2.7 Building and Executing a Query
C.2.8 Queries concerning the concept hierarchy
C.2.9 Queries concerning the instances
C.2.10 Maintaining TBoxes and ABoxes

53
93
o4

54

1 Introduction

The RACE! system is a knowledge representation system that implements a highly opti-
mized tableaux calculus for an expressive description logic. It offers reasoning services for
multiple TBoxes and for multiple ABoxes as well. The system implements the description
logic ALCNHp+. This is the basic logic ALC augmented with number restrictions, role
hierarchies and transitive roles.

RACE supports the specification of general terminological axioms. A TBox may contain
general concept inclusions (GCls), which state the subsumption relation between two con-

cept terms. Multiple definitions or even cyclic definitions of concepts can be handled by
RACE.

RACE supports most of the functions specified in the Knowledge Representation System
Specification (KRSS), for details see [Patel-Schneider and Swartout 93].

RACE is implemented in ANSI Common Lisp and has been developed at the University of
Hamburg.

2 Obtaining and Running RACE

The RACE system can be obtained from the following web site:
http://kogs-www.informatik.uni-hamburg.de/race.html

2.1 System Installation

For the Macintosh execute the self-extracting archive race-1-1.sea or unstuff the file
race-1-1.sit.

For UNIX and Windows systems decompress the archive file after downloading. For UNIX
use the command: gzip -dc race-1-1.tar.gz | tar -xf -
Under Windows unzip the file: race-1-1.zip

This creates the files and directories of the distribution. Then follow the instructions in the
file readme.txt.

2.2 Sample Session

All the files used in this example are in the directory "race:examples;". The queries are
in the file "family-queries.lisp".

555
;55 the following forms are assumed to be contained in a
;55 file "race:examples;family-tbox.lisp".

;35 initialize the TBox "family"
(in-tbox family)

'RACE stands for Reasoner for ABoxes and Concept Expressions

;55 supply the signature for this TBox
(signature
:atomic-concepts (person human female male woman man parent mother
father grandmother aunt uncle sister brother)
:roles ((has-child :parent has-descendant)
(has-descendant :transitive t)
(has-sibling)
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t)))

;;; domain & range restrictions for roles

(implies *top* (all has-child person))

(implies (some has-child *top*) parent)

(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;55 the concepts

(implies person (and human (some has-gender (or female male))))
(disjoint female male)

(implies woman (and person (some has-gender female)))

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))

(equivalent father (and man parent))

(equivalent grandmother (and mother (some has-child (some has-child person))))
(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

has-brother
has-=ibling

hai—d95cendant%}—{Bas—ch”d}

Figure 1: Role hierarchy for the family TBox.
r denotes the universal role, which
may not be used in knowledge bases.

! denotes features

* denotes transitive roles

Figure 2: Concept hierarchy for the family TBox.

The RACE Session:

;33 load the TBox

CL-USER(1): (load "race:examples;family-tbox.lisp")
;55 Loading race:examples;family-tbox.lisp

T

e some TBox queries

;33 are all uncles brothers?

CL-USER(2): (concept-subsumes? brother uncle)

T

;55 get all super-concepts of the concept mother

;35 (This kind of query yields a list of so-called name sets
e which are lists of equivalent atomic concepts.)
CL-USER(3): (concept-ancestors mother)

((PARENT) (WOMAN) (PERSON) (*TOP* TOP) (HUMAN))

;55 get all sub-concepts of the concept man
CL-USER(4): (concept-descendants man)

((UNCLE) (*BOTTOM* BOTTOM) (BROTHER) (FATHER))

;55 get all transitive roles in the TBox family
CL-USER(5): (all-transitive-roles)

(HAS-DESCENDANT)

;35 the following forms are assumed to be contained in a
;35 file "race:examples;family-abox.lisp".

;35 initialize the ABox smith-family and use the TBox family
(in-abox smith-family family)

;35 supply the signature for this ABox
(signature :individuals (alice betty charles doris eve))

;35 Alice is the mother of Betty and Charles
(instance alice mother)

(related alice betty has-child)

(related alice charles has-child)

;53 Betty is mother of Doris and Eve
(instance betty mother)

(related betty doris has-child)
(related betty eve has-child)

;55 Charles is the brother of Betty (and only Betty)
(instance charles brother)

(related charles betty has-sibling)

;33 closing the role has-sibling for Charles
(instance charles (at-most 1 has-sibling))

;53 Doris has the sister Eve
(related doris eve has-sister)

;33 Eve has the sister Doris
(related eve doris has-sister)

doris
has-
child

betty:mother
has- has-sister
child

alice:mother

has-

sibling €V€

charles :(and brother (at-most 1 has-sibling))

Figure 3: Depiction of the ABox smith-family.
(with the explicitly given information being shown)

The RACE Session:

;55 now load the ABox

CL-USER(6): (load "race:examples;family-abox.lisp")
;5> Loading race:examples;family-abox.lisp

T

e some ABox queries

;33 Is Doris a woman?

CL-USER(7): (individual-instance? doris woman)
T

;33 0f which concepts is Eve an instance?
CL-USER(8): (individual-types eve)

((SISTER) (WOMAN) (PERSON) (HUMAN) (*xTOP* TOP))
;55 get all direct types of eve

CL-USER(9): (individual-direct-types eve)
(SISTER)

;35 get all descendants of Alice

CL-USER(10): (individual-fillers alice has-descendant)
(DORIS EVE CHARLES BETTY)

;55 get all instances of the concept sister
CL-USER(11): (concept-instances sister)

(DORIS BETTY EVE)

In the Appendix are different versions of this knowledge base. In Appendix A, on page 53,
you find a version in KRSS syntax and in Appendix B, on page 54, a version where the
TBox and ABox are integrated.

2.3 Naming Conventions

Throughout this document we use the following abbreviations, possibly subscripted.

C Concept term S List of Assertions
CN Concept name GNL List of group names
IN Individual name LCN List of concept names
RN Role name abox ABox object
ABN ABox name thor TBox object
TBN TBox name n a natural number

name Name of any sort

All names are Lisp symbols, the concepts are symbols or lists. Please note that for macros
in contrast to functions the arguments should not be quoted.

The API is designed to the following conventions. For most of the services offered by
RACE macro interfaces and function interfaces are provided. For macro forms, the TBox
or ABox arguments are optional. If no TBox or ABox is specified, the *current-tbox* or
xcurrent-aboxx* is taken, respectively. However, for the functional counterpart of a macro
the TBox or ABox argument is not optional. For functions who do not have macro counter-
parts the TBox or ABox argument may or may not be optional. Furthermore, if an argument
tbox or abox is specified in this documentation a name (a symbol) can be used as well.

3 RACE Knowledge Bases

In description logic systems a knowledge base is consisting of a TBox and an ABox. The
conceptual knowledge is represented in the TBox and the knowledge about the instances

of a domain is represented in the ABox. For a more detailed description of the concept
language supported by RACE see [Haarslev and Maoller 99].

3.1 Concept Language

The content of RACE TBoxes includes the conceptual modeling of concepts and roles as
well. The modelling is based on the signature, which consists of two disjoint sets: the set of

concept names C, also called the atomic concepts, and the set R containing the role names?.

Starting form the set C complex concept terms can be build using several operators. An
overview over all concept building operators is given in Figure 4.

¢ — CN |
topx ‘
bottom |
(not O) \
(and C) ... Cy) |
(or Cl Cn) |
(some RN () |
(all RN) |
(at-least n RN) |
(at-most n RN) |
(exactly n RN)

Figure 4: RACE concept terms

Boolean terms build concepts by using the boolean operators.

‘ DL notation ‘ RACE syntax

Negation - C | (not C)
Conjunction | C1 M ... MCy, | (and C; ... Cp)
Disjunction | Cy U ... UC, | (or Cy ... Cp)

Qualified restrictions state that role fillers have to be of a certain concept. Value restric-
tions assure that the type of all role fillers is of the specified concept, while exist restrictions
require that there be a filler of that role which is an instance of the specified concept.

‘ DL notation ‘ RACE syntax
3 RN.C (some RN C)
Y RN.C (all RN C)

Exists restriction
Value restriction

Number restrictions can specify a lower bound, an upper bound or an exact number for
the amount of role fillers each instance of this concept has for a certain role. Only roles that

2The signature does not have to be specified explicitly in RACE knowledge bases - the system can
compute it from the all the used names in the knowledge base - but specifying a signature may help avoiding
errors caused by typos!

are not transitive and do not have any transitive subroles are allowed in number restrictions
(see also the comments in [Horrocks-et-al. 99a, Horrocks-et-al. 99b]).

‘ DL notation ‘ RACE syntax
At-most restriction <n RN (at-most n RN)
At-least restriction n RN (at-least n RN)
Exactly restriction n RN (exactly n RN)

v

Actually, the exactly restriction (exactly n RN) is an abbreviation for the concept term:
(and (at-least m RN) (at-most n RN)).

There are two concepts implicitly in every TBox: the concept “top” (T) denotes the top most
concept in the hierarchy and the concept “bottom” (L) denotes the inconsistent concept,
which is a subconcept to all other concepts. Note that T (L) can also be expressed as
C U~C (Cn~=C).In RACE T is denoted as *top* and L is denoted as *bottom*>.

3.2 Concept Axioms and Terminology

RACE supports several kinds of concept axioms.

General concept inclusions (GCIs) state the subsumption relation between two concept
terms.
DL notation: C; C Cy
RACE syntax: (implies C7 ()

Concept equations state the equality between two concept terms.
DL notation: C; = Cy
RACE syntax: (equivalent C; C3)

Concept disjointness axioms states the disjointness between several concepts. Disjoint
concepts do not have instances in common.
DL notation: C;M1---NC, = L
RACE syntax: (disjoint C) ... Cy)

Actually, a concept equation C} = (5 can be expressed by the two GClIs: C; C Cy and
Cs C (). The disjointness of the concepts C; ... C, can also be expressed by GClIs.

There are also separate forms for concept axioms with just concept names on their left-hand
sides. These concept axioms implement special kinds of GCIs and concept equations. But
concept names are only a special kind of concept terms, so these forms are just syntactic
sugar. They are added to the RACE system for historical reasons and for compatibility with
KRSS. These concept axioms are:

Primitive concept axioms state the subsumption relation between a concept name and
a concept term.
DL notation: (CN C ()
RACE syntax: (define-primitive-concept CN ()

3For KRSS compatibility reasons RACE also supports the synonym concepts top and bottom.

Concept definitions state the equality between a concept name and a concept term.
DL notation: (CN = ()
RACE syntax: (define-concept CN ()

Concept axioms may be cyclic in RACE. There may also be forward references to concepts
which will be “introduced” with define-concept or define-primitive-concept in sub-
sequent axioms. The terminology of a RACE TBox may also contain several axioms for a
single concept. So if a second axiom about the same concept is given, it is added and does
not overwrite the first axiom.

3.3 Role Declarations

In contrast to concept axioms, role declarations are unique in RACE. There exists just one
declaration per role name in a knowledge base. If a second declaration for a role is given,
an error is signalled. If no signature is specified, undeclared roles are assumed to be neither
a feature nor a transitive role and they do not have any superroles.

The set of all roles (R) includes the set of features (F) and the set of transitive roles (R™).
The sets F and R are disjoint. All roles in a TBox may also be arranged in a role hierarchy.

Features (also called attributes) restrict a role to be a functional role, e.g. each individual
can only have up to one filler for this role.

Transitive Roles are transitively closed roles. If two pairs of individuals IN; and IN 5 and
IN5 and IN3 are related via a transitive role R, then IN; and INj3 are also related
via R.

Role Hierarchies define super- and subrole-relationships between roles. If R; is a super-
role of Ry, then for all pairs of individuals between which Ry holds, Ry must hold too.

In the current implementation the specified superrole relations may not be cyclic. If a role
has a superrole, its properties are not in every case inherited by the subrole. The properties
of a declared role induced by its superrole are shown in Figure 5. The table reads as follows:
For example if a role RN is declared as a simple role and it has a feature RNy as a
superrole, then RN will be a feature itself.

Superrole RN, €
R ‘ R* ‘ F
Subrole RN7 R R | R F
declared as R RT | R -
element of: F F | F F

Figure 5: Conflicting declared and inherited role properties.

The combination of a feature having a transitive superrole is not allowed and features cannot
be transitive. Note that transitive roles and roles with transitive subroles may not be used
in number restrictions.

RACE does not support role terms as specified in the KRSS. However, a
role being the conjunction of other roles can as well be expressed by using
the role hierarchy (cf. [Buchheit et al. 93]). The KRSS-like declaration of the role
(define-primitive-role RN (and RN, RN3)) can in RACE be approximated by:
(define-primitive-role RN :parents (RN; RN3)).

RACE does not offer constructs for domain and range restrictions for roles. These restric-
tions for primitive roles can be simulated with GCIs, see the examples in Figure 6 (cf.
[Buchheit et al. 93]).

KRSS ‘ DL notation
(define-primitive-role RN (domain C)) | (3 RN.T)C C
(define-primitive-role RN (range ()) TC(YRN.C)

Figure 6: Domain and range restrictions expressed via GCls.

3.4 ABox Assertions

An ABox contains assertions about individuals. The set of individual names 7 is the signa-
ture of the ABox. The set of individuals must be disjoint to the set of concept names and
the set of role names. There are two kinds of assertions:

Concept assertions state that an individual IN is an instance of a specified concept C.

Role assertions state that an individual IN is a role filler for a role RN with respect to
an individual INs.

In RACE the unique name assumption holds, this means that all individual names used
in an ABox refer to distinct individuals, therefore two names cannot refer to the same
individual.

In the RACE system each ABox refers to a TBox. The concept assertions in the ABox
are interpreted with respect to the concept axioms given in the referenced TBox. The role
assertions are also interpreted according to the role declarations stated in that TBox. When
a new ABox is built, the TBox to be referenced must already exist. The same TBox may
be referred to by several ABoxes. If no signature is used for the TBox, the assertions in the
ABox may use new names for roles or concepts which are not mentioned in the TBox?.

3.5 Inference Modes

After the declaration of a TBox or an ABox, RACE can be instructed to answer queries.
Processing the knowledge base in order to answer a query may take some time. The standard
inference mode of RACE ensures the following behavior: Depending on the kind of query,
RACE tries to be as smart as possible to locally minimize computation time (lazy inference
mode). For instance, in order to answer a subsumption query wrt. a TBox it is not necessary

4These concepts are assumed to be atomic concepts and roles are treated as roles that are neither a
feature, nor transitive and do not have any superroles. New items are added to the TBox. Note that this
might lead to surprising query results, e.g. the set of subconcepts for T contains concepts not mentioned in
the TBox in any concept axiom. Therefore we recommend to use a signature declaration (see below).

to classify the TBox. However, once a TBox is classified, answering subsumption queries
for atomic concepts is just a lookup. Furthermore, asking whether there exists an atomic
concept in a TBox that is inconsistent (tbox-coherent-p) does not require the TBox to be
classified, either. In the lazy mode of inference (the default), RACE avoids computations
that are not required concerning the current query. In some situations, however, in order to
globally minimize processing time it might be better to just classify a TBox before answering
a query (eager inference mode).

The inference behavior of RACE can be controlled by setting the value of the variables
xauto-classify* and *auto-realizex for TBox and ABox inference, respectively. The
lazy inference mode is activated by setting the variables to the keyword :lazy. Eager
inference behavior can be enforced by setting the variables to :eager. The default value for
each variable is :lazy-verbose, which means that RACE prints a progress bar in order to
indicate the state of the current inference activity if it might take some time. If you want
this for eager inferences, use the value :eager-verbose. If other values are encountered,
the user is responsible for calling necessary setup functions (not recommended).

We recommend that TBoxes and ABoxes should be kept in separated files. If an ABox is
revised (by reloading or reevaluating a file), there is no need to recompute anything for the
TBox. However, if the TBox is placed in the same file, reevaluating a file presumably causes
the TBox to be reinitialized and the axioms to be declared again. Thus, in order to answer
an ABox query, recomputations concerning the TBox might be necessary. So, if different
ABoxes are to be tested, they should probably be located separately from the associated
TBoxes in order to save processing time.

During the development phase of a TBox it might be advantageous to call inference services
directly. For instance, during the development phase of a TBox it might be useful to check
which atomic concepts in the TBox are inconsistent by calling check-tbox-coherence. This
service is usually much faster than calling classify-tbox. However, if an application prob-
lem can be solved, for example, by checking whether a certian ABox is consistent or not (see
the function abox-consistent-p), it is not necessary to call either check-tbox-coherence
or classify-tbox. For all queries, RACE ensures that the knowledge bases are in the ap-
propriate states. This behavior usually guarantees minimum runtimes for answering queries.

3.6 Retraction and Incremental Additions

RACE offers constructs for retracting ABox assertions (see forget,
forget-concept-assertion and forget-role-assertion). If a query has been an-
swered and some assertions are retracted, then RACE might be forced to realize the ABox
again, i.e. after retractions, some queries might take some time to answer.

RACE also supports incremental additions to ABoxes, i.e. assertions can be added even
after queries have been answered. However, the internal data structures used for anwering
queries are recomputed from scratch. This might take some time. If an ABox is used for
hypothesis generation, e.g. for testing whether the assertion ¢ : C' can be added without
causing an inconsistency, we recommend using the instance checking inference service. If
(individual-instance? i (not C)) returns t, i : C' cannot be added to the ABox. Now,
let us assume, we can add ¢ : C and afterwards want to test whether 7 : D can be added
without causing an inconsistency. In this case it might be faster not to add ¢ : C' directly but
to check whether (individual-instance? i (and C (not D))) returns t. The reason is
that, in this case, the index structures for the ABox are not recomputed.

10

4 Knowledge Base Management Functions

This section documents the functions for managing TBoxes and ABoxes and for specifying

queries.

4.1 TBox Management

in-tbox macro
Description: The TBox with the specified name is taken or a new TBox with that name
is generated and bound to the variable *current-tboxx*.
Syntax: (in-tbox TBN &key (init nil))
Arguments: TBN - is the name of the TBox.
it - boolean indicating if the TBox should be initialized.
Remarks: Usually this macro is used at top of a file containing a TBox. This macro
can also be used to create new TBoxes.
The specified TBox is the *current-tbox* until in-tbox is called again or
the variable *current-tbox* is manipulated directly.
Examples: (in-tbox peanuts)
(implies Piano-Player Character)
See also: Macro signature on page 11.

init-tbox

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Generates a new TBox or initializes an existing TBox and binds it to the vari-
able *current-tbox*. During the initialization all user-defined concept ax-
ioms and role declarations are deleted, only the concepts *top* and *bottom*
remain in the TBox.

(init-tbox thoxr &optional (class ’tbox))

thor - TBox object

class - class inheriting from the class tbox
thox

This is the way to create a new TBox object.

11

signature

macro

Description:

Syntax:

Arguments:

Remarks:

Examples:

See also:

Defines the signature for a knowledge base.

If the keywords atomic-concepts and roles are used. The *current-tbox* is initial-
ized and the signature is defined for it.

If the keyword individualnames is used, the *current-abox™ is initialized. If all key-
words are used, the *current-abox* and its TBox are both initialized.

(signature &key (atomic-concepts nil) (roles nil)
(individuals nil))

atomic-concepts - is a list of all the concept names, specifying C.
roles - is a list of all role declarations, thereby also specifying R.

individuals - is a list of individual names, specifying 7.

Usually this macro is used at top of a file directly after the macro
in-knowledge-base, in-tbox or in-abox.

Actually it is not necessary in RACE to specify the signature, but it helps
to avoid errors due to typos.

Signature for a TBox:
(signature
:atomic-concepts (Character Baseball-Player ...)
:roles ((has-pet)
(has-dog :parents (has-pet))
(has-coach :feature t)))

Signature for an ABox:
(signature :individuals (Charlie-Brown Snoopy ...))

Signature for a TBox and an ABox:
(signature
:atomic-concepts (Character Baseball-Player ...)
:roles ((has-pet)
(has-dog :parents (has-pet))
(has-coach :feature t))
:individuals (Charlie-Brown Snoopy ...))

Section Sample Session, on page 1 and page 3.
For role definitions see define-primitive-role, on page 22.

12

ensure-tbox-signature function

Description: Defines the signature for a TBox and initializes the TBox.
Syntax: (ensure-tbox-signature thor &key (atomic-concepts nil)
(roles nil))
Arguments: thor - is a TBox name or a TBox object.
atomic-concepts - is a list of all the concept names, specifying C.
roles - is a list of all role declarations, thereby also specifying R.
current-tbox special-variable
Description: The variable *current-tbox* refers to the current TBox object. It is set by
the function init-tbox or by the macro in-tbox.
save-tbox Jfunction
Description: If a pathname is specified, a TBox is saved to a file. In case a stream is
specified the TBox is written to the stream (the stream must already be
open).
Syntax: (save-tbox pathname-or-stream &optional (tboz *current-tbox*)
&key (syntaxr :krss) (transformed nil) (if-ezists :supersede)
(if -does—-not-exist :create))
Arguments: pathname-or-stream - is the pathname of a file or an output stream
thor - TBox object
syntax - indicates the syntax of the TBox. It might as well be names of other
DL systems.
transformed - if bound to t the TBox is saved in the format after preprocess-
ing by RACE.
if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is :supersede.
if-does-not-exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create
Values: TBox object
Remarks: A file may contain several TBoxes.
The usual way to load a TBox file is to use the Lisp function load.
Examples: (save-tbox "project:TBoxes;tbox-one.lisp")

(save-tbox "project:TBoxes;final-tbox.lisp"
(find-tbox ’tbox-one) :if-exists :error)

13

find-tbox

function

Description: Returns a TBox object with the given name among all TBoxes.
Syntax: (find-tbox TBN &optional (errorp t))
Arguments: TBN - is the name of the TBox to be found.
errorp - if bound to t an error is signalled if the TBox is not found.
Values: TBox object
Remarks: This function can also be used to get rid of TBoxes or rename TBoxes as
shown in the examples.
Examples: (find-tbox ’my-TBox)
Getting rid of a TBox:
(setf (find-tbox ’tbox1) nil)
Renaming a TBox:
(setf (find-tbox ’tbox2) tboxl)
tbox-name function
Description: Finds the name of the given TBox object.
Syntax: (tbox-name thox)
Arguments: thoxr - TBox object
Values: TBox name

4.2 ABox Management

in-abox macro
Description: The ABox with this name is taken or generated and bound to
current-aboxx. If a TBox is specified, the ABox is also initialized.
Syntax: (in-abox ABN &optional (TBN (tbox-name *current-tbox*)))
Arguments: ABN - ABox name
TBN - name of the TBox to be associated with the ABox.
Remarks: If the specified TBox does not exist, an error is signalled.

Usually this macro is used at top of a file containing an ABox. This macro
can also be used to create new ABoxes.

14

Examples:

See also:

The specified ABox is the *current-abox* until in-abox is called again or
the variable *current-abox* is manipulated directly. The TBox of the ABox
is made the *current-tbox*

(in-abox peanuts-characters peanuts)
(instance Schroeder Piano-Player)

Macro signature on page 11.

init-abox

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Initializes an existing ABox or generates a new ABox and binds it to the
variable *current-abox*. During the initialization all assertions and the
link to the referenced TBox are deleted.

(init-abox abox &optional (tbor *current-tbox*)
(class ’standard-abox))

abor - ABox object to initialize.
thox - TBox object associated with the ABox

class - class of the new ABox object, that must inherit from the class
standard-abox.

ABox object

The tbox has to already exist before it can be referred to by init-abox.

ensure-abox-signature function

Description:
Syntax:

Arguments:

See also:

Defines the signature for an ABox and initializes the ABox.
(ensure-abox-signature aboxr &key (individuals nil))

abox - ABox object

individuals - is a list of individual names, specifying Z.

Macro signature on page 11 is the macro counterpart. It allows to specify
a signature for an ABox and a TBox with one call.

15

in-knowledge-base macro

Description: This form is an abbreviation for the sequence:
(in-tbox TBN)
(in-abox ABN TBN).

Syntax: (in-knowledge-base TBN ABN)

Arguments: TBN - TBox name
ABN - ABox name

Examples: (in-knowledge-base peanuts peanuts-characters)

current-abox special-variable

Description: The variable *current-abox* refers to the current ABox object. It is set by
the function init-abox or by the macro in-abox.

16

save-abox function

Description: If a pathname is specified, an ABox is saved to a file. In case a stream is
specified the ABox is written to the stream (the stream must already be
open).

Syntax: (save-abox pathname-or-stream &optional (abox *current-abox*)
&key (syntar :krss) (transformed nil) (if-exists :supersede)
(if -does—-not-exist :create))

Arguments: pathname-or-stream - is the name of the file or an output stream.

abox - ABox object

syntax - indicates the syntax of the ABox. It might as well be names of other
DL systems.

transformed - if bound to t the ABox is saved in the format it has after
preprocessing by RACE.

if -exists - specifies the action taken if a file with the specified name already
exists. All keywords for the Lisp function with-open-file are sup-
ported. The default is : supersede.

if-does-not-exist - specifies the action taken if a file with the specified
name does not yet exist. All keywords for the Lisp function
with-open-file are supported. The default is :create.

Values: ABox object

Remarks: A file may contain several ABoxes.
The usual way to load an ABox file is to use the Lisp function load.

Examples: (save-abox "project:ABoxes;abox-one.lisp")
(save-abox "project:ABoxes;final-abox.lisp"
(find-abox ’abox-one) :if-exists :error)

find-abox Junction

Description: Finds an ABox object with a given name among all ABoxes.
Syntax: (find-abox ABN &optional (errorp t))
Arguments: ABN - is the name of the ABox to be found.

errorp - if bound to t an error is signalled if the ABox is not found.
Values: ABox object

Remarks: This function can also be used to delete ABoxes or rename ABoxes as shown
in the examples.

Examples: (find-tbox ’my-ABox)

Get rid of an ABox, i.e. make the ABox garbage collectible:
(setf (find-abox ’aboxl) nil)

17

Renaming an ABox:
(setf (find-abox ’abox2) aboxl)

abox-name function

Description:
Syntax:
Arguments:
Values:

Examples:

Finds the name of the given ABox object.
(abox-name abox)

abox - ABox object

ABox name

(abox-name (find-abox ’my-ABox))

tbox

function

Description:
Syntax:
Arguments:

Values:

Gets the associated TBox for an ABox.
(tbox abox)

abox - ABox object

TBox object

5 Knowledge Base Declarations

Knowledge base declarations include concept axioms and role declarations for the TBox and
the assertions for the ABox. The TBox object and the ABox object must exist before the
functions for knowledge base declarations can be used. The order of axioms and assertions
does not matter because forward references can be handled by RACE.

The macros for knowledge base declarations add the concept axioms and role declarations
to the *current-tbox* and the assertions to the *current-aboxx.

5.1 Built-in Concepts

top, top concept

Description:
Syntax:

Remarks:

The name of most general concept of each TBox, the top concept (T).
topx

The concepts *top* and top are synonyms. These concepts are elements of
every TBox.

18

bottom, bottom concept

Description: The name of the incoherent concept, the bottom concept (L).
Syntax: *bottom*

Remarks: The concepts *bottom* and bottom are synonyms. These concepts are ele-
ments of every TBox.

5.2 Concept Axioms

This section documents the macros and functions for specifying concept axioms. The dif-
ferent concept axioms were already introduced in section 3.2.

Please note that the concept axioms define-primitive-concept, define-concept and
define-disjoint-primitive-concept have the semantics given in the KRSS specification
only if they are the only concept axiom defining the concept CN in the terminology. This
is not checked by the RACE system.

implies macro

Description: Defines a GCI between C; and Cs.
Syntax: (implies C; ()
Arguments: (), (5 - concept term

Remarks: () states necessary conditions for Cs. This kind of facility is an addendum
to the KRSS specification.

Examples: (implies Grandmother (and Mother Female))
(implies
(and (some has-sibling Sister) (some has-sibling Twin)
(exactly 1 has-sibling))
(and Twin (all has-sibling Twin-sister)))

19

equivalent macro

Description: States the equality between two concept terms.
Syntax: (equivalent C; (C5)
Arguments: (), (5 - concept term
Remarks: This kind of concept axiom is an addendum to the KRSS specification.

Examples: (equivalent Grandmother
(and Mother (some has-child Parent)))
(equivalent
(and polygon (exactly 4 has-angle))
(and polygon (exactly 4 has-edges)))

dlSJ oint macro

Description: This axiom states the disjointness of a set of concepts.
Syntax: (disjoint CN; ... CN,)
Arguments: CNq, ..., CN, - concept names

Examples: (disjoint Yellow Red Blue)
(disjoint January February ... November December))

define-primitive-concept KRSS macro

Description: Defines a primitive concept.
Syntax: (define-primitive-concept CN ()

Arguments: CN - concept name

C - concept term
Remarks: C states the necessary conditions for CN.

Examples: (define-primitive-concept Grandmother (and Mother Female))
(define-primitive-concept Father Parent)

20

define-concept KRSS macro

Description: Defines a concept.
Syntax: (define-concept CN ()

Arguments: CN - concept name

c - concept term

Remarks: Please note that in RACE, definitions of a concept do not have to be unique.
Several definitions may be given for the same concept.

Examples: (define-concept Grandmother
(and Mother (some has-child Parent)))

define-disjoint-primitive-concept KRSS macro

Description: This axiom states the disjointness of a group of concepts.
Syntax: (define-disjoint-primitive-concept CN GNL C)
Arguments: CN - concept name

GNL - group name list, which list all groups to which CN belongs to

(among other concepts). All elements of each group are declared
to be disjoint.

c - concept term, that is implied by CN.
Remarks: This function is just supplied to be compatible with the KRSS.

Examples: (define-disjoint-primitive-concept January
(Month) (exactly 31 has-days))
(define-disjoint-primitive-concept February
(Month) (and (at-least 28 has-days) (at-most 29 has-days)))

21

add-concept-axiom function

Description: This function adds a concept axiom to a TBox.
Syntax: (add-concept-axiom thox C; Cy &key C(inclusion-p t))
Arguments: thoxr - TBox object
1, O - concept term
inclusion-p - boolean indicating if the concept axiom is an inclusion axiom
(GCI) or an equality axiom. The default is to state an inclusion.
Values: tbox
Remarks: RACE imposes no constraints on the sequence of concept axiom declara-
tions with add-concept-axiom, i.e. forward references to atomic concepts
for which other concept axioms are added later are supported in RACE.
add-disjointness-axiom function
Description: This function adds a disjointness concept axiom to a TBox.
Syntax: (add-disjointness-axiom thox CN GN)
Arguments: thor - TBox object
CN - concept name
GN - group name
Values: tbox

5.3 Role Declarations

22

define-primitive-role KRSS macro (with changes)

Description: Defines a role.
Syntax: (define-primitive-role RN &key (transitive nil) (feature nil)
(parents nil))
Arguments: RN - role name
transitive - if bound to t declares that the new role is transitive.
feature - if bound to t declares that the new role is a feature, if feature is
bound to t.
parents - provides a list of superroles for the new role. The role RN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see the examples.

Remarks: This function combines several KRSS functions for defining properties of a
role. For example the conjunction of roles can be expressed as shown in the
first example below.

A role that is declared to be a feature cannot be transitive. A role with a

feature as a parent has to be a feature itself. A role with transitive subroles

may not be used in number restrictions.
Examples: (define-primitive-role conjunctive-role :parents (R-1 ... R-n))

(define-primitive-role has-descendant :transitive t

:parent has-child)
See also: Macro signature on page 11.

Section 3.3 and Figure 6, on page 9 for domain and range restrictions.
define-primitive-attribute KRSS macro (with changes)
Description: Defines an attribute.

Syntax: (define-primitive-attribute AN &key (parents nil))
Arguments: AN - attribute name
parents - provides a list of superroles for the new role. The role AN has no
superroles, if parents is bound to nil.
If only a single superrole is specified, the keyword :parent may
alternatively be used, see examples.
Remarks: This macro is supplied to be compatible with the KRSS specification, it

is redundant to the use of macro define-primitive-role with :feature t.
This function combines several KRSS functions for defining properties of an
attribute.

23

An attribute cannot be transitive. A role with a feature as a parent has to
be a feature itself.

Examples: (define-primitive-attribute has-mother :parents (has-parents))
(define-primitive-attribute has-best-friend
:parent has-friends)

See also: Macro signature on page 11.
Section 3.3 and Figure 6, on page 9 for domain and range restrictions.

add-role-axiom function

Description: Adds a role to a TBox.

Syntax: (add-role-axiom thoxr RN &key (transitive nil) (feature nil)
(parents nil))

Arguments: thor - TBox object to which the role is added.
RN - role name
transitive - if bound to t declares that the role is transitive.

feature - if bound to t declares that the new role is a feature, if feature is
bound to t.

parents - providing a single role or a list of superroles for the new role. The
role RN has no superroles, if parents is bound to nil.

Values: tbox
Remarks: For each role RN there may be only one call to add-role-axiom per TBox.

See also: Section 3.3 and Figure 6, on page 9 for domain and range restrictions.

5.4 Assertions

instance KRSS macro

Description: Builds a concept assertion, asserts that an individual is an instance of a
concept.

Syntax: (instance IN ()

Arguments: IN - individual name

c - concept term

Examples: (instance Lucy Person)
(instance Snoopy (and Dog Cartoon-Character))

24

add-concept-assertion function

Description: Builds an assertion and adds it to an ABox.
Syntax: (add-concept-assertion aboz IN ()
Arguments: abor - ABox object
IN - individual name
C - concept term
Values: abox
Examples: (add-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)
(add-concept-assertion (find-abox ’peanuts-characters)
’Snoopy ’(and Dog Cartoon-Character))
forget-concept-assertion function
Description: Retracts a concept assertion from an ABox.
Syntax: (forget-concept-assertion abox IN C)
Arguments: abor - ABox object

Values:

Remarks:

Examples:

IN - individual name
C - concept term
aboz

For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

(forget-concept-assertion (find-abox ’peanuts-characters)
’Lucy ’Person)

(forget-concept-assertion (find-abox ’peanuts-characters)
’Snoopy °’(and Dog Cartoon-Character))

25

related KRSS macro

Description: Builds a role assertion, asserts that two individuals are related via a role (or
feature).

Syntax: (related IN{ INy RN)
Arguments: IN; - individual name of the predecessor

IN5 - individual name of the filler

RN - a role name or a feature name.

Examples: (related Charlie-Brown Snoopy has-pet)
(related Lucy Linus has-brother)

add-role-assertion function

Description: Adds a role assertion to an ABox.
Syntax: (add-role-assertion aboxr IN{ INo, RN)

Arguments: abor - ABox object
IN, - individual name of the predecessor
IN5 - individual name of the filler
RN - role name

Values: abox

Examples: (add-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)
(add-role-assertion (find-abox ’peanuts-characters)
’Lucy ’Linus ’has-brother)

26

forget-role-assertion

function

Description:
Syntax:

Arguments:

Values:

Remarks:

Examples:

Retracts a role assertion from an ABox.

(forget-role-assertion abox INy INs RN)

abox - ABox object

IN; - individual name of the predecessor
INy - individual name of the filler

RN - role name

abozx

For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

(forget-role-assertion (find-abox ’peanuts-characters)
’Charlie-Brown ’Snoopy ’has-pet)

(forget-role-assertion (find-abox ’peanuts-characters)
’Lucy ’Linus ’has-brother)

define-distinct-individual

KRSS macro

Description:

This statement asserts that an individual is distinct to all other individuals
in the ABox.

Syntax: (define-distinct-individual IN)
Arguments: IN - name of the individual
Values: IN
Remarks: Because the unique name assumption holds in RACE, all individuals are
distinct. This function is supplied to be compatible with the KRSS specifi-
cation.
state KRSS macro
Description: This macro asserts a set of ABox statements.
Syntax: (state &body forms)
Arguments: forms - is a sequence of instance or related assertions.
Remarks: This macro is supplied to be compatible with the KRSS specification. It

realizes an implicit progn for assertions.

27

forget

macro

Description:
Syntax:
Arguments:

Remarks:

This macro retracts a set of ABox statements.
(forget &body forms)
forms - is a sequence of instance or related assertions.

For answering subsequent queries the index structures for the ABox will be
recomputed, i.e. some queries might take some time (e.g. those queries that
require the realization of the ABox).

6 Reasoning Modes

auto-classify special-variable

Description:

See also:

Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

Section 3.5 on page 9.

auto-realize special-variable

Description:

See also:

Possible values are :lazy, :eager, :lazy-verbose, :eager-verbose, nil

Section 3.5 on page 9.

7 Evaluation Functions and Queries

7.1 Queries for Concept Terms

28

concept-satisfiable?

macro

Description:
Syntax:

Arguments:

Values:

Remarks:

Checks if a concept term is satisfiable.
(concept-satisfiable? (' &optional (thox *current-tbox*))

C
thozx

- concept term.
- TBox object

Returns t if C is satisfiable and nil otherwise.

For testing whether a concept term is satisfiable with respect to a TBozx, the
second argument must be a TBox. If satisfiability is to be tested without
reference to a TBox, nil can be used.

concept-satisfiable-p

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Checks if a concept term is satisfiable.
(concept-satisfiable-p C' thox)

C
thox

- concept term.
- TBox object

Returns t if C is satisfiable and nil otherwise.

For testing whether a concept term is satisfiable with respect to a TBouz,
the first argument must be a TBox. If satisfiability is to be tested without
reference to a TBox, nil can be used.

concept-subsumes?

KRSS macro

Description:
Syntax:

Arguments:

Values:

Checks if two concept terms subsume each other.

(concept-subsumes? ()} (5 &optional (thor *current-tbox*))

Ch - concept term of the subsumer
) - concept term of the subsumee
thor - TBox object

Returns t if €} subsumes C2 and nil otherwise.

29

concept-subsumes-p

function

Description:
Syntax:

Arguments:

Values:

Remarks:

See also:

Checks if two concept terms subsume each other.

(concept-subsumes-p () Cy thox)

Ch - concept term of the subsumer
) - concept term of the subsumee
thor - TBox object

Returns t if ¢} subsumes C2 and nil otherwise.

For testing whether a concept term subsumes the other with respect to a
TBoz, the first argument must be a TBox. If the subsumption relation is to
be tested without reference to a TBox, nil can be used.

Function concept-equivalent-p on page 30.

concept-equivalent?

macro

Description:
Syntax:

Arguments:

Values:

Remarks:

See also:

Checks if the two concepts are equivalent in the given TBox.
(concept-equivalent? (C; (5 &optional (thoxr *current-tbox*))

4, Cs - concept term

thor - TBox object
Returns t if 1 and Oy are equivalent concepts in thox and nil otherwise.

For testing whether two concept terms are equivalent with respect to a TBoz,
the third argument must be a TBox.

Function atomic-concept-synonyms, on page 39.

concept-equivalent-p

function

Description:

Syntax:

Arguments:

Values:

Remarks:

See also:

Checks if the two concepts are equivalent in the given TBox.
(concept-equivalent-p C; Cy thox)

(1, O - concept terms
thor - TBox object

Returns t if C7 and Oy are equivalent concepts in thor and nil otherwise.

For testing whether two concept terms are equivalent with respect to a TBoz,
the first argument must be a TBox. If the equality is to be tested without
reference to a TBox, nil can be used.

Function atomic-concept-synonyms, on page 39.

30

concept-disjoint?

macro

Description:

Syntax:

Arguments:

Values:

Remarks:

Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

(concept-disjoint? () C; &optional (thox *current-tbox*))

C4, Cs - concept term

thor - TBox object

Returns t if C; and O, are disjoint with respect to tbox and nil otherwise.

For testing whether two concept terms are disjoint with respect to a TBoz,
the third argument must be a TBox. If the disjointness is to be tested without
reference to a TBox, nil can be used.

concept-disjoint-p

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Checks if the two concepts are disjoint, e.g. no individual can be an instance
of both concepts.

(concept-disjoint-p C) Cy thox)

C4, C5 - concept term

thor - TBox object

Returns t if C; and O, are disjoint with respect to tbox and nil otherwise.

For testing whether two concept terms are disjoint with respect to a TBoz,
the third argument must be a TBox. If the disjointness is to be tested without
reference to a TBox, nil can be used.

alc-concept-coherent

function

Description:

Syntax:

Arguments:

Remarks:

Tests the satisfiability of a K(,,), K4,y or S4(,,) formula encoded as an ALC
concept.

(alc-concept-coherent C &key (logic :k))
C

logic

- concept term

- specifies the logic to be used.

:K - modal Ky,

:K4 - modal K4y, all roles are transitive,

:84 - modal S4) all roles are transitive and reflexive.
If no logic is specified, the logic : K is chosen.

This function can only be used for ALC concept terms, so number restrictions
are not allowed.

31

7.2 Role

Queries

role-subsumes? KRSS macro
Description: Checks if two roles are subsuming each other.
Syntax: (role-subsumes? RN RN,
&optional (TBN (tbox-name *current-tboxx)))
Arguments: RN; - role name of the subsuming role
RN5 - role name of the subsumed role
TBN - TBox name
Values: Returns t if RN is a parent role of RNs.
role-subsumes-p function
Description: Checks if two roles are subsuming each other.
Syntax: (role-subsumes-p RN; RN, tbox)
Arguments: RN, - role name of the subsuming role
RN5 - role name of the subsumed role
thor - TBox object
Values: Returns t if RN, is a parent role of RNs.
concept-p function
Description: Checks if CN is a concept name for a concept in the specified TBox.
Syntax: (concept-p CN &optional (tbox *current-tboxx*))
Arguments: CN - concept name
thoxr - TBox object
Values: Returns t if CN is a name of a concept and nil otherwise.
role-p function
Description: Checks if RN is a role name for a role in the specified TBox.
Syntax: (role-p RN &optional (tbox *current-tbox*))
Arguments: RN - role name
thor - TBox object
Values: Returns t if RN is a name of a role and nil otherwise.

32

transitive-p

function

Description: Checks if RN is a transitive role in the specified TBox.
Syntax: (transitive-p RN &optional (tbor *current-tboxx))
Arguments: RN - role name
thoxr - TBox object
Values: Returns t if the role RN is transitive in thox and nil otherwise.
feature-p function
Description: Checks if RN is a feature in the specified TBox.
Syntax: (feature-p RN &optional (tbor *current-tboxx*))
Arguments: RN - role name
thor - TBox object
Values: Returns t if the role RN is a feature in thor and nil otherwise.
7.3 TBox Evaluation Functions
classify-tbox function
Description: Classifies the whole TBox.
Syntax: (classify-tbox &optional (thbor *current-tbox*))
Arguments: thor - TBox object
Remarks: This function needs to be executed before queries can be posed.

33

check-tbox-coherence function

Description:

Syntax:
Arguments:

Values:

Remarks:

This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

(check-tbox-coherence &optional (thor *current-tbox*))
thor - TBox object

Returns a list of all atomic concepts in thor that are not satisfiable, i.e. an
empty list (NIL) indicates that there is no additional synonym to bottom.

This function does not compute the concept hierarchy. It is much faster
than classify-tbox, so whenever it is sufficient for your application use
check-tbox-coherent. This function is supplied in order to check whether
an atomic concept is satisfiable during the development phase of a TBox.
There is no need to call the function check-tbox-coherent if, for instance,
a certain ABox is to be checked for consistency (with abox-consistent-p).

tbox-classified-p function

Description:
Syntax:
Arguments:

Values:

It is checked if the specified TBox has already been classified.
(tbox-classified-p thox)
thor - TBox object

Returns t iff the specified TBox has been classified, otherwise it returns nil.

tbox-coherent-p function

Description:

Syntax:
Arguments:
Values:

Remarks:

This function checks if there are any unsatisfiable atomic concepts in the
given TBox.

(tbox-coherent-p thox)
thor - TBox object
Returns t if there is an inconsistent atomic concept, otherwise it returns nil.

This function calls check-tbox-coherence if necessary.

7.4 ABox Evaluation Functions

34

realize-abox

function

Description:

Syntax:
Arguments:
Values:

Remarks:

This function checks the consistency of the ABox and computes the most-
specific concepts for each individual in the ABox.

(realize-abox &optional (aboxr *current-abox*)
abox - ABox object

aboz

This Function needs to be executed before queries can be posed. If the TBox
has changed and is classified again the ABox has to be realized, too.

abox-realized-p

function

Description:
Syntax:
Arguments:

Values:

Returns t iff the specified ABox object has been realized.
(abox-realized-p aboz)
abox - ABox object

Returns t if abor has been realized and nil otherwise.

7.5 ABox Queries

abox-consistent-p

function

Description:
Syntax:
Arguments:

Values:

Checks if the ABox is consistent, e.g. it does not contain a contradiction.
(abox-consistent-p &optional (abox *current-abox*))
abox - ABox object

Returns t if aboz is consistent and nil otherwise.

check-abox-coherence

function

Description:

Syntax:

Arguments:

Values:

Checks if the ABox is consistent. If there is a contradiction, this function
print information about the culprits.

(check-abox-coherence &optional (abor *current-abox*) (stream
xstandard-outputx*)

abox - ABox object

stream - Stream object

Returns t if aboz is consistent and nil otherwise.

35

individual-instance? KRSS macro

Description: Checks if an individual is an instance of a given concept with respect to the
xcurrent-abox* and its TBox.

Syntax: (individual-instance? IN C
&optional (abor (abox-name *current-aboxx)))

Arguments: IN - individual name
c - concept term

abox - ABox object

Values: Returns t if IN is an instance of C' in abozr and nil otherwise.

individual-instance-p function

Description: Checks if an individual is an instance of a given concept with respect to an
ABox and its TBox.

Syntax: (individual-instance-p IN C' abox)

Arguments: IN - individual name
C - concept term

abox - ABox object

Values: Returns t if IN is an instance of C' in abor and nil otherwise.

individuals-related? macro

Description: Checks if two individuals are directly related via the specified role.

Syntax: (individuals-related? IN; INs; RN
&optional (abor *current-abox*))

Arguments: IN; - individual name of the predecessor
IN5 - individual name of the role filler
RN - role name

abox - ABox object

Values: Returns t if IV is related to INo via RN in abox and nil otherwise.

36

individuals-related-p

function

Description:
Syntax:

Arguments:

Values:

See also:

Checks if two individuals are directly related via the specified role.

(individuals-related-p IN; INy RN aboz)

IN; - individual name of the predecessor
INy - individual name of the role filler
RN - role name

abox - ABox object

Returns t if IN; is related to IN5 via RN in aboxr and nil otherwise.

Function retrieve-individual-relations, on page 49,
Function retrieve-related-individuals, on page 49.

individual-equal?

KRSS macro

Description:
Syntax:

Arguments:

Remarks:

Checks if two individual names refer to the same individual.
(individual-equal? IN; IN, &optional (abox *current-abox*))

IN{, IN, - individual name

abor - abox object

Because the unique name assumption holds in RACE this macro always
returns nil for individuals with different names. This macro is just supplied
to be compatible with the KRSS.

individual-not-equal?

KRSS macro

Description:

Syntax:

Arguments:

Remarks:

Checks if two individual names do not refer to the same individual.

(individual-not-equal? IN; IN,
&optional (abor *current-abox*))
IN{, IN, - individual name

abor - abox object

Because the unique name assumption holds in RACE this macro always
returns t for individuals with different names. This macro is just supplied to
be compatible with the KRSS.

37

individual-p function

Description:
Syntax:

Arguments:

Values:

Checks if IN is a name of an individual.
(individual-p IN &optional (abox *current-abox*))

IN - individual name

abox - ABox object

Returns t if IN is a name of an individual and nil otherwise.

8 Retrieval

If the retrieval refers to concept names, RACE always returns a set of names for each concept
name. A so called name set contains all synonyms of an atomic concept in the TBox.

8.1 TBox Retrieval

taxonomy function
Description: Returns the whole taxonomy for the specified TBox.
Syntax: (taxonomy &optional ({box *current-tbox*))
Arguments: thor - TBox object
Values: A list of triples, each of it consisting of:
a name set - the atomic concept CN and its synonyms
list of concept-parents name sets - each entry being a list of a concept parent
of CN and its synonyms
list of concept-children name sets - each entry being a list of a concept child
of CN and its synonyms.
Examples: (taxonomy my-TBox)
may yield:
(((xtopx) (O ((quadrangle tetragon)))
((quadrangle tetragon) ((xtop*)) ((rectangle) (diamond)))
((rectangle) ((quadrangle tetragon)) ((*bottomx*)))
((diamond) ((quadrangle tetragon)) ((*bottomx)))
((*bottom*) ((rectangle) (diamond)) ()))
See also: Function atomic-concept-parents,

function atomic-concept-children on page 41.

38

concept-synonyms

macro

Description:

Syntax:

Arguments:

Values:
Remarks:

See also:

Returns equivalent concepts for the specified concept in the given TBox.

(concept-synonyms CN
&optional (thor (tbox-name *current-tbox*)))

CN
thox

- concept name
- TBox object

List of concept names
The name CN is not included in the result.

Function concept-equivalent-p, on page 30.

atomic-concept-synonyms

function

Description:
Syntax:

Arguments:

Values:
Remarks:

See also:

Returns equivalent concepts for the specified concept in the given TBox.
(atomic-concept-synonyms CN thox)

CN

thox

- concept name
- TBox object

List of concept names
The name CN is not included in the result.

Function concept-equivalent-p, on page 30.

concept-descendants

KRSS macro

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

(concept-descendants C
&optional (TBN (tbox-name *current-tboxx*)))

C
TBN

- concept term

- TBox name
List of name sets

This macro is the transitive closure of the macro concept-children.

39

atomic-concept-descendants

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of a TBox, which are subsumed by the specified
concept.

(atomic-concept-descendants C tbox)

C - concept term

thor - TBox object
List of name sets

This function is the transitive closure of the function
atomic-concept-children.

concept-ancestors

KRSS macro

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

(concept-ancestors C
&optional (TBN (tbox-name *current-tboxx)))

c - concept term

TBN - TBox name
List of name sets

This macro is the transitive closure of the macro concept-parents.

atomic-concept-ancestors

function

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of a TBox, which are subsuming the specified con-
cept.

(atomic-concept-ancestors C thox)

C - concept term

thor - TBox object
List of name sets

This function is the transitive closure of the function
atomic-concept-parents.

40

concept-children KRSS macro

Description: Gets the direct subsumees of the specified concept in the TBox.

Syntax: (concept-children C
&optional (TBN (tbox-name *current-tboxx*)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

Remarks: Is the equivalent macro for the KRSS macro concept-offspring, which is
also supplied in RACE.

atomic-concept-children function

Description: Gets the direct subsumees of the specified concept in the TBox.
Syntax: (atomic-concept-children C tbox)

Arguments: C - concept term

thor - TBox object

Values: List of name sets

concept-parents KRSS macro

Description: Gets the direct subsumers of the specified concept in the TBox.

Syntax: (concept-parents C
&optional (TBN (tbox-name *current-tbox*)))

Arguments: C - concept term
TBN - TBox name

Values: List of name sets

atomic-concept-parents function

Description: Gets the direct subsumers of the specified concept in the TBox.
Syntax: (atomic-concept-parents C' tbox)

Arguments: C - concept term

thor - TBox object

Values: List of name sets

41

role-desc

endants KRSS macro

Description

Syntax:

Arguments:

Values:

Remarks:

: Gets all roles from the TBox, that the given role subsumes.

(role-descendants RN
&optional (TBN (tbox-name *current-—tbox*)))

RN
TBN

- role name

- TBox name
List of role names

This macro is the transitive closure of the macro role-children.

atomic-role-descendants

function

Description

Syntax:

Arguments:

Values:

Remarks:

: Gets all roles from the TBox, that the given role subsumes.
(atomic-role-descendants RN thox)

RN
thox

- role name

- TBox object
List of role names

This function is the transitive closure of the function
atomic-role-descendants.

role-ancestors

KRSS macro

Description:

Syntax:

Arguments:

Values:

Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

(role-ancestors RN
&optional (TBN (tbox-name *current-tbox*)))

RN
TBN

- role name

- TBox name

List of role names

42

atomic-role-ancestors function

Description:

Syntax:

Arguments:

Values:

Gets all roles from the TBox, that subsume the given role in the role hierar-
chy.

(atomic-role-ancestors RN tbozx)

RN - role name

thor - TBox object

List of role names

role-children macro

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

(role-children RN
&optional (TBN (tbox-name *current-tbox*)))

RN - role name
TBN - TBox name

List of role names

This is the equivalent macro to the KRSS macro role-offspring, which is
also supplied by the RACE system.

atomic-role-children function

Description:

Syntax:

Arguments:

Values:

Gets all roles from the TBox that are directly subsumed by the given role in
the role hierarchy.

(atomic-role-children RN tboz)

RN - role name

thoxr - TBox object

List of role names

43

role-parents

KRSS macro

Description: Gets the roles from the TBox that directly subsume the given role in the role

hierarchy.

Syntax: (role-parents RN &optional (7TBN (tbox-name *current-tbox*)))

Arguments: RN - role name
TBN - TBox name

Values: List of role names

atomic-role-parents

function

Description: Gets the roles from the TBox that directly subsume the given role in the role

hierarchy:.
Syntax: (atomic-role-parents RN tboz)

Arguments: RN - role name

thor - TBox object

Values: List of role names

loop-over-tboxes

function

Description: Iterator function for all TBoxes.

Syntax: (loop-over-tboxes (tbox-wvariable)
loop-clause

)

Arguments: tbozr-variable - variable for a TBox object

loop-clause - loop clause

all-tboxes

function

Description: Returns all TBoxes.
Syntax: (all-tboxes)

Values: List of TBox objects

44

all-atomic-concepts

function

Description:
Syntax:
Arguments:
Values:

Remarks:

Returns all atomic concepts from the specified TBox.

(all-atomic-concepts &optional (thox *current-tbox*))

thozx

List of concept names

(all-atomic-concepts (find-tbox ’my-tbox))

- TBox object

all-roles

function

Description:
Syntax:
Arguments:
Values:

Examples:

Returns all roles and features from the specified TBox.

(all-roles &optional (thoxr *current-tbox*))

thox

- TBox object

List of roles names

(all-roles (find-tbox ’my-tbox))

all-features

function

Description:
Syntax:
Arguments:

Values:

Returns all features from the specified TBox.

(all-features &optional (thor *current-tbox*))

thox

- TBox

List of feature names

all-transitive-roles

function

Description:
Syntax:
Arguments:

Values:

Returns all transitive roles from the specified TBox.

(all-transitive-roles &optional (thor *current-tbox*))

thox

List of transitive role names

- TBox object

45

describe-tbox function

Description: Generates a description for the specified TBox.
Syntax: (describe-tbox &optional (tbox *current-tboxx*)
(stream *standard-output*))
Arguments: thor - TBox object or TBox name
stream - open stream object
Values: tbox
The description is written to stream.
describe-concept function
Description: Generates a description for the specified concept used in the specified TBox
or in the ABox and its TBox.
Syntax: (describe-concept CN
&optional (thor-or-abor *current-tboxx)
(stream *standard-output*))
Arguments: tboz-or-abor - TBox object or ABox object
CN - concept name
stream - open stream object
Values: tboz-or-abox
The description is written to stream.
describe-role function
Description: Generates a description for the specified role used in the specified TBox or
ABox.
Syntax: (describe-role RN
&optional (tbor-or-abox *current-tboxx*)
(stream *standard-output*))
Arguments: tboz-or-abor - TBox object or ABox object
RN - role name (or feature name)
stream - open stream object
Values: tbox-or-abox

The description is written to stream.

8.2 ABox Retrieval

46

individual-direct-types

KRSS macro

Description:

Syntax:

Arguments:

Values:

Gets the most-specific atomic concepts of which an individual is an instance.

(individual-direct-types IN

&optional (ABN (abox-name *current-abox*)))
IN
ABN

- individual name

- ABox name

List of name sets

most-specific-instantiators

function

Description:
Syntax:

Arguments:

Values:

Gets the most-specific atomic concepts of which an individual is an instance.
(most-specific-instantiators IN abozx)

IN

abor

- individual name
- ABox object

List of name sets

individual-types

KRSS macro

Description:

Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of which the individual is an instance.

(individual-types IN

&optional (ABN (abox-name *current-abox*)))
IN
ABN

- individual name

- ABox name
List of name sets

This is the transitive closure of the KRSS macro individual-direct-types.

instantiators

function

Description:
Syntax:

Arguments:

Values:

Remarks:

Gets all atomic concepts of which the individual is an instance.
(instantiators IN abox)

IN

abox

- individual name
- ABox object

List of name sets

This is the transitive closure of the function
most-specific-instantiators.

47

concept-instances KRSS macro

Description: Gets all individuals from an ABox that are instances of the specified concept.

Syntax: (concept-instances C
&optional (ABN (abox-name *current-abox*)))

Arguments: C - concept term
ABN - ABox name

Values: List of individual names

retrieve-concept-instances function

Description: Gets all individuals from an ABox that are instances of the specified concept.
Syntax: (retrieve-concept-instances C abox)

Arguments: C - concept term

abox - ABox object

Values: List of individual names

individual-fillers KRSS macro

Description: Gets all individuals that are fillers of a role for a specified individual.

Syntax: (individual-fillers IN RN
&optional (ABN (abox-name *current-abox*)))

Arguments: IN - individual name of the predecessor
RN - role name
ABN - ABox name

Values: List of individual names

Examples: (individuals-fillers Charlie-Brown has-pet)

48

retrieve-individual-fillers

function

Description:
Syntax:

Arguments:

Values:

Examples:

Gets all individuals that are fillers of a role for a specified individual.
(retrieve-individual-fillers IN RN aboz)

IN - individual name of the predecessor

RN - role name

abox - ABox object

List of individual names

(individuals-fillers ’Charlie-Brown ’has-pet
(find-abox ’peanuts-characters))

retrieve-related-individuals

function

Description:
Syntax:

Arguments:

Values:

Examples:

See also:

Gets all pairs of individuals that are related via the specified relation.
(retrieve-related-individuals RN abox)

abor
RN

- ABox object
- role name

List of pairs of individual names

(retrieve-related-individuals ’has-pet
(find-abox ’peanuts-characters))
may yield:
((Charlie-Brown Snoopy) (John-Arbuckle Garfield))

Function individuals-related-p, on page 36.

retrieve-individual-relations

function

Description:

Syntax:

Arguments:

Values:

Examples:

See also:

This function gets all roles that hold between the specified pair of individu-
als.

(retrieve-individual-relations IN; INo abozx).

IN, - individual name of the predecessor
IN5 - individual name of the role filler
abox - ABox object

List of role names

(retrieve-individual-relations ’Charlie-Brown ’Snoopy
(find-abox ’peanuts-characters))

Function individuals-related-p, on page 36.

49

retrieve-direct-predecessors function

Description: Gets all individuals that are predecessors of a role for a specified individual.
Syntax: (retrieve-direct-predecessors RN IN abox)

Arguments: RN - role name
IN - individual name of the role filler

abox - ABox object
Values: List of individual names

Examples: (retrieve-direct-predecessors ’has-pet ’Snoopy
(find-abox ’peanuts-characters))

loop-over-aboxes function

Description: Iterator function for all ABoxes.

Syntax: (loop-over-aboxes (abor-variable)
loop-clause

)

Arguments: aboz-variable - variable for a ABox object

loop-clause - loop clause

all-aboxes function

Description: Returns all ABoxes.
Syntax: (all-aboxes)

Values: List of ABox objects

all-individuals function

Description: Returns all individuals from the specified ABox.
Syntax: (all-individuals &optional (abor *current-abox*))
Arguments: abor - ABox object

Values: List of individual names

50

all-concept-assertions-for-individual

function

Description:

Syntax:

Arguments:

Values:

See also:

Returns all concept assertions for an individual from the specified ABox.

(all-concept-assertions-for-individual IN
&optional (abor *current-abox*))

IN

abor

- individual name

- ABox object
List of concept assertions

Function all-concept-assertions on page 52.

all-role-assertions-for-individual-in-domain

function

Description:

Syntax:

Arguments:

Values:

Remarks:

See also:

Returns all role assertions for an individual from the specified ABox in which
the individual is the role predecessor.

(all-role-assertions-for-individual-in-domain IN
&optional (abor *current-abox*))

IN

abor

- individual name

- ABox object
List of role assertions

Returns only the role assertions explicitly mentioned in the ABox, not the
inferred ones.

Function all-role-assertions on page 52.

all-role-assertions-for-individual-in-range

function

Description:

Syntax:

Arguments:

Values:

See also:

Returns all role assertions for an individual from the specified ABox in which
the individual is a role successor.

(all-role-assertions-for-individual-in-range IN
&optional (abor *current-abox*))

- individual name

- ABox object

IN

abox
List of assertions

Function all-role-assertions on page 52.

o1

all-concept-assertions

function

Description:
Syntax:
Arguments:

Values:

Returns all concept assertions from the specified ABox.
(all-concept-assertions &optional (abor *current-abox*))
abox - ABox object

List of assertions

all-role-assertions

function

Description:
Syntax:

Arguments:

Values:

See also:

Returns all role assertions from the specified ABox.
(all-role-assertions &optional (abor *current-aboxx*))

IN

abor

- individual name
- ABox object

List of assertions

Function all-concept-assertions-for-individual on page 51.

describe-abox

function

Description:

Syntax:

Arguments:

Values:

Generates a description for the specified ABox.

(describe-abox &optional (abor *current-abox*)
(stream *standard-output*))

abox - ABox object

stream - open stream object

abox
The description is written to stream.

describe-individual

function

Description:

Syntax:

Arguments:

Values:

Generates a description for the individual from the specified ABox.

(describe-individual IN &optional (aboxr *current-aboxx*)
(stream *standard-output*))

IN

aboz

- individual name
- ABox object

stream - open stream object

IN
The description is written to stream.

52

A KRSS Sample Knowledge Base

The following knowledge base is specified in KRSS syntax. It is a version of the knowledge
base used in the Sample Session, on page 1.

A.1 KRSS Sample TBox

555
;35 the following forms are assumed to be contained in a
;55 file "race:examples;family-tbox-krss.lisp".

;35 initialize the TBox family
(in-tbox family :init t)

;33 the roles

(define-primitive-role has-child :parents (has-descendant))
(define-primitive-role has-descendant :transitive t)
(define-primitive-role has-sibling)

(define-primitive-role has-sister :parents (has-sibling))
(define-primitive-role has-brother :parents (has-sibling))
(define-primitive-attribute has-gender)

;55 domain & range restrictions for roles

(implies top (all has-child person))

(implies (some has-child top) parent)

(implies (some has-sibling top) (or sister brother))
(implies top (all has-sibling (or sister brother)))
(implies top (all has-sister (some has-gender female)))
(implies top (all has-brother (some has-gender male)))

;55 the concepts
(define-primitive-concept person

(and human (some has-gender (or female male))))
(define-disjoint-primitive-concept female (gender) top)
(define-disjoint-primitive-concept male (gender) top)
(define-primitive-concept woman (and person (some has-gender female)))
(define-primitive-concept man (and person (some has-gender male)))
(define-concept parent (and person (some has-child person)))
(define-concept mother (and woman parent))
(define-concept father (and man parent))
(define-concept grandmother

(and mother

(some has-child
(some has-child person))))

93

(define-concept aunt (and woman (some has-sibling parent)))
(define-concept uncle (and man (some has-sibling parent)))
(define-concept brother (and man (some has-sibling person)))
(define-concept sister (and woman (some has-sibling person)))

A.2 KRSS Sample ABox

;35 the following forms are assumed to be contained in a
;55 file "race:examples;family-abox-krss.lisp".

;35 initialize the ABox smith-family and use the TBox family
(in-abox smith-family family)

;35 Alice is the mother of Betty and Charles
(instance alice mother)

(related alice betty has-child)

(related alice charles has-child)

;35 Betty is mother of Doris and Eve
(instance betty mother)

(related betty doris has-child)
(related betty eve has-child)

;;; Charles is the brother of Betty (and only Betty)
(instance charles brother)

(related charles betty has-sibling)

;33 closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;33 Doris has the sister Eve
(related doris eve has-sister)

;33 Eve has the sister Doris
(related eve doris has-sister)

B Integrated Sample Knowledge Base

This section shows an integrated version of the family knowledge base.

;35 the following forms are assumed to be contained in a
;35 file "race:examples;family-kb.lisp".

(in-knowledge-base family smith-family)

o4

(signature :atomic-concepts (person human female male woman man
parent mother father grandmother
aunt uncle sister brother)

:roles ((has-descendant :transitive t)
(has-child :parent has-descendant)
has-sibling
(has-sister :parent has-sibling)
(has-brother :parent has-sibling)
(has-gender :feature t))

:individuals (alice betty charles doris eve))

;;; domain & range restrictions for roles

(implies *top* (all has-child person))

(implies (some has-child *top*) parent)

(implies (some has-sibling *top*) (or sister brother))
(implies *top* (all has-sibling (or sister brother)))
(implies *top* (all has-sister (some has-gender female)))
(implies *top* (all has-brother (some has-gender male)))

;55 the concepts

(implies person (and human (some has-gender (or female male))))
(disjoint female male)

(implies woman (and person (some has-gender female)))

(implies man (and person (some has-gender male)))

(equivalent parent (and person (some has-child person)))
(equivalent mother (and woman parent))
(equivalent father (and man parent))
(equivalent grandmother

(and mother

(some has-child
(some has-child person))))

(equivalent aunt (and woman (some has-sibling parent)))
(equivalent uncle (and man (some has-sibling parent)))
(equivalent brother (and man (some has-sibling person)))
(equivalent sister (and woman (some has-sibling person)))

;55 Alice is the mother of Betty and Charles
(instance alice mother)

(related alice betty has-child)

(related alice charles has-child)

;55 Betty is mother of Doris and Eve
(instance betty mother)

(related betty doris has-child)
(related betty eve has-child)

95

;3; Charles is the brother of Betty (and only Betty)
(instance charles brother)

(related charles betty has-sibling)

;33 closing the role has-sibling for charles
(instance charles (at-most 1 has-sibling))

;53 Doris has the sister Eve
(related doris eve has-sister)

;33 Eve has the sister Doris
(related eve doris has-sister)

C Web Interface

C.1 Introduction

The Web interface for the RACE system offers a convenient way to use a powerful taxo-
nomical reasoning system. Based on a set of atomic concepts C and roles R, it allows one
to specify a set of axioms in the so called TBox. It represents the terminological knowledge
about the domain. In the ABox one can assert that individuals are instances of specified
concepts and there you can assert relations between these instances as well. The reasoning
services can be used via the query interface. They include, for example, the computation of
those elements of C which are direct sub- and superconcepts of a concept or the computa-
tion of the most-specific concept an individual is instance of. The TBoxes and the ABoxes
together with the queries can be saved separately and used when the user logs in again
using the same account.

C.2 How to use the interface

On the start page (see Fig. 7) you can

e Register as a new user.
e Use the RACE Prover if you are already registered.

e Maintain the TBoxes and ABoxes you have built.

o6

= Netscape:AACEProverlogn ||

File Edit Yiew Go Communicator Help|

T| W" Bookmarks J‘ Location: [ﬂqttp SA/kogsl. informatik. uni-hamburg. de: 8000/ race p‘| ﬁl' What's Related |

RACE Prover Login

LB

Introduction

Register as new user

RACE Prover (for registered users)

TBox Maintehance (for registered users

Acknowledgments

Volker Haarslev and Ralf Moller

University of Hamburg, Computer Science Department, Vogt—Koélln—Strafe 30

Figure 7: The RACE interface start page.

C.2.1 Register as a new user

When you use RACE for the first time you must register as a new user with the register
page (see Fig. 8). In order to do this you must fill in the fields for login name and password.
If you want to receive your TBoxes or your ABoxes via email, the fields for name and email
address must be filled in as well.

Building a TBox

On the main page (see Fig. 9)° TBoxes and ABoxes can be constructed and queries can
be posed. The TBox and the ABox are saved under the specified name when the button
“Fval“ is pressed, see Fig. 9.

®The example is is taken from [Buchheit et al. 93].

57

Metscape: RACE Prover Login

KA EEE KK

Figure 8: The RACE interface register page.

A TBox contains role declarations, role axioms and concept axioms. The set of concept terms
used in the concept axioms of a TBox is always based on the set of concept names, the atomic
concepts. In the RACE system the set of concept names C is extracted automatically from
the concept axioms mentioned in the TBox. The set of roles R consists of three disjoint
sets: The set of primitive roles, the set of transitive roles and the set of features. The set of
roles R is also extracted automatically from the TBox by the RACE system. The transitive
roles and the features are given by role declarations. The undeclared roles are assumed to
be primitive roles. Hierarchical relations between roles are stated by role axioms (s.b.). In
the following the syntax for concept axioms is explained.

C.2.2 Concept axioms

RACE supports two kinds of concept axioms. We first give the usual German style DL
notation and afterwards the ASCII counterpart of the operators explained. In the following
C with index denotes a concept term.

General concept inclusions (GCIs) state the subsumption relation between two concept
terms.

58

|som= t=aches OOJRSE] => [john, cel56) instancepijohn, FF.ITJ.![J

[ETIDERT 5 somm de=gree B3} | teachss.

PRGF by ingtansapljohn, STUDEHT).
dohn !

Pﬂ.l'_'E’[=> (mome degree M3). |at-maat 1 degrea) I

[som= degres ME] => oslSe @ SOURSE) .
[aoma degres BE).

ME & BE = *Battam®,

Figure 9: The RACE main page.

DL notation: Ch C Oy
RACE syntax: Cp => 05,
Examples: Human => Animal & Biped.

mammal => all has-parent mammal.
some teaches Course => (Student & some degree BS)
| Prof.

For the users convenience RACE also supports another kind of concept axiom.

Concept equations state the equality between two concept terms.

DL notation: Ch = Cy
RACE syntax: Cl = C2.
Examples: Woman = Human & Female.

Primary-Color & /Yellow = Red | Blue.

Actually, a concept equation C7; = C5 can be expressed by the two GCIs C7 C Cy and
C5 C (. Concept axioms are separated by a dot.

59

C.2.3 Concept Terms

There are two predefined concepts in RACE. The concept *top*, denotes the most general
concept and the concept *bottom* denotes the inconsistent concept. Besides concept names
the following terms are also concept terms.

Boolean terms build concepts by using the boolean operators.

‘ DL notation ‘ RACE syntax

Negation - C / C
Conjunction cnb C & D
Disjunction C uD C | D

Example: Tree = Plant | (Graph & /(some contains Cycle)).

Qualified restrictions state that role fillers have to be of a certain concept. Value restic-
tions assure that the type of all role fillers is of the specified concept, while exist restrictions
require that there be a filler of that role which is an instance of the specified concept.

‘ DL notation ‘ RACE syntax
i R.C some R C
VY R.C all RC

Exists restriction
Value restriction

Example: human = (all has-ancestors human).

Number restrictions can specify a lower and upper bound for the number of role fillers
each instance of this concept has for a certain role.

‘ DL notation ‘ RACE syntax
<nR at-most n R
>n R at-leastn R

At-most restriction
At-least restriction

Example: Week = (at-most 7 has-days) & (at-least 7 has-days).

The precedence of the operators is: /, &, —, =>, =.
The comment sign is: %, after this sign the rest of the line is ignored. The RACE system is
not case-sensitive. Concepts may be put in parentheses.

C.2.4 Role Declarations

As we have seen before in RACE the set of roles R consists of primitive roles, transitive
roles and features. The features and transitive roles have to be declared. In the following R
(possibly with index) denotes a role name.

Feature declaration Features (also called Attributes) restrict a role to be a functional
role. That means each individual can only have up to one filler for this role.

RACE syntax: feature(R) .
Example: feature (has-mother) .

Transitive Role declaration states that a role is transitively closed.
Please note that the transitive roles cannot be used in number restrictions and that features
can not be transitive.

60

RACE syntax: transitive(R).
Example: transitive(ancestor-of).

Besides these kinds of special roles, role hierarchies can be established.

C.2.5 Role Axioms

Role Hierarchies consist of super- and subrole-relationships between roles. If R; is a
superrole of Ry, then for all pairs of individuals between which Ry holds, R; must hold too.
All subroles of a feature are implicitly declared as features. Sub- or superroles of a transitive
role are not neccessarily transitive, unless declared as being so.

RACE syntax: parent (Rgyup, Rsuper) -
Example: parent (is-mother-of, is-parent-of).

C.2.6 Building an ABox

In the ABox pane (see Fig. 9) assertions can be made about individuals. It can be stated
that an individual is an instance of a concept and that a relation between two individuals
holds.

Concept assertions state that an individual ¢ is an instance of the specified concept C.
RACE syntax: ¢ : C.

Role assertions state that an individual j is a role filler for a role R with respect to an
individual 1.

RACE syntax: (i, j) : R.

C.2.7 Building and Executing a Query

In the query field, queries can be posed concering the TBox and the ABox. Some example
queries are shown in Fig. 10.

C.2.8 Queries concerning the concept hierarchy

The following queries always refer to the current TBox implicitly. They depend on set C of
concept names extracted from the current TBox.

Superconcepts returns the most-specific subsumers of C'NV found in C.

RACE syntax: superconcepts(CN).

Subconcepts returns the most-specific subsumees of C N found in C.

RACE syntax: subconcepts(CN) .

Equivalentp checks wether the two concepts from C are equivalent.
RACE syntax: equivalentp(C'Ny, CN3).

61

vip: o feagnl. ardoomaklk oo bembearg . de FOODUTONOE - /P PONYR -SRI TCLE

_.Flllr'lt (haz-pEay, s&Lx), | lien | pEedator, i_l'l.llllllﬁfltiﬁltl [
||dand=lion : planmt. cacnivore-animall.
animal => Splant. pubcontepts (animal] .
animal | plant = spganlem, |Tben; rabbith : aquivalantpl
has-prey. animal, cmnivocs—snimal).
carnivore—animal = oynonyma [cacnivore—animal) .
animal & (all satea anlmall, [rabbit, dandsllan):
hsrbivors—animal = eate. catrisve (animall .
animal & {all eats plant). inatancep|rabbit,
amnivecra=animal = Iplant | Ptuﬂﬂhﬂt]?.
animal & mec {zabbit] .
lall satz organiam).
pradatar =
animal &

lall has-prey animal].

Figure 10: Some example queries.

Synonyms finds all concept names in C that are equivalent to C'N.
RACE syntax: synonyms (C'N) .

C.2.9 Queries concerning the instances

Instancep checks, if the specified individual ¢ is an instance of the specified concept C.

RACE syntax: instancep(i, C).

Retrieve finds all individuals in the current ABox that are instances of a concept C.

RACE syntax: retrieve(C).

Most-specific concepts finds the most-specific concept names in C, of which the specified
individual 7 is an instance of.

RACE syntax: msc (7).

62

detanape. TRan Malaipiin e [1lor regrdened user

[e i
'_ J'lu-m-rh_.&_ Lo wrip b T Wt P
Tat- TBmx k. H

: ~peay casraraen
Mg 3] T T LI

Tat- ABax i R

D] P

LIk dasaeazl

Figure 11: The RACE maintenance page.

The queries in the pane are executed, after the "Eval” button is clicked. The response of
the RACE system is displayed in the lower part of the main dialog as you can see in Fig. 9.

A negative answer such as ”It cannot be proven that [is an instance of C.” for queries like
7instancep (i,C).” may seem surprising for someone who expected "No”. RACE avoids
"No” because this might suggest that in this case i is an instance of /A. Considering the
TBox {D = AU B} with the ABox {i : D} it cannot be inferred that the individual is an
instance of A or not.

C.2.10 Maintaining TBoxes and ABoxes

From the RACE start page you can go to the maintenance page (see Fig. 11). There you
find all the names of your TBoxes and ABoxes (with their associated Queries) listed. In this
dialog you can delete TBoxes or ABoxes. You can also send a TBox or an ABox to yourself
via email if you have filled in your email address for this account.

63

References

[Buchheit et al. 93] M. Buchheit, F.M. Donini & A. Schaerf, “Decidable Reasoning in Ter-
minological Knowledge Representation Systems”, in Journal of Artificial Intelligence
Research, 1, pp. 109-138, 1993.

[Haarslev and Moller 99] V. Haarslev and R. Moller, “Expressive ABox Reasoning with
Number Restrictions, Role Hierarchies, and Transitively Closed Roles”, Technical Re-
port FBI-HH-M-288/99, University of Hamburg, 1999.

[Horrocks-et-al. 99a] I. Horrocks, U. Sattler, S. Tobies, “Practical Reasoning for Descrip-
tion Logics with Functional Restrictions, Inverse and Transitive Roles, and Role Hier-
archies”, Proceedings of the 1999 Workshop Methods for Modalities (M4M-1), Ams-
terdam, 1999.

[Horrocks-et-al. 99b] I. Horrocks, U. Sattler, S. Tobies, “A Description Logic with Transitive
and Converse Roles, Role Hierarchies and Qualifying Number Restrictions”, Technical
Report LTCS-99-08, RWTH Aachen, 1999.

[Patel-Schneider and Swartout 93] P.F. Patel-Schneider, B. Swartout “Description-Logic
Knowledge Representation System Specification from the KRSS Group of the ARPA
Knowledge Sharing Effort”, November 1993. The paper is available as:
http://www-db.research.bell-labs.com /user /pfps/papers/krss-spec.ps

64

Index

auto-classify, 28
auto-realize, 28
bottom, 19
current-abox, 16
current-tboxx, 13
top, 18

abox-consistent-p, 35
abox-name, 18
abox-realized-p, 35
add-concept-assertion, 25
add-concept-axiom, 22
add-disjointness-axiom, 22
add-role-assertion, 26
add-role-axiom, 24
alc-concept-coherent, 31
all-abozxes, 50
all-atomic-concepts, 45
all-concept-assertions, 52
all-concept-assertions-for-individual,
51
all-features, 45
all-individuals, 50
all-role-assertions, 52
all-role-assertions—for-
-individual-in-domain, 51
all-role-assertions—for-
-individual-in-range, 51
all-roles, 45
all-tboxes, 44
all-transitive-roles, 45
assertion, 9
atomic-concept-ancestors, 40
atomic-concept-children, 41
atomic-concept-descendants, 40
atomic-concept-parents, 41
atomic-concept-synonyms, 39
atomic-role-ancestors, 43
atomic-role-children, 43
atomic-role-descendants, 42
atomic-role-parents, 44
attribute, 8, 22

bottom, 19

check-abox-coherence, 35

65

check-tbox-coherence, 34
classify-tbox, 33
concept axioms, 7

concept definition, 8
concept equation, 7
concept term, 6
concept-ancestors, 40
concept-children, 41
concept-descendants, 39
concept-disjoint-p, 31
concept-disjoint?, 31
concept-equivalent-p, 30
concept-equivalent?, 30
concept-instances, 48
concept-offspring, 40
concept-p, 32
concept-parents, 41
concept-satisfiable-p, 29
concept-satisfiable?, 29
concept-subsumes-p, 30
concept-subsumes?, 29
concept-synonyms, 39
conjunction of roles, 8

define-concept, 21
define-disjoint-primitive-concept,
21
define-distinct-individual, 27
define-primitive-attribute, 23
define-primitive-concept, 20
define-primitive-role, 23
delete ABox, 17
delete TBox, 14
describe-abox, 52
describe-concept, 46
describe-individual, 52
describe-role, 46
describe-tbox, 46
disjoint, 20
disjoint concepts, 7, 20, 21
domain restriction, 9

ensure-abox-signature, 15
ensure-tbox-signature, 13
equivalent, 20

exists restriction, 6

feature, 8, 22, 23

feature-p, 33

find-abox, 17

find-tbox, 14

forget, 28
forget-concept-assertion, 25
forget-role-assertion, 27

GCIL 7, 19

implies, 19

in-abox, 14
in-knowledge-base, 16
in-tbox, 11
individual-direct-types, 47
individual-equal?, 37
individual-fillers, 48
individual-instance-p, 36
individual-instance?, 36
individual-not-equal?, 37
individual-p, 38
individual-types, 47
individuals-related-p, 37
individuals-related?, 36
inference modes, 9
init-abox, 15
init-tbox, 11

instance, 24
instantiators, 47

load ABox, 16
load TBox, 13
loop-over—-aboxes, 50
loop-over-tboxes, 44

most-specific-instantiators, 47

name set, 38
number restriction, 7

primitive concept, 7

range restriction, 9
realize-abox, 35
related, 26
rename ABox, 17
rename TBox, 14
retraction, 10

retrieve-concept-instances, 48
retrieve-direct-predecessors, 50

retrieve-individual-fillers, 49
retrieve-individual-relations, 49
retrieve-related-individuals, 49
role hierarchy, 8

role-ancestors, 42
role-children, 43
role-descendants, 42
role-offspring, 43

role-p, 32

role-parents, 44
role-subsumes-p, 32
role-subsumes?, 32

save-abox, 17
save-tbox, 13
signature, 6
signature, 12
state, 27
subrole, 22, 23
superrole, 22, 23

taxonomy, 38

tbox, 18
tbox-classified-p, 34
tbox-coherent-p, 34
tbox-name, 14

top, 18

transitive role, 8, 22
transitive-p, 33

unique name assumption, 9

value restriction, 6

