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Abstract

We investigate several iterative numerical schemes for nonlinear variational image smoothing and

segmentation implemented in parallel. A general iterative framework subsuming these schemes is suggested

for which global convergence irrespective of the starting point can be shown. We characterize various

edge{preserving regularization methods from the recent image processing literature involving auxiliary

variables as special cases of this general framework. As a by{product, global convergence can be proven

under conditions slightly weaker than those stated in the literature. EÆcient Krylov subspace solvers for

the linear parts of these schemes have been implemented on a multi{processor machine. The performance

of these parallel implementations has been assessed and empirical results concerning convergence rates

and speed-up factors are reported.

Keywords

Adaptive smoothing, variational segmentation, non-linear regularization, images and pde's, auxiliary
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I. Introduction

A. Overview

Low-level feature extraction and image segmentation are key issues in image processing

and computer vision. Variational approaches [1], [2], [3], [4] provide a mathematically

sound problem formulation being superior to ad-hoc segmentation schemes. For a survey,

we refer to [5].

A common problem with these approaches, however, is the high computational cost

involved from an optimization point-of-view. Stochastic optimization [1] is not feasible

for typical image sizes, while deterministic annealing procedures [2], [4] cannot guarantee

to attain a \good" local minimum. Therefore, the use of non-quadratic but convex func-

tionals has been advocated to simplify nonlinear variational image processing from the

computational viewpoint [6], [7], [8]. Despite being mathematically much simpler, convex

functionals provide a reasonable approximation to the prototypical but mathematically

sophisticated and computationally expensive variational approach of Mumford and Shah

[3] (see Section II-B below and [10]).
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B. Related work

An important feature of nonlinear convex variational approaches, particularly in the

context of (semi-)automated image processing tasks, is the existence of algorithms that

globally converge to the unique minimizer, irrespective of the starting point. A simple

example is iterative gradient descent with suÆciently small steps1. Despite convexity,

however, typical variational approaches are highly nonlinear, and it is diÆcult to obtain

fast convergence by applying a standard Newton{like second order method, due to very

narrow regions around the unknown global minimum where quadratic convergence holds

true.

In this context, the work of Geman and Reynolds [11] and Geman and Yang [12] is very

interesting. The scheme presented by Geman and Reynolds [11], originally developed to

minimize locally sophisticated non-convex functionals, has recently be shown to converge

globally in the convex case [13]. The scheme presented by Geman and Yang [12], known

under the notion half quadratic regularization, has recently been extended by Cohen [14]

to a large class of two-step algorithms for computer vision problems, and their scheme can

be shown to converge globally under mild conditions, too (see section III-C below). The

performance of these schemes, using eÆcient numerical solvers on parallel architectures

for the linear systems of equations involved, has not been investigated so far.

C. Contribution

In this paper, we adopt a general iterative scheme from the current literature on numer-

ical multigrid methods [16] and characterize the schemes discussed in the previous section

as its special cases. As a result of this mathematical characterization, we can slightly

weaken the conditions derived by Charbonnier et al. [13] and show global convergence for

both schemes. In addition, it turns out that for the case of convex variational approaches,

the linearization technique introduced by Geman and Reynolds using auxiliary variables

is identical to the so{called Ka�canov method known from mathematical elasticity theory.

To assess the performance of these schemes, eÆcient Krylov subspace solvers for the

resulting linear systems have been implemented under MPI [37] on a multi-processor SGI

1The notion \suÆcient" depends on an upper bound for the Lipschitz constant of the gradient.
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Power-Challenge machine. Empirical results concerning convergence rates and speed-up

factors are reported.

D. Organization of the paper

Section II describes the general form of convex functionals considered here along with a

generic iterative scheme that can be shown to converge globally to the unique minimizer

under certain conditions. Various linearization techniques known from the �elds of image

processing and mathematical elasticity theory are identi�ed as instances of this scheme in

section III. The conditions for global convergence are stated in each case. A discretization

of the approaches, being consistent with the underlying continuous formulation, based

on the Finite Element Method is sketched in section IV. Section V summarizes basic

results from numerical linear algebra concerning the preconditioned Conjugate Gradient

method. Experimental results concerning convergence rates and speed-up factors of our

implementations on a multi{processor machine are reported and discussed in section VI.

We conclude with suggestions for further work in section VII.

II. Convex functionals and a general iterative minimization scheme

A. Problem statement: Minimizing non{quadratic convex functionals

In the following, we focus on algorithms to eÆciently compute functions u 2 H mini-

mizing functionals of the following form:

J(v) =
1

2

Z



(v � g)2 + �(jrvj) dx (1)

where 
 � R2 denotes the image domain, and H denotes the standard Sobolev space

H = H1(
) = W 1;2(
). These functionals comprise two terms. The �rst term measures

the similarity between admissible functions v 2 H and the given image function g, and the

second term measures the smoothness of v. Functionals of the form (1) are well-known

from numerous papers on image segmentation and regularization (see, e.g., [2], [4], [18]).

Here, we restrict ourselves to functions �(t) 2 C1(R) which ful�ll the following condi-
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tions:

j�(t)j � c0 t
2 8t 2 R+; c0 > 0 (2)

j�0(t)� �0(s)j � c1 jt� sj 8t; s 2 R+; c1 > 0 (3)

�0(t) � c2 t 8t 2 R+; c2 > 0 (4)

We use the notation �0(t) = d�(t)
dt

. These conditions guarantee [7] the convexity of the

functional (1) and the existence of an unique function u 2 H minimizing (1). Furthermore,

u is the unique solution to the non-linear variational equation [7]:

L(u; v) :=

Z



(u� g)v + �(jruj)ru � rv dx = 0 8v 2 H : (5)

where:

�(t) :=
�0(t)

2t
: (6)

B. Convex functionals as edge{preserving regularizers

The class of convex functionals obeying (1){(4) comprises regularizing functions �(�) that

grow without bound as a function of the magnitude jrvj of the gradient of an admissible

function at loci of image transitions like edges which delineate image regions. Hence,

from the point-of-view of applications, one may ask whether such functions are useful for

adaptive image processing.

To discuss this point in more detail, let us consider a representative example [7] that

has been used for our work:

�(t) =

8<
: �2ht

2 ; 0 � t � c�

�2l t
2 + c (2t� c�) ; 0 < c� � t

(7)

with c = (�2h��
2
l )c� and �

2
h � �2l . Figure 1 shows the corresponding function �(�) de�ned

by (6) and (7).

Equation (7) illustrates that in general the convex functionals considered here com-

bine standard quadratic regularizers � � t2 with regularizers growing at a sub{quadratic

rate � � t�; 1 � � < 2. In the particular case of (7), we have � = 1.2 Accordingly,
2The quadratic term corresponding to �l � 1 ensures strict convexity of the functional (1) over H but is

dominated by the linear term.
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with a certain Markov Random Field by computing a (possibly local) minimum with a

deterministic annealing approach, thus resulting in a (non{unique) solution of a compu-

tationally much more involved non{convex optimization problem. Figure 2 clearly shows

that non{linear but convex regularization essentially does the same job, however with

having the advantage of an unique and easy{to{compute solution. Figure 3 shows a result

of our convex regularization as applied to a real image with a depiction of those image

locations fx 2 
 : jruj > c�g where the smoothing term adapted to image transitions

(black pixels in the rightmost image of Fig. 3)

For a more complete discussion of convex regularization in this context and many nu-

merical examples we refer to [10], [25].

Fig. 2. Top: The same data as depicted in [9, Fig. 7]. Top, left: Step edge with 140 gray value units

for the step. Top, right: White noise with standard deviation 30 gray value units has been added.

Bottom, from left to right: Unique solution u of nonlinear convex regularization for �h = 7, and

c� = 0:5; 1:0; 2:0, respectively. Note that (in this case) convex regularization performs as good as

non{convex approaches.

For image restoration applications, an obvious modi�cation of the class of functionals

(1) is to include a linear operator K,
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Fig. 3. Non{linear convex processing of a real image. Right: Image locations where the smoothing term

adapted are labeled with black.

J(v) =
1

2

Z



(Kv � g)2 + �(jrvj) dx

in order to account for blurring e�ects due to the point spread function of the imaging

device. In this case, the approach (1) may be regarded as a generalized Tikhonov{Phillips

regularization of a convolution equation. Although we have not yet elaborated such a

modi�cation (since we were mainly interested in computer vision applications rather than

image restoration), we believe that the reported results can be carried over to variational

image restoration applications.

Furthermore, we remark that the so{called total{variation measure �(jrvj) = jrvj has

received considerable attention in image denoising applications [15], [22], [23]. Choosing a

small value for the parameter c� in (7), the approach (1) may be considered as an approx-

imation that can be conveniently evaluated numerically. Figure 4 provides an illustration.

C. A general iterative minimization scheme

Our major objective is to investigate numerical schemes which globally converge to the

unique minimizer u of (1), irrespective of the point where the iteration starts. As discussed

in section I, the design of such schemes is not straightforward, despite convexity of the

functional (1).

In order both to compare and to unify several di�erent linearization approaches in this

context (see Section III below), we adopt the following general iterative scheme from
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III. Linearization techniques and global convergence

In this section, we show that the general scheme (8) subsumes quite diverse linearization

schemes from the literature. Hence, this framework sheds some light on the mathematical

basis for globally convergent iterative minimization schemes for convex nonlinear regular-

ization approaches.

A. Linearization with the Ka�canov method

A basic idea, known as the Ka�canov method from elasticity theory since more than

two decades [19], [20], [21], is to linearize the non-linear equation (5) by \freezing" its

non-linear part �(t) for one iteration step. To be more speci�c, we introduce the notation:

b(v) =

Z



gv dx (9)

B1(u; v; w) =

Z



vw + �(jruj)rv � rw dx (10)

and formulate the Ka�canov iteration and the conditions under which global convergence

holds true:

Lemma III.1: Assume (9), (10) and (2)-(4) to hold. If the function �(t) is bounded,

continuous and monotonously decreasing, then the sequence fukgk�1 determined by

B1(u
k; uk+1; v) = b(v) 8v 2 H (11)

converges to the unique solution u of (5), for any initial u0 2 H.

A general proof can be found in [21], based on assumptions speci�ed in appendix A. To

complete the proof, it remains to be checked whether these assumptions are valid for our

case as stated in (1) and (5) (see appendix A).

We conclude this section by recognizing that the iteration (11) is a special case of the

general iterative scheme (8) with operator B = B1, b(v) = B1(u; u; v) � L(u; v), and

damping factor !k = 1:

B1(u
k; uk+1; v) = B1(u

k; uk; v)� L(uk; v) : (12)

In the next section, we turn to a more general linearization technique comprising the

Ka�canov method as a special case. However, the conditions for global convergence stated
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in Lemma III.1 are then slightly weaker than those stated in the recent literature (see next

section).

B. Adaptive linearization with auxiliary variables

Geman and Reynolds [11] suggested an edge-preserving smoothing approach for solv-

ing non-convex image restoration problems based on a speci�c use of auxiliary variables.

Charbonnier et al. [13] investigated this scheme further and presented a proof of global

convergence for the case of convex functionals. An application of the approach of Geman

and Reynolds to the restoration of non-smooth functions3 has been investigated by Dobson

[22], who also derived an iterative scheme for this case similar to (11).

In [11], auxiliary variables w are introduced by replacing (1) with the functional:

JA(v; w) =
1

2

Z



(v � g)2 + wjrvj2 +  (w) dx :

For certain functions �(t) in (1) one can �nd functions  (t) [11], [13], for which JA is

convex with respect to w and

J(v) = inf
w
JA(v; w) : (13)

Thus, J(v) in (1) can be conveniently minimized by the two-step iteration:

wk = argmin
w
JA(u

k; w)

uk+1 = argmin
u
JA(u; w

k) :
(14)

Furthermore, if �(t) is convex and �(t) 2 C1(R) is bounded as well as strictly monotonously

decreasing, Charbonnier et al. [13] have shown that i) the above two-step minimization

procedure (14) converges to the unique minimizer u of the convex functional J(v) in (1),

and that ii) the auxiliary variables are computed (i.e. the �rst step of (14)) as:

wk = �(jrukj) : (15)

Variational calculus shows that the second step in (14) explicitly reads:Z



(uk+1 � g)v + wkruk+1 � rv dx = 0 : (16)

3\non-smooth" here means that the solution space is L2(
) rather than some Sobolev space.
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After discretization (see section IV), uk+1 can be computed as the solution of a linear

system of equations which, however, has to be updated at every iteration step. For this

reason we call this linearization technique adaptive.

Substitution of (15) into (16) shows that the method of Geman and Reynolds reduces

in the convex case just to the Ka�canov method (11). However, the conditions for global

convergence, as stated in lemma III.1, are slightly weaker than those stated in [13]. In par-

ticular, global convergence of (11) holds true for functions �(t) which are (not necessarily

strictly) monotonously decreasing and (merely) continuous. This, for example, includes

the function �(t) depicted in Figure 1. The constant part of this function up to some

value t = c� ensures homogeneous smoothing within image regions fx 2 
 : jru(x)j � tg,

which is only approximately the case for strictly monotonously decreasing functions as

discussed in [13].

C. Non-adaptive linearization using auxiliary variables

We turn now to a method proposed by Geman and Yang under the notion half quadratic

regularization [12]. Cohen [14] has extended this approach to a broad class of two-step

algorithms for computer vision problems. In this section, we apply this method to the

speci�c class of minimization problems as denoted by (1).

We introduce auxiliary variables w by replacing (1) with the functional:

JNA(v; w) =
1

2

Z



(v � g)2 + �jrv � wj2 +  (w) dx : (17)

In appendix B we show that for �(t) satisfying (2)-(4), we can �nd functions  (t) for which

JNA is convex in w, and

J(v) = inf
w
JNA(v; w) : (18)

Analogously to the method described in the last section, minimizing the original functional

J(v) in (1) can be achieved through the two-step iteration:

wk = argmin
w
JNA(u

k; w)

uk+1 = argmin
u
JNA(u; w

k)
(19)

The conditions for global convergence of this two-step minimization are given in the fol-

lowing lemma:
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Lemma III.2: Assume (9)-(10) and (2)-(4) to hold. If the function �(t) is bounded,

continuous and monotonously decreasing for t � 0, then there exists an � > 0, for which

the iterates uk from (19) converge to the unique solution u of (5), for any u0 2 H. The

auxiliary variables are computed by

wk =

�
1�

1

�
�(jrukj)

�
ruk : (20)

For a proof, see appendix B. Variational calculus shows that the second step in (19) reads:Z



(uk+1 � g)v + �(ruk+1 � wk) � rv dx = 0 8v (21)

After discretization (see section IV), uk+1 can be computed as solution of a linear system

of equations. In contrast to the last section, however, this linear system does not change

during the iteration. Hence, computational steps related to the acceleration of convergence

(preconditioning) can be carried out in advance and o�{line. For this reason we call this

linearization technique non-adaptive.

Again, this method can be formulated as a special case of the general scheme (8).

Substituting (20) in (21), we obtain:Z



uk+1v + �ruk+1 � rv dx =

Z



gv � �(jrukj)ruk � rv + �ruk � rv dx (22)

De�ning the operator

B2(u; v) :=

Z



uv + �ru � rv dx ; (23)

the two-step minimization (19) thus reads

B2(u
k+1; v) = B2(u

k; v)� L(uk; v); 8v 2 H ; (24)

which is a special case of the general scheme (8) for B = B2 and !k = 1. Comparing the

de�nitions (10) and (23) reveals4:

B2(u; v) � B1(0; u; v) :

This clearly shows how the updating of the system of equations at every iteration step as

described above drops out from this method.
4\�" means that the constant �(0) becomes �.
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IV. Discretization

In this section, we apply the Finite Element Method (FEM) for the purpose of discretiz-

ing the general iterative scheme (8). After a sketch of the basic idea underlying FEM, we

explicitly describe the case of 2D gray-value images to facilitate a parallel implementa-

tion of the instances (12), (24), or others which might be derived by the reader from (1).

Algorithms to solve the resulting systems of linear equations at each iteration step is the

objective of the subsequent section.

A. The Finite Element Method

For the discretization of variational problems, FEM is the natural choice. FEM can be

applied in a mechanistic way, boundary conditions are incorporated automatically, and the

resulting discrete formulation is consistent in the sense that, under certain conditions [7],

discrete solutions uh to (5), for example, converge to the continuous solutions u for vanish-

ing mesh width. In this sense, a discrete formulation of a variational problem attempts to

approximate favorable properties of the underlying continuous problem formulation, like

rotational invariance of smoothness terms, for example. For a thorough introduction to

FEM we refer to, e.g., [24].

An alternative and equally valid way to discretize our problem is i) to apply Finite

Di�erences to the Euler{Lagrange equation which corresponds to the variational equation

(5), and ii) to take care of the natural boundary conditions at the boundary @
 of the

underlying domain 
. Note that the latter is not diÆcult for well{shaped domains 
 like

rectangular image domains, say, but may become quite cumbersome for irregularly shaped

domains 
 which, for example, an user has speci�ed interactively in some medical image

analysis application. By contrast, the FEM relieves one of such particularities, thus it

should be preferred over Finite Di�erences.

The basic idea of the FEM is the restriction of optimization problems to �nite-dimensional

subspaces. Let f�1; :::; �ng denote basis functions of a �nite-dimensional subspaceHh � H.

Then, the restriction of (5) to Hh reads:

L(uh; �i) = 0 ; 8i = 1; :::; n ; (25)
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with the unique minimizer uh 2 spanf�1; :::; �ng. If we de�ne the isomorphism

I : Rn !Hh; u! uh =
X
j

uj�j ; (26)

and the mappings

Li(u) := L(I(u); �i) ; u = (u1; :::un)
T ; (27)

then the solution of (25) is equivalent to the solution of the non-linear system:

L(u) = 0 ; L = (L1; :::;Ln)
T : (28)

As mentioned above, we know from FEM theory that the solutions uh converge to the

solution u of (5), if the formal discretization parameter h goes to zero ([7], [24]).

As a result, we obtain from (8) the discrete iteration scheme:

Bkuk+1 = Bkuk � !kL(u
k) (29)

The matrices are computed as

Bk
i;j = B(I(uk);�i; �j) : (30)

Since the operators B(uk; �; �) are bilinear, symmetric and H-elliptic, the matrices Bk are

also bilinear, symmetric and positivBk
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Fig. 5. Left: Triangulation of a rectangular image domain 
 with mesh width 1. The nodes correspond to

pixel positions. Right: An interior node uC with adjacent triangles di and the corresponding �-values

(for piecewise linear basis functions �(k) = �(jruj) = const: at each triangle dk).

is uniquely de�ned by the following conditions:

�i;j(x) is linear within each triangle dk ;

�i;j(x) = 1 at node Pi;j ;

�i;j(x) = 0 at every node Pk;l 6= Pi;j :

Discrete gray-value images u;v; g, etc. are represented as elements of the subspace Hh by

simply interpolating the values of corresponding nodal variables ui;j in a piecewise linear

fashion:

I : Rn�m !Hh ; u!
X
i;j

ui;j�i;j ;

and similarly for v; g. From (26) and (27) we thus obtain:

Li;j(u) =
X
k;l

(uk;l � gk;l)

Z



�k;l�i;j dx+
X
k;l

uk;l

Z



�(jruhj)r�k;l � r�i;j dx (31)

These integrals vanish for all pairs of nodes (i; j) and (k; l) for which the intersection of

the support of the corresponding basis functions �ij and �kl is empty. The remaining

integrals can be computed analytically to obtain a sparse system of non-linear equations

in terms of the nodal variables of the solution u. For additional details and applications

to di�erent variational problems we refer to [25].

The terms of (31) are weighted sums, the coeÆcients of which can be conveniently de-

picted as stencils. Figure 6 shows the linear and non-linear stencils computed for interior

mesh points. The necessary modi�cations of these stencils at boundary points are auto-

matically obtained by taking into consideration the correct domain of integration in (31).
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We use these stencils to rewrite the non-linear equation (31) in the more suggestive form:

L(u) =
1

12
D2D � (u� g) +

1

2
R2D � u : (32)

2D
D  =

+6

1

1

11

1

1

2D
R   = 

−ρ(5)−ρ(6)

ρ(1)+ρ(2)+ρ(4)+ρ(5)
+2(ρ(3)+ρ(6))

−ρ(3)−ρ(4) −ρ(1)−ρ(6)

−ρ(2)−ρ(3)

Fig. 6. Stencils for interior nodes resulting from FEM discretization. Left: The stencil for the linear

data-�tting term. Right: The stencil for the non-linear smoothing term.

V. The Inexact Conjugate Gradient Method and Preconditioning

Next we briey describe some concepts from numerical mathematics which are basic to

the solution of the discrete approaches discussed above.

A. The Conjugate Gradient (CG) Method

Discretization of the approaches described in Section III using the FEM leads to the

problem of solving (sequences of) numerically sparse systems of linear equations:

Ax = b : (33)

Due to the problem size (A is a n�n matrix, n being the number of pixel positions) direct

methods (such as Gauss elimination or LU decomposition) are not feasible, since i) they

produce �ll-in and ii) the computational cost as well as the demand for memory become

prohibitive. Consequently, we have to focus on iterative methods that preserve the sparse

problem structure.

If A in (33) is symmetric and positive de�nite, the well-known CG (conjugate gradient)

method (along with preconditioning; see next section) is a good choice in general. Alter-
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natives are discussed in sections V-C and VII.

De�ning the residuals

rk = Axk � b ;

the CG method reads [26]:

�k =
(rk)T rk

(rk�1)T rk�1
(�0 := 0)

pk = rk + �kp
k�1

�k =
(rk)T rk

(pk)TApk

xk+1 = xk + �kp
k

rk+1 = rk + �kAp
k

At every iteration step one only needs one matrix-vector multiplication, two scalar vector

multiplications and three vector updates. For details on convergence we refer to, e.g., [27],

[28].

The CG method along with preconditioning (see next section) works nearly optimal for

the case of 2D images. Results from parallel implementations are reported in the next

section. We encountered numerical instabilities, however, in the case of large 3D medical

images. The reason is the huge number of variables resulting in a bad condition number,

although preconditioning was applied.

At this point it is useful to point out that the CG method is a special case of Krylov

subspace methods which have been developed during the last 30 years ([26], [29], [30], [31]).

A more general Krylov subspace method that helped us to avoid numerical problems in

the above mentioned case of large 3D images, is the GMRES method [29]. However, the

investigation of the application of this method to the problem class considered here is

beyond the scope of this paper.

B. Inexact Conjugate Gradient Method

Solving large linear systems of equations is the primary computational task in solving

non-linear equations by the methods described above. To minimize the e�ort for solving

these equations, we adopt the concept of the Inexact Newton Method [32].
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The computational cost for solving linear equations with the CG method depends

strongly on an error bound as stopping criterion. In general, the CG method is controlled

by the threshold jjr0jj2 � rtol+ atol, where r0 = Ax0 � b is the initial linear residual, rtol

controls its relative reduction, and atol controls its absolute reduction. In our investiga-

tions, the absolute tolerances are not relevant, i.e. we set atol = 0:0. \Inexact" refers to

choosing a fairly large value for the parameter rtol, 0:1 say.

As a consequence, the inner loop in (29) of the two{step minimization approaches dis-

cussed in Section III stops after 2{3 iteration steps of the CG method, hence is very fast.

Surprisingly, it turned out through our experiments that convergence of the overall itera-

tion, measured using the non{linear residuals L(uk) (32) of the discretized equation (5),

still holds true for rtol � 0:1. We have no proof of this fact so far, but presume that for

each of the approaches (maybe under additional assumptions) there is some upper bound

rtol � rtolmax ensuring convergence.

C. Preconditioning

To improve the condition number and, in turn, convergence speed, preconditioning has

to be applied. To this end, (33) is replaced by:

(L�1 �A �R�1) �R x = L�1 b : (34)

The matrices R and L are called preconditioners. Special cases are the left preconditioning

(R = I) and the right preconditioning (L = I). If L �R � A, one can expect a reduction

of the condition number. To avoid loss of sparsity, the matrix L�1AR�1 should not

be computed. Rather, the preconditioners L and R are chosen such that the equations

Ru = w and Lu = w can be easily solved (i.e. as triangular matrices). Thus, in every

iteration step of the CG method one or two \easy" linear equations have to be solved.

Classical preconditioners are obtained through either an additive matrix splitting

A = L+D+U (Jacobi or S(S)OR-preconditioning) or a multiplicative matrix splitting

A = L �D �U (ILU or ICC factorizations) [33], [34]. The approach of Domain Decom-

position is an alternative way of preconditioning (Block-Jacobi or Block-Gauss-Seidel, for

example), which is more suited for parallel implementations, however, as demonstrated

below.
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VI. Experimental results

In this section, we �rst sketch details of our parallel implementation. Next, we sum-

marize our experimental results through mainly focussing on two aspects: EÆciency of

the various iterative schemes discussed so far in terms of computation time, and speed-up

caused by using multiple processing units.

A. Parallel implementation

For the implementation of the approaches discussed in Section III, discretized as de-

scribed in Section IV, we use the software package PETSc (Portable Extensible Toolkit

for Scienti�c Computing; [35], [36]) which is based on the Message Passing Standard (MPI;

[37]). PETSc provides special methods and data types for solving equations arising from

PDE's in a parallel fashion. PETSc supports in both parallel and sequential working mode

for example:

� data types for vectors and matrices

� distributed arrays and index sets

� Krylov subspace solver for linear equations

� preconditioner

� time-stepper

PETSc also supports implementations on di�erent computer architectures (for example:

SGI PowerChallenge with multiple processing units or SUN workstation cluster) and en-

ables investigations of di�erent numerical methods.

In our implementation, iteration (29) is carried out in three steps:

rk = L(uk) (35)

dk = (Bk)�1rk (36)

uk+1 = uk � !kd
k (37)

Distributed arrays, provided by PETSc, are used for partitioning rectangular image do-

mains into rectangular subdomains. These subdomains are mapped on parallel vector

data types, which are distributed over a range of processing units. Additional overlapping

domains are used to facilitate inter{process communication (see Figure 7) that is necessary

for computing the residuals L(uk) and compiling the matrices Bk.
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Fig. 7. Partitioning and distributing a rectangular array on multiple processing units Pn using distributed

arrays. Overlapping domains are used for inter{process communication.

B. Numerical results and discussion

In this Section we discuss numerical experiments using the linearization approaches

presented in Section III:

� adaptive linearization,

� non{adaptive linearization,

� and, as a further reference, the non{linear Jacobi method.

We recall from Section III that adaptive linearization is equivalent to the Ka�canov method

applied to the convex functional (1), and that the non{linear Jacobi method corresponds

to iterative gradient descent.

The performance of these approaches depends on various aspects, each of which are

discussed next, but to a negligible amount only on the particular image being processed.

Hence it suÆces to summarize and discuss our results for some \general" image like that

depicted in Figure 3. Apart from the experiments with varying image size in Section B.3,

the results reported were computed for images of size 256� 256 pixels.

B.1 Convergence speed

The three iterative schemes listed above di�er considerably in the computational cost

for a single iteration step: Adaptive linearization requires the inversion of a linear system

that has to be re{compiled at each iteration step. The step of solving the linear sys-

tem corresponding to non{adaptive linearization can be optimized once and for all before

the iteration starts. The non{linear Jacobi iteration, �nally, just requires the evaluation

of (32). An interesting question therefore is whether adaptivity is payed o� by faster
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convergence.

Figure 8 shows how the implemented numerical schemes reduce the initial non-linear

residual r(t0) = jjL(u0)jj2 as a function of the computation time. It can be seen that

adaptive linearization performs best, followed by the non-linear Jacobi method. The

non-adaptive linearization performs worst, because the smaller number of iteration steps

required cannot compensate for the additional computation cost (w.r.t. non-linear Jacobi)

caused by solving the linear system at each iteration step.
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Fig. 8. Decrease of the non-linear residuals as a function of computation time. Computed on a SGI

PowerChallenge with 16 processing units (c� = 1:0; �h = 4:0, CG method with rtol = 0:1 and

Block-Jacobi preconditioning).

B.2 Inuence of using an inexact linear solver

Figure 9 shows the inuence of the accuracy parameter rtol of the CG method on

convergence. The computational cost decreases considerably for increasing rtol, and our

experiments have shown that monotone convergence is preserved for rtol � 0:1 This fact

has already been discussed in Section V-B.

B.3 Inuence of image size and parameters controlling the non{linear regularizer

The convergence rates of the numerical schemes also depend on the size of the sample

images in our experiments as well as on the parameters c� and �h. As expected, there is a

typical linear relation between image size and computational cost depicted in Figure 10.
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Fig. 9. Convergence of the adaptive (left) and non-adaptive linearization (right) for various accuracies rtol

of the linear solver. Computed on a SGI PowerChallenge with 16 processing units (c� = 1:0; �h = 4:0,

CG method with Block-Jacobi preconditioning).

Concerning the parameters controlling regularization, the computational cost increase

for decreasing c� and increasing �h, respectively (see Figures 11 and 12). Both relations are

reasonable: Larger �h means more smoothing whereas smaller c� results in higher sensivity

against image transitions, i.e. the process becomes \more non{linear". Clearly, for a large

enough value of c� the non-linear regularizer ignores image transitions completely, hence

becomes linear in fact and the iteration terminates after one step.
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Fig. 10. Computational cost as a function of image size. Computed on a SGI PowerChallenge with

one processing unit (adapt. linearization, c� = 1:0; �h = 4:0, CG method with rtol = 0:1 and

Block-Jacobi preconditioning).
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Fig. 11. Computational cost as a function of c�. Computed on a SGI PowerChallenge with 16 processing

units (adapt. linearization, �h = 4:0, CG method with rtol = 0:1 and Block-Jacobi preconditioning).

B.4 Inexact linear solver vs. preconditioning

The well{known e�ect of classical preconditioning of the CG method is depicted in

Figure 13. If we solve the linear equations \exactly", i.e rtol � 10�6, the use of ILU or

Block-Jacobi preconditioning performs best (Fig. 13, left). However, if we solve the linear

equations inexactly, i.e. rtol � 10�1, the strong e�ect of using an adequate preconditioner

more or less disappears (Fig. 13, right). Note that using no preconditioner at all performs

nearly as good in this case as using ILU preconditioning. We further remark that, in

contrast to the more complicated ILU method, parallelization of the simple Block-Jacobi

method is straightforward and performs best in this case (i.e. using an inexact solver),

too.

B.5 Speed{up by using multiple processing units

Figure 14 demonstrates a signi�cant speed-up as a function of the number of processing

units. This result indicates (i) a nearly optimal implementation of the iterative linear

solvers involved and (ii), as a consequence, that the main remaining problem concerns the

convergence rate of the outer iteration loop (29).
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Fig. 12. Computational cost as a function of �h. Computed on a SGI PowerChallenge with 16 processing

units (adapt. linearization, c� = 1:0, CG method with rtol = 0:1 and Block-Jacobi preconditioning).

VII. Further work

Further work may be conducted in several directions. One concerns the classical precon-

ditioner used to solve the linear systems. As Figure 13 shows, a considerable improvement

has been achieved by the (currently used) Block-Jacobi preconditioner. This method can

be understood as a primitive form of a domain decomposition method. We are currently

working on further improvements in this direction.

A second direction concerns a better theoretical foundation of the inexact linearization

methods, since a proof of global convergence in these cases is lacking.

Finally, better approximations of Newton-like methods under the condition of global

convergence should be sought for because these improved approximations can be expected

to reduce further the number of iteration steps required in the outer loop of two{step

minimization approaches.
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Appendix A

Proof of lemma III.1

We show that the functional (1) ful�lls the conditions for convergence of the Ka�canov

method (theorem 25.L in [21]). These conditions are:

a) B1(u; �; �) is bilinear, symmetric, and H-elliptic for all u 2 H.

b) L(u; v) = B1(u; u; v)

c) J(v)� J(u) � 1
2
[B1(u; v; v)� B1(u; u; u)]

Item a) holds true because �(t) is positive and bounded. Item b) is obviously true. To

show that item c) holds true, we prove:

1

2
[B1(u; v; v)�B1(u; u; u)]� (J(v)� J(u))]

= �(jrvj)(jruj2 � jrvj2)� (�(jrvj)� �(jruj)) � 0 ;
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for all u; v. We compute the last term of the right hand side:

�(t)� �(s) =

1Z
0

@

@p
�(s+ p(t� s)) dp

=

1Z
0

�0(s+ p(t� s))(t� s) dp

=

1Z
0

2�(js+ p(t� s)j)(s+ p(t� s))(t� s) dp

By virtue of (4), �(t) is monotonously increasing for t > 0 and we get �(t)� �(s) Q 0, if

t� s Q 0. Furthermore, 0 < �(t) is monotonously decreasing. Hence we obtain:

�(t)� �(s) �

1Z
0

2�(s)(s(t� s) + p(t� s)2) dp = �(s)(t2 � s2)

This completes the proof of convergence of the Ka�canov method. �

Appendix B

To show the existence of the function  in (17), we need the concept of conjugate

functions from convex analysis ([14], [38]):
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De�nition VII.1: If � is a function from an euclidian space E to R, the conjugate func-

tion of � is given by

��(u) = sup
v2E
f(u; v)� �(v)g (38)

Note that �� is always convex. Furthermore, we have

��� = (��)� = � (39)

if and only if � is convex.

Existence of  :

We put  (w) =: ~�(jwj) and V = L2(
)� L2(
). Referring to (17), we compute:

inf
w

1

2

�Z



�jrv � wj2 + ~�(jwj) dx

�
=

�

2
jjrvjj2V + inf

w
f��(rv; w)V + �H(w)g

with H(w) :=
1

2

Z



jwj2 +
~�(jwj)

�
dx

=
�

2
jjrvjj2V � � sup

w

f(rv; w)V �H(w)g

=
�

2
jjrvjj2V � �H�(rv)

To ensure J(v) = inf
w
JNA(v; w), we must have

H�(w�) =
1

2

Z



jw�j2 �
�(jw�j)

�
dx (40)

This condition can only be satis�ed if H� is convex which, however, is true by virtue of

(2) and � > c0. Thus, we de�ne H(w) to be H��(w) which, in turn, de�nes ~� and  :

�
1

2

Z



jw�j2 �
1

�
�(jw�j) dx

��
(w) = H��(w) =: H(w) =

1

2

Z



jwj2 +
~�(jwj)

�
dx

As a consequence, JNA(v; w) is convex w.r.t w. �
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Computation of auxiliary variables wk

We compute wk by minimizing JNA(u
k; w) with respect to w. Variational calculus yields

0 =

Z



�(ruk � wk) � z +
~�0(jwkj)

2jwkj
wk � z dx

=

Z



  
�� +

~�0(jwkj)

2jwkj

!
wk + �ruk

!
� z dx ; 8z

Hence,  
1�

~�0(jwkj)

2�jwkj

!
wk = ruk :

Thus, wk is just a multiple of ruk. In order to compute jwkj, we put h(s) = 1
2
(s2 +

~�(s)
�
)

and, correspondingly, h�(t) = 1
2
(t2 � �(t)

�
). Since dh(s)

ds
is continuous and strictly monotone,

we obtain:

h�(t) = sup
s

(st� h(s)) ) t =
dh(s)

ds
) s =

�
dh(s)

ds

��1
(t) ;

and from [21]

�
dh(s)

ds

��1
(r) =

dh�(t)

dt
(r)

Thus, we have

s =
d

dt

�
1

2
t2 �

1

2�
�(t)

�
= t�

1

2�
�0(t)

and, after substitution

jwkj = jrukj �
1

2�
�0(jrukj) :

As a result, we can compute wk:

wk = jwkj
ruk

jrukj
= ruk �

1

�
�(jrukj)ruk :

�
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Convergence of the iteration

We show convergence of the iteration (22) in three steps.

First, we show the sequence fJ(uk)gk�1 converges. From (18) and (19) we have

J(uk+1) = JNA(u
k+1; wk) � JNA(u

k+1; wk�1) � JNA(u
k; wk�1) = J(uk) :

Since J(uk) is bounded below and strictly decreasing, the sequence fJ(uk)gk�1 converges

and we obtain:

lim
k!1

J(uk)� J(uk+1) = 0 :

Next, we show that the sequence fukgk�1 converges. Using (2)-(4) and utilizing the fact

that the operator J 0 is strongly monotone [7], we obtain the inequality

J(uk)� J(uk+1) � L(uk+1; uk � uk+1) +
�

2
jjuk � uk+1jj2H1 ;

with some constant � > 0. Now, we have to show that L(uk+1; uk � uk+1) � 0. To this

end, we use (21) and de�ne:Z



(uk+1 � g)z + �(ruk+1 � wk) � rz dx| {z }
:=LNA(uk+1;wk;z)

= 0; 8z

With z := uk � uk+1, we obtain:

L(uk+1; z) = L(uk+1; z)� LNA(u
k+1; wk; z)| {z }
=0

=

Z



�jrzj2 � (�(jrukj)ruk � �(jruk+1j)ruk+1) � rzdx

Due to (3) and (4), we can �nd always some constant c3 > 0 (cf. [7]) such that

j [�(jruj)ru� �(jrvj)rv] � (ru�rv) j � c3jru�rvj
2

Hence, L(uk+1; z) = L(uk+1; uk � uk+1) is positive for � � maxfc0; c3g and the sequence

fukgk�1 converges.
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Finally, we show that fukgk�1 converges to the unique minimizer u. With ~u = lim
k!1

uk, we

obtain from (21):

0 = lim
k!1

Z



�
(uk+1 � g)v + �(ruk+1 �ruk +

1

�
�(jrukj)ruk) � rv

�
dx

=

Z



(~u� g)v + �(jr~uj)r~u � rv dx

Since the solution of eqn. (5) is unique, the last equation proves ~u = u. �
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