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ABSTRACT

In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been devel-
oped to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing
biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by
spatially varying material parameter values, while assuming the same physical model for all anatomical structures.
In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures.
Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate
rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the
Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix sys-
tem for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked
together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as
tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions
significantly improves the prediction results in comparison to a pure linear elastic model.

Keywords: biomechanical model, inhomogeneous materials, finite element method, intraoperative image correction,
Navier equation, Stokes equation

1. INTRODUCTION

The accuracy of image-guided neurosurgery generally suffers from intraoperative changes of the brain anatomy due to,
e.g., tumor resection or brain shift.! To improve upon navigation accuracy, a variety of biomechanical models have
been developed? 8 to predict brain deformations and thus to correct the preoperative images w.r.t. surgery induced
effects. Other biomechanical models have been described in the context of preoperative planning for registration
purposes’ 10 which can be used likewise to predict brain deformations.

All these models simulate the biomechanical behaviour of different anatomical structures by either spatially
varying the underlying material parameter values, while assuming the same physical model for all anatomical struc-
tures,”2910:5.6 or by applying appropriate boundary conditions.®*® An example for the latter case is the integration
of the skull bone or the falx as a non-moving part (known as homogeneous Dirichlet boundary condition). However,
the existing approaches generally lead to physically inadequate simulations, particularly in the case of combined
elastic/fluid regions. For example, in Hagemann et al., where the Navier equation has been used as underlying
physical model, the ventricular system was modeled as a rigid object, motivated by the reported incompressibility
of cerebrospinal fluid.'*'? Using this assumption, good registration results are obtained if none of the prescribed
correspondences, which drive the deformation of the model, were given in the vicinity of the ventricular system.
Otherwise the model gives a poor registration result, leading to an unrealistic deformation of the fluid region as
shown in Figure 1. An approach that directly simulates the physical behaviour of inhomogeneous fluids by using the
Navier-Stokes equation is the model of Lester et al.,’ which is motivated by the homogeneous fluid model of Chris-
tensen et al.'® But in both cases, it is assumed that all anatomical structures behave like fluids which is generally
not the case.
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Figure 1. Simulation of fluid parts (ventricular system) while treating them as rigid object surrounded by elastic
material: registration result of the preoperative image (a) with the postoperative image (b) while using (c) no
correspondences in the vicinity of the ventricular system and (d) while using two parallel correspondences at the
contour of the ventricular system, leading to an unrealistic pure translation of this structure. For a better visualization
of the result, the edges of the postoperative image (b) have been overlaid on subfigures (c) and (d).

In order to improve the prediction of brain deformations, we extend our biomechanical model** to cope with
anatomical structures consisting of rigid, elastic, and fluid materials while using the appropriate physical descrip-
tions for each material, namely either the Navier equation or the Stokes equation. Our approach is based on the
well-established physical theory of continuum mechanics to handle inhomogeneous materials. With this scheme,
an inhomogeneous domain is divided into homogeneous regions, each simulating different materials by using the
appropriate constitutive equation. To discretize the problem, we apply the finite element method (FEM) to each
region, resulting in a set of sparse linear matrix systems. Thereafter, these matrix systems are assembled together
into a single overall system of linear equations via appropriate boundary conditions, which establish a physical link
between the corresponding regions. Instead of using forces, which are generally difficult to determine from images,
we use a set of given correspondences to drive the deformation of the image. In our approach, it is ensured that the
prescribed correspondences are exactly fulfilled. Experiments with synthetic as well as real tomographic images have
been carried out and the results were compared against a purely linear elastic model with spatially varying material
parameter values to assess the physical plausibility of the predicted deformations.

2. APPROACH

To determine the deformation of an inhomogeneous body (2, the body is divided into a set of homogeneous regions
Q; in accordance with the underlying anatomical structures. Different material properties are taken into account by



substituting the appropriate constitutive equation, which describes the stress/strain relationship of a region ;, into
the equilibrium equations which describe the state of equilibrium between internal and external forces. Denoting
with o the Fulerian stress tensor, f the assumed homogeneous body forces, n; the unit vector normal to the surface
I;, and g’ the forces acting on I, the equilibrium equations for a region Q; read'517
—divje] =f inQ;
_ (1)
on; =g'* onlj.

After substitution of either Hooke’s law or the Navier-Poisson law as appropriate constitutive equations into the
equilibrium equations, we get the Navier equation

(A + p)Vdiv[u] + pVZu +f =0 (2)
for the simulation of rigid and elastic materials and the Stokes equation
~Vp+uViv+£=0 (3)

to simulate the behaviour of incompressible fluids, respectively. Here, V denotes the common Nabla operator, A and
u the Lamé constants, u the unknown displacement vector field, p the unknown scalar pressure function, p* the
viscosity parameter, and v the unknown velocity vector field. Our usage of the Stokes equation, motivated by the
reported incompressibility of cerebrospinal fluid,!*'? is in contrast to Christensen et al.'® or Lester et al.® where the
Navier-Stokes equation has been used to simulate compressible fluids and to Edwards et al.!® where the fluid region
is allowed to deform almost freely.

According to the additional unknown pressure function p, the Stokes equation, defining a saddlepoint problem,*°
cannot be solved alone. Instead, the continuity equation

div[v] =0, (4)

expressing the conservation of mass,'%2° has to be solved simultaneously. Thereafter, the associated displacement
vector field u of an incompressible fluid can be determined by calculating the total derivative of the velocity vector
field w.r.t. time, also known as calculation of the material derivative.'® But the formal restriction of the resulting
body deformation being infinitesimal, as implicitly done when using the Navier equation to simulate rigid and elastic
materials, allows a simple approximation of the displacement vector field u by multiplication of the velocity vector
field v with a small time interval dt, i.e.?°

u = vdt. (5)
Substitution of (5) into the Stokes equation and the continuity equation gives

—Vp+ p*dt 'Viu+f=0

diviu] =0 (©)

which can be directly solved for the unknown displacement vector field u. The combined parameter p*dt ! has now
the physical unit of a pressure.

In order to solve the Navier and Stokes equations within sufficiently smooth function spaces, the method of
weighted residuals®® is applied. With this method, we demand that the projection of the residuum onto arbitrary
weighting functions of the underlying function space vanishes over each corresponding region 2;. Using w and ¢ as
arbitrary weighting functions and denoting with (-,-) the common inner product leads to

/ (=Vp+p*dt ' Viu+f,w)dQ; =0
Q;
(7)
/ g div[u] d2; =0,
Q;

i

for the Stokes equation, while the formulation for the Navier equation is given elsewhere.>!*  Note, that the
continuity equation is satisfied here in a weak sense only, i.e. the solution does not satisfy the incompressibility



constraint pointwise but in the mean, thus leading to the so-called non-conforming finite element method.?2-23:19

It can be shown, however, that each classical solution of (7), i.e. a solution satisfying u € C?(€;) N C°(€;) and
p € CH(;) with Q; being the closure of €, is still a classical solution of the Stokes problem (3) satisfying the
incompressibility constraint (4).231% Using the Jacobian matrix J(-), equation (7) can be further transformed into

/Qi —pdiviw] + p*dt= (J(u), J(w)) dQ; = / (f,w) dQ; — / (w, pn;) dT; —l—/ p* (dt™' I (u)n;, w)dl;  (8)

Q; T; T

/ g div[u] d2; = 0. ©))
Q;

Considering the first boundary integral appearing on the righthand side of (8) reveals that the term pn; represents a
pressure load'” g’ acting on the surface I;. Furthermore, we assume that the fluid must not penetrate the adjacent
regions 2; which is in accordance with the barrier between cerebrospinal fluid and brain tissue. Mathematically, this
requires that the velocity component of the fluid normal to the surface I; vanishes,?® i.e.

J(v)n; =dt 'J(u)n; =0 vx €T (10)

must hold. This condition is also known as no-penetration boundary condition.?®

By application of the Galerkin method, i.e. taking only finite dimensional subspaces of the underlying vector
spaces, spanned by a finite number of basis functions, respectively, all functions can be approximated as finite sums
of basis functions multiplied with unknown coefficients. As a result, we can write the Stokes equation in conjunction
with the continuity equation as well as the corresponding expression for the Navier equation®'* in compact matrix
notation thus giving a linear matrix system for each region ;:

Alu’ =f + g (11)

The matrix A’ is commonly known as stiffness matriz, while the vector u’ contains the unknown pressure/displacement
coefficients, f are the homogeneous body force coefficients, and g* are the coefficients of the surface forces acting on
;.

So far, each linear equation system (11) contains the physical description for a homogeneous region 2; only. But
all matrix systems can be physically linked by applying the compatibility and equilibrium boundary conditions?42°;
The former condition states, that the displacements uy at the common boundary I;; between, e.g., two subregions
Q; and Q; must be equal, while the latter one states that in the equilibrium, the sum of all stress vectors g’ and
g’ acting on the boundary I';; must be zero. Introduction of these boundary conditions and assuming homogeneous
body forces f over 2 = Q; U Q; allows to couple both linear systems, ending up with one overall system of linear

equations:

gm . Abr , 0 u§2 f+g
Ao Apr +Afr Agg uf | = f . (12)
0 Al Al ul, f+g’
~ —_—— Y
A u b

With A%, etc., we denoted the submatrices of the corresponding stiffness matrices A* and A7 for the subregions ;
and (;, respectively. An index including I', as appearing in A} etc., indicates those submatrices which comprise
finite elements belonging to the common boundary I';; between both regions. Based on (12) we are able to simulate
the physical deformation behaviour of an inhomogeneous body comprising rigid, elastic, and fluid parts.

Special care has to be taken concerning the choice of the finite elements. Due to the incompressibility constraint
(4), it is not sufficient for fluid regions to use mixed finite elements with a simple linear displacement approximation
and a constant pressure approximation, because the Babuska-Brezzi condition,???® which ensures the solvability
of the linear matrix system in case of a saddlepoint problem, is not satisfied here thus unstable results occur.!®
Instead, mixed finite elements with higher order interpolation functions have to be used for the fluid regions, e.g. the
so-called Q» — P, Crouzeiz-Raviart finite element?* with biquadratic polynomials for the displacement approximation
and a linear, discontinuous approximation of the pressure including two derivatives. To ensure the continuity of the
resulting displacement vector field, we also use nine node quadrilateral finite elements for rigid and elastic regions,
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Figure 2. The synthetic images used in our experiments and the correspondences applied in the second experiment
(see text).

though the usage of other types of finite elements with lower order interpolation functions seems possible. Problems
arise with both types of finite elements due to the large number of associated degrees-of-freedom, which count to 21
resp. 18 per finite element in the 2D case, thus leading to large linear equation systems. Additionally, the Q2 — P;
Crouzeix-Raviart finite element prevents the usage of iterative solution techniques.2! As a consequence, only images
of relatively small size can be handled so far.

To calculate the deformation of an anatomical structure given prior defined spatial correspondences between
images, these correspondences must be integrated into the linear equation system. To this end, we use the procedure
described in Peckar et al.?> and Huebner et al..?® Given a value for the unknown u;, this can be incorporated into
the linear equation system by a subtraction of the product u;A ;, where A; denotes the j-th column of the stiffness
matrix A, from the righthand side vector b, followed by a substitution of the given value into the j-th row of b.
Thereafter, the j-th row and column of A are set to zero and, respectively, the diagonal element A;; to one. By
repeating this procedure for a set of correspondences, to be given at the surface of an anatomical structure, a direct
mapping from the undeformed to the deformed state of the anatomical structure results.

3. EXPERIMENTS

Our coupled rigid/elastic/fluid model has been tested on synthetic and tomographic images. For the experiments
with the synthetic images shown in Figure 2 we model the following three different materials: rigid skull bone
(black), cerebrospinal fluid (bright grey), and elastic brain tissue (dark grey). To assess the physical plausibility of
our new model, we compared the results with those from our purely linear elastic model® assuming there at first
a homogeneous elastic body only and, at second, an inhomogeneous elastic body with elastic brain tissue, rigid
skull bone, and fluid treated as a rigid object. As mentioned above, this simulation of the fluid was motivated
by the reported incompressibility of cerebrospinal fluid. In the following, we refer to these three approaches as
homogeneous elastic model, inhomogeneous elastic model, and inhomogeneous elastic/fluid model, respectively. As
material parameter values, we used the values determined in Hagemann et al.® for the Lamé constants and the
heuristically determined value of 0.01 for the combined parameter p*dt~!.

In the first experiment, we simulated the movement of a rigid object towards a nearby fluid region, using the
synthetic image shown in Figure 2(a). The rigid object (small black square) may represent an instrument for surgery,
a rigid foreign body, or a particle of skull bone. For simplicity, the movement is modeled as pure translation of
the squared object using two parallel correspondences defined by u = (7.0, —4.0)7. We expect that the resulting
deformation leads to a pure translation of the rigid object in the direction of the fluid region which should deform
accordingly. As can be seen from the calculated results and the corresponding grid deformations in Figures 3(a) and
(d), the homogeneous elastic model results in a deformation where both, the object and the surrounding skull bone
were deformed which is in contrast to rigid material behavior. With the inhomogeneous elastic model this is not
the case, but the assumed rigidity of fluid leads to physically incorrect violations of the grid topology as depicted in



Figure 3. Calculated deformations for the synthetic image shown in Figure 2(a) (top row) and corresponding grid
deformations (bottom row) using (a) a homogeneous elastic model, (b) an inhomogeneous elastic model, and (c) an
inhomogeneous elastic/fluid model.

Figures 3(b) and (e). Additionally, no deformation occurs in the fluid region and the soft material between the object
and fluid regions is no longer visible (note, that the rigid and elastic parts lie one above the other). A complete
different behavior shows our inhomogeneous elastic/fluid model. Here, the shape of the rigid object is still preserved
while the complete deformation takes place in the fluid and brain tissue regions, see Figures 3(c) and (f).

In the second experiment we simulated the growth of a tumor located inside a simulated skull bone by applying
17 parallel correspondences given by u = (0.0, —6.0)7 at the bottom part of the skull, as shown in Figure 2(c). We
expect that, due to the incompressibility of the fluid and the rigidity of the surrounding bone, the elastic brain tissue
will be compressed. As can be seen from Figure 4, the homogeneous elastic model leads to the worst result: no
compression of the elastic part can be observed and even at the ”rigid” bone deformations occur. Additionally, the
assumed homogeneous Dirichlet boundary condition at the image boundaries lead to large and topology disturbing
deformations in the rear of the given correspondences, see Figure 4(d). In contrast, the use of the inhomogeneous
elastic model leads mainly to a deformation of brain tissue with some compression at the bottom part. Only our
inhomogeneous elastic/fluid model gives the expected qualitative result. The brain tissue has been significantly
compressed, as can be clearly seen in the corresponding grid deformation shown in Figure 4(f). Also, after a detailed
analysis of the pixels belonging to each region, it turns out that the tumor enlargement is roughly equal to the
shrinking of brain tissue.

For our experiment with a real tomographic image, we used the section of the preoperative MR image marked
in Figure 5. The resulting image of size 61 x 61 pixels shows a part of the ventricular system surrounded by elastic
brain tissue. In order to segment both regions, we applied a Canny edge detector to the image. Thereafter, the
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Figure 4. Calculated deformations for the synthetic image shown in Figure 2(b) (top row) and corresponding grid
deformations (bottom row) using (a) a homogeneous elastic model, (b) an inhomogeneous elastic model, and (c) an
inhomogeneous elastic/fluid model.

(b) ()

Figure 5. Enlarged part (b) of the ventricular system of the original preoperative image (a). The applied corre-
spondences are depicted in (c).

resulting segmentation has been locally corrected such as to match the underlying finite element mesh. The final
segmentation follows exactly the finite element boundaries.
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Figure 6. Resulting calculated deformations (top row) for the image in Figure 5(b) and corresponding grid defor-
mations (bottom row) while using (a) a homogeneous elastic model, (b) an inhomogeneous elastic model, and (c) an
inhomogeneous elastic/fluid model.

Figure 6 shows the results and corresponding grid deformations for 8 parallel correspondences (defined as u =
(7.0,0.0)T) given at the left side of the ventricular system, as shown in Figure 5(c). Using the homogeneous elastic
model, a remarkably bended shape of the ventricular system results, see Figure 6(a). As indicated by the grid
deformation in Figure 6(d) and the displacement vector field shown in Figure 7(a), this bending is symmetric with
regard to the applied correspondences. Significant displacements occur in a rather local neighbourhood, i.e. no
material flows to remote parts of the image. In contrast, the inhomogeneous elastic model leads to a corrupted and
physically incorrect result according to a violation of the underlying topology, which is clearly visible in the grid
deformation shown in Figure 6(e). As in the first experiment, such foldings sometimes occur in the vicinity of rigid
structures due to large deformations at the boundary between an elastic and a rigid region (see also the corresponding
displacement vector field in Figure 7(b)). Additionally, the shape of the ventricular system is nearly preserved thus
indicating that the inhomogeneous elastic model is insufficient in this case.

Our inhomogeneous elastic/fluid model results in a completely different behaviour, see Figures 6(c) and (f).
According to the shape of the enclosed fluid region, the predicted deformation is non-symmetric with regard to the
given correspondences. Also, a clearly visible material flow inside the fluid region to the upper part of the image
is visible. The result is a roughly straight right side of the ventricular system. Interestingly, the pressure of the
fluid onto the brain tissue at the right side is nearly uniformly distributed as indicated by the resulting overall small
displacements of the brain tissue there, see Figure 7(c).
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Figure 7. Parts of the calculated displacement vector fields for (a) the homogeneous elastic model, (b) the inho-
mogeneous elastic model, and (c) the inhomogeneous elastic/fluid model, respectively. The sections were taken from
the middle of the images shown in Figures 6(a)-(c).

4. SUMMARY

We proposed a new biomechanical model of the human head for image correction purposes based on the finite
element method. The model uses the physical theory of continuum mechanics to explicitly simulate the deformations
of coupled rigid, elastic, and fluid regions. Instead of using forces, the deformation of the biomechanical model is
driven by landmark correspondences. Experiments with synthetic as well as tomographic images have been carried out
in order to assess the physical plausibility of the predicted deformation results. It turns out, that our new approach
leads to a significant improvement of the predicted results compared to a pure linear elastic model. We expect
that the incorporation of more advanced constitutive equations for brain tissue and other anatomical structures will
further improve the results. Additional work will be carried out to reduce the size of the overall linear matrix system
allowing to handle larger image sizes.
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