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Abstract—Automatic detection of text blocks is an important
step before applying OCR or word-spotting techniques to docu-
ment images. Our approach focusses on handwritten (historical)
documents and uses the Gabor Transformation to facilitate
this task. Apart from the main text, which often consists of
rectangular shaped text blocks, marginalia are of special interest
here. These areas are generally unconstrained regarding size,
dimensions or orientation. Our system detects text blocks of at
least three lines, representing a moderately homogeneous region
regarding orientation and distances of text lines. Experiments on
40 documents, written in different european and asian writing
systems, show good results, depending on the complexity of the
layout.
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I. INTRODUCTION

Manuscripts stored in European libraries have been studied

for many decades, but vast amounts of manuscripts are still not

yet completely categorized and remain nearly unknown. Some-

times bindings of books get destroyed, causing loose pages to

trail away. One way to recover connections between physically

separated manuscript parts is to analyse and compare their

respective layouts, i.e. the outer dimensions of individual pages

or text blocks, the number of text blocks contained on each

page or the number of lines within each text block. Comparing

these properties is one way to get first assumptions about the

origin of manuscripts. Using image processing methods on

digital images of manuscript pages, these measurements can

be computed automatically and efficiently for large data sets.

Another target that will be addressed by our approach is

skew correction of individual text blocks, for examples of

glosses commenting the main text. The orientation of text lines

within these glosses often varies considerably, particularly in

Arabic manuscripts, Figure 1 shows a typical example. After

estimating skew and line distance, skew correction can be done

to allow further processing steps like word-spotting or OCR;

this way these methods do not need to be scale or rotation

invariant.

II. RELATED WORK

Most work done in the field of layout analysis aims at

supporting the challenging tasks of word spotting and OCR.

In 1985 Postl published an early paper about automatic layout

analysis using Fourier analysis and simulated skew scans to

Fig. 1. Example of an Arabic manuscript with diverse text blocks (Manuscript
Ms.or.oct.261, p13v, Staatsbibliothek Berlin [1])

detect the orientation of skewed lines in scanned documents

[2]. As the described approach focuses on printed documents,

it does not consider the specific problems that emerge when

dealing with handwritten text.

A similar approach was pursued by Jain and Bhattacharjee

in 1992 using Gabor Filters [3]. They describe the problem of

line detection in scanned images as a texture segmentation

task. As in [2], the algorithm seems to have been applied

only to printed documents, thus ignoring additional challenges

of handwritten documents like irregular line orientations and

distances.

Grouping handwritten text lines with similar orientation into

zones and subsequent text line extraction is performed by

Ouwayed and Belaid [4] using the Wigner-Ville Distribution

(WVD) and connected component analysis. The WVD works

similar to pixel projections for locating lines and spaces

between lines. They evaluated their algorithm on 50 documents

and achieved an accuracy of 97%. Their algorithms work
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by first segmenting background from foreground, partitioning

the input image, detecting multi-skewed zones and finally

extracting individual text lines by following baselines.

In [5] Bukhari et al. propose to facilitate layout analysis

of handwritten script using machine learning techniques. The

goal of their work is to identify the main text block in a page

containing complex layout and text blocks with different line

orientations. In contrast to our approach they are not interested

in distinguishing between individual text blocks apart from

the main text area. The same target is addressed by Asi [6]

with improved results. In a first step, a Gabor filter is used to

coarsely segment the main text area. Then an energy function

is defined based on the properties of the text components. A

refined segmentation is then conducted by using graph cuts.

Garz et al. also tackle layout analysis in historic manuscripts

[7]. The technique they describe is based on scale invariant

feature transform (SIFT) and aims at identifying individual

regions that are characteristic for the handwritings in question,

like initials, headlines and text areas.

An approach utilizing contour detection to segment hand-

written documents into individual lines is proposed by Bulacu

et al. in [8]. They focus on the archive of the cabinet of the

Dutch Queen (KdK) which contains a large set of handwritten

historical documents. Since the project deals mainly with

text written in Latin cursive script, it ignores characteristic

challenges that arise when dealing with manuscripts using

“unconventional” complex layout styles.

Our approach, presented in the subsequent sections, is new

in several respects. First, it allows to delineate text blocks of

arbitrary shape and orientation. Second, segmentation is based

on both orientation and line distance discontinuities, resulting

in block boundaries similar to those perceived by humans.

III. USING THE GABOR TRANSFORM FOR LAYOUT

ANALYSIS

A. Overview

The main characteristic property of a text block is the

approximately constant periodicity of its line structure, both

regarding orientation and line distance. Hence a Fourier Trans-

form (FT) is in principle suited to detect such constancies,

showing peak responses for pronounced spatial frequencies.

Since we are interested in the local boundaries of text blocks,

however, we apply a local frequency analysis in a sliding

window approach. For each window position, the greyvalues

are weighted by a Gaussian centered over the window and

then subjected to a FT - this is known as a Gabor Transform

(GT). The GT is an optimal short-time FT in the sense that it

provides the maximal simultaneous resolution of a restricted

image region and frequency band.

In order to cover all frequencies which may be relevant for

the layout analysis, the GT is performed for several window

sizes with Gaussians of varying width. In our approach, we

accomplish this by applying a GT with fixed window size to a

resolution pyramid, this way reducing the computational load.

For each window position, the results of the GT at all resolu-

tion levels are analyzed for a peak magnitude corresponding

to a periodic line structure. The criteria for accepting a local

maximum are chosen to exclude peaks at high frequencies

which may have been caused by the character structure within

a text line.

The final step is image segmentation based on the local

maximum obtained for each location. Discontinuities of both,

frequency amplitude and orientation, are independent indica-

tors of text block boundaries. After combining the gradients

of these indicators in a single gradient image, segmentation is

performed using the Watershed segmentation algorithm.

In the following subsections, we present details for these

processing steps and motivate some of the parameter choices.

B. Parametrizing the Gabor Transform and the Resolution

Pyramid

The range of frequencies which can possibly correspond to a

line structure in a manuscript is quite large. As an upper limit,

we assume that the distance between two lines of text should

be at least 10 pixels, corresponding to a character height of

somewhat less. For a lower limit, we assume that the image

contains at least 8 lines. The width of the GT in terms of the

standard deviation σ of the Gaussian has to be a compromise

between the reliability of the frequency analysis and the spatial

resolution. In our experiments, results were best for σ = twice

the smallest line distance, hence we have chosen σ = 20. For

ease of processing, windows are rectangular and limited to the

range -3σ . . . +3σ in both spatial dimensions, i.e. the window

size is 121x121. The responses of a GT are quite selective in

the frequency domain. Out of the 60 frequencies of a FT of

this window size, we concentrate only on the most reliable

wave numbers 8-12. Smaller wave numbers are increasingly

influenced by noise or the bell shape of the Gaussian. Larger

wave numbers correspond to periods supported by less and less

pixels. In order to cover all frequencies which can be expected

in a manuscript, the frequency analysis has to be repeated for

window sizes increasing by a factor of 1.5, resulting in the

useful frequency ranges 8-12, 12-18, 18-27 etc. As pointed out

above, instead of increasing the window size, a more efficient

method is to repeatedly reduce the image resolution by a factor

of 1.5, creating a resolution pyramid. Hence for each window

at each resolution level, the discrete GT is computed with

constant parameters:

Fk,l =

120∑

m=0

120∑

n=0

f [m,n] · e−
(n−60)2+(m−60)2

800 · e−j2π(km+ln)/120

C. Performance for Artificial Data

In this subsection, we investigate and illustrate the per-

formance of the GT for artificial grey value data. Figure 2

shows a GT of an artificial grey value distribution (red graph

on top). Zone A represents a projection of some text lines,

simulated as noisy sinusoid. In order to illustrate the effect

of different window sizes, the Gaussian windows are set to

σ = 2.5π (green curve) and σ = 1.25π (blue curve), where

2π is the wavelength of the sinusoid. These windows are

shifted horizontally across the plot. The heatmaps on the
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Fig. 2. 1D example of a GT applied to an artificial grey value distribution. See text for explanation

M
ag

n
it

u
d
e

(a) Text blocks separated by gap

M
ag

n
it

u
d
e

(b) Touching text blocks

Fig. 3. 1D example of a GT applied to a projection of different line distances
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(b) Irregular line distance

Fig. 4. Deviations from idealised line projection representation lead to
decreasing magnitude.

bottom show local maxima at k=8 for the green window and

at k=4 for the blue. Plots of the distributions of these wave

numbers are shown in between. Zone B represents a blank,

nearly white area. The most interesting part is the transition

from Zone A to Zone B. At the borderline, we see that the

magnitude of the frequency is about half of the magnitude

within the assumed text block. The smaller window reacts

with a steeper declination, so we expect to get a more accurate

result regarding the local extension of text blocks. However,

the smaller window is more prone to overreact on noise

like in Zone C, which could depict a thick line of a frame.

Finally, Zone D represents a dark background often found on

outer areas of document images. Here, the single transition

from Zone B to Zone D causes a noticeable response. It is

therefore useful to remove dark borders of images in advance

by appropriate preprocessing.

Figure 3 illustrates transitions between blocks of different

line distances. The darker blue and green plots represent a

wave number optimal for the left side, the lighter ones are

optimal for the right side. A smoother plot of the response of

the best matching wave numbers is generated for the broader

window (green plots). The blue plots for the smaller window

react faster to changes of frequencies, however, they are more

prone to be influenced by undesired interfering effects.

Figure 4 illustrates several other irregularities which influ-

ence the response of the operator. In real manuscript images,

these may be due to variations of the ink colour or writing

support, changing relations between script height and line

spacings, and other deviations from an ideal block structure.

Figure 5 shows an application of the operator to a section

of a Tamil manuscript, demonstrating the combined effects

of different line distances and a low contrast within the

projection.

D. Determining Relevant Local Maxima

The artificial examples support our decision to discern

between two frequency bands. The “lower band”, comprising
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Fig. 5. Processing of a Tamil Manuscript

wave numbers 4-7, reveals a better spatial resolution, whereas

the “upper band”, consisting of wave numbers 8-12, has the

advantage of more reliable magnitudes.

Unfortunately, the highest response obtained by the GT

operator at a particular location and evaluated over all res-

olution levels does not always correspond to the relevant line

frequency. Often, highest responses arise at frequencies at the

character range level, as shown in Figure 6. In order to safe-

guard against this effect, we start the search for a maximum at

the lowest resolution. For each maximum determined at one

resolution level, we check the response for the same frequency

at the next higher resolution level. Hence at one level, the

maximum is located in the upper band, at the next level, this

corresponds to a frequency in the lower band. We accept a

maximum if the response in the lower band is more than 75%

of the response in the upper band, thus making use of the

advantages of both bands. If a maximum has been accepted,

we disregard all further maxima at higher resolutions, if

they are lower than twice of the actual one. This way, we

prevent being mislead by meaningless maxima. Furthermore,

a threshold is determined which discerns between regions

containing text and spacings (shown in Figure 1 as shaded

regions). This threshold can be adjusted by user interaction.

We disregard the threshold in the following steps.

The whole process is illustrated for a challenging exemplar

of an Arabic manuscript shown in Figure 1. Figure 7 shows

the magnitudes of the resolution pyramid. All images are

resampled to the size of the leftmost one with the highest

resolution. The brightness encodes the maximum found for

each pixel location.

Fig. 6. Strokes of characters with parallel orientation might lead to high
responses of the corresponding frequency

E. Determining Text Block Boundaries

The maximum determined for each pixel location indicates

a specific frequency and orientation for the corresponding

text block. In order to determine regions of homogeneous

frequency and orientation, a gradient image is compiled by

combining the gradient information of the frequency and the

components of the normalized orientation vector. To allow

upside-down orientation matches, the orientation angle is first

doubled. The magnitudes of the frequency gradient image and

of the gradient images of the components of the (recoded)

orientation vector are then summed after a normalization.

Figure 8a shows the gradient image representing orientation

discontinuities, Figure 8b shows the gradient of the frequency

magnitudes, representing discontinuities of line distances, and

Figure 8c shows the image of the combined gradients. This

is then used as input for a watershed segmentation, typically

leading to many small regions. In a subsequent step, these

regions are merged until a threshold is reached, which can be

set by the user (1/100 of the size of the text area determined

in the first step is a good starting point). The resulting 8

regions are shown in Figure 8d, numerical values for region

properties are presented in Table I. Due to the inhomogeneity

within text Region 1 featuring interlinear glosses, Region 8
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Fig. 7. Resolution pyramid: Magnitudes of frequencies at specified resolution.
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Fig. 8. Determining homogeneous text block areas.

was identified as individual region. If a priori knowledge is

available, inclusions within the main text blocks showing a

higher frequency can be filtered out easily. In contrast, the

text blocks of Region 6, written in similar orientation and line

spacing, are merged because of too little space between them.

TABLE I
PROPERTIES OF REGIONS FROM FIGURE 8D

COG (x,y)

Region 1 (545,1220) 45623 89.93 77.777 90.39

Region 2 (645,300) 10421 44.95 221.5 93.25

Region 3 (1050,620) 4412 45.78 85.6 29.58

Region 4 (775,2150) 7108 35.35 60.97 164.12

Region 5 (1140,1965) 3247 39.55 69.22 33.62

Region 6 (1075,1380) 10920 40.67 112.92 114.88

Region 7 (115,1070) 953 36.65 192.38 98.95

Region 8 (655,1045) 2226 49.53 133.38 90.43

Area 
[Pixel]

Line distance 
mean [Pixel]

Line 
distance 
variance

Line 
orientation 

mean [0-180]

IV. EXPERIMENTAL RESULTS

In further experiments, we aim at detecting text blocks of

at least three consecutive lines of text, written in about the

same distance and orientation. Text areas consisting of only

two lines are ignored, hence it is not considered as an error if

these areas are not detected.

A. Test Set

To test our method, 40 different manuscript images were

selected, the links to all images can be found here [9]. They

mainly contain non-curved text blocks, so that it is possible to

measure an average orientation of the blocks. The 40 images

are subclassified into 5 different test sets:

• In the Berlin set, 15 images stem from seven different

Arabic manuscripts [1]. All of them consist of one main

text block and between 3 and 18 paratext blocks (on

average 7), and highly different orientations.

• The Leipzig set has similar properties and comprises

another 10 images from two different Arabic manuscripts

[10]. They embody between 2 and 18 paratext blocks, 9

on average, next to the main text block.

• We also tested 10 manuscript images from four different

(Greek) manuscripts [11], which represent, with one ex-

ception, only horizontally written text. Five manuscripts

consist of one main text block and up to four paratext

blocks, another five contain up to four text blocks without

a prominent main text block.

• Four (Borno) Qur’an manuscripts from Nigeria were

used, consisting of one main text each in Arabic and
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between 10 and 17 paratext blocks, written in Arabic and

old Kanembu. The paratext blocks are written mostly in

horizontal or vertical orientation.

• One poster (Fol547b) consisting of five different hori-

zontally written text blocks in four different languages is

taken from [1].

B. Ground Truth

In order to provide a pixel-accurate ground truth, each image

was binarised to separate the text from the background. Then,

text areas consisting of at least three consecutive lines were

identified. After manually measuring the average orientation

and line distance of each block, a dilation operation was

applied to all pixels of a single text block. A radius half of

the average line distance was choosen to create closed regions

representing the extent of each block.

C. Detection Rate without Segmentation

To prove the general applicability of our approach, a

pixelwise comparison of the measured orientation and line

distance of all pixels representing ground-truth text blocks

with the values determined for the window centered at the

same position was conducted. These values can also be used

to provide interactive information. If, for example, a user

inspects a manuscript image and moves the cursor over some

text blocks, orientation and line-distance at the position of the

cursor can be displayed. Table II shows the amount of pixels

matching the ground truth values within the given limits for

each set of documents. If the documents comprise a main text

block, a second result is given for all comparisons excluding

pixels belonging to the main text area, which is a much more

challenging task. The main text areas consisting of about 20

lines are normally written with considerable more uniformity

regarding text height, orientation and line distance; in contrast,

small paratext areas of only three lines cannot provide an

equivalently strong signal due to their size, even if they were

written very accurately. Very often, however, it is not even

possible to provide a reliable ground truth with a stricter

tolerance level than ± 5-10◦ regarding orientation or ± 5-

10% regarding line distance, due to their sloppy writing style.

TABLE II
PIXEL-WISE COMPARISON OF GROUND TRUTH TEXT REGIONS

WITH DETERMINED VALUES AT THE SAME POSITION

Difference of orientation up to Difference of line distance up to

5° 10° 15° 20° 30° 5% 10% 20% 30%

83,1% 92,7% 95,4% 96,4% 97,5% 72,2% 85,2% 90,5% 92,1%

without main text area 59,0% 82,0% 89,4% 92,0% 94,7% 41,4% 65,6% 79,4% 83,6%

79,7% 92,0% 96,2% 97,2% 97,7% 75,7% 90,6% 95,2% 95,8%

without main text area 50,1% 80,5% 91,8% 93,9% 95,0% 52,5% 80,7% 89,8% 91,2%

96,6% 98,8% 99,3% 99,5% 99,5% 70,5% 88,6% 94,7% 95,6%

without main area 92,0% 96,6% 98,1% 98,8% 98,8% 50,8% 70,0% 85,2% 88,9%

86,2% 92,1% 93,2% 93,4% 93,5% 47,5% 64,4% 71,9% 72,9%

without main text area 72,2% 83,9% 85,9% 86,3% 86,6% 29,0% 48,3% 61,4% 63,8%

97,0% 98,8% 98,8% 98,8% 98,8% 80,1% 88,2% 93,7% 94,4%

Amount of pixels matching 
the ground truth

Berlin, all text areas

Leipzig, all text areas

Greek, all text areas

Borno, all text areas

Folio547b, all text areas

As Table II reveals, the recognition rates regarding the

determination of the line distance of the Leipzig set are slightly

better than for the Berlin set, as the paratext blocks of the

Leipzig set are more uniformly written.. Regarding orientation,

TABLE III
MATCHING OF GROUND TRUTH TEXT REGIONS

WITH DETERMINED REGIONS

Matching text regions >90% >80% >70% >50%

Berlin Fraction of matched text regions 7/122 30/122 48/122 69/122

Area of all matched text regions 25,21% 64,86% 76,19% 80,78%

Difference of line distance 1,70% 3,48% 7,64% 13,75%

Difference of orientation [°] 1,0 2,8 2,7 9,5

Leipzig Fraction of matched text regions 11/98 33/98 46/98 57/98

Area of all matched text regions 35,26% 67,19% 76,61% 80,93%

Difference of line distance 2,78% 4,92% 3,76% 6,31%

Difference of orientation [°] 2,1 3,6 4,5 6,8

Greek Fraction of matched text regions 4/31 9/31 14/31 18/31

Area of all matched text regions 27,15% 58,33% 79,06% 84,23%

Difference of line distance 0,88% 4,89% 4,49% 3,66%

Difference of orientation [°] 0,1 0,3 0,6 0,7

Borno Fraction of matched text regions 0/58 2/58 9/58 22/58

Area of all matched text regions 0,00% 3,40% 17,18% 39,49%

Difference of line distance - 13,38% 15,06% 5,49%

Difference of orientation [°] - 1,3 2,2 2,6

Folio547b Fraction of matched text regions 1/5 2/5 2/5 2/5

Area of all matched text regions 26,74% 43,48% 43,48% 43,48%

Difference of line distance 0,38% 1,07% - -

Difference of orientation [°] 0,2 0,0 - -

Berlin 1/122 9

Leipzig 2/98 1

Greek 1/31 8

Borno 0/58 0

Folio547b 0/5 1

Regions 
missed

Regions 
misdetected

the Leipzig and Berlin sets provide similar results. The Greek

set predominantly consists of horizontally written text, the

recognition results for orientation are nearly perfect. Regarding

line distance, results are similar for the Berlin and Leipzig

sets. Not surprisingly, the results of the Borno set are worst,

as these documents are heavily degraded and excel in highly

varying contrast, extremely densely written text with very little

interlinear space, and much interlinear text within the main

text areas. Folio547b yields nearly perfect results, as the four

major text blocks are written very cleanly.

D. Recognition of text regions

Table III presents the results of the recognition of text

regions. According to the process described in Section III-E,

regions are formed based on similar values regarding ori-

entation and line distance. In contrast to other approaches,

no assumptions about the characteristics of the documents

or shapes of text blocks were made. The first row of each

set in Table III states the fraction of recognized text blocks

matching the corresponding ground-truth block. The criteria

for a match is an overlap with at least the percentage shown

at the top of the column, which has to be true for matching in

both directions. The second line shows the percentage of text

area pixels of the ground truth overlapping with a matching

region. Here, the influence of the mismatch of small text areas

is less apparent, and the match of the main text areas leads to

a significant improvement.

In the first two rows of each evaluation, matches of text

regions are only determined on the basis of overlapping

areas. Consecutive columns include the results of the previ-

ous column. The following two rows compare the average

values of orientation and line distance between detected and

ground truth regions. The data of these two rows is separately

computed for each column.

The second part of the table addresses text areas of the
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Fig. 9. Top and middle row: Samples of the Berlin, Leipzig, Borno and Greek sets. Automatically detected regions are shown in the top row, the ground
truth is represented below. Bottom row: Automatic detection and ground truth of Folio547b. Different colours represent different text blocks.
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ground truth, which are not covered by any determined area

by at least 25% overlap and are therefore considered missed

regions. Vice versa, detected regions are listed here that are

not supported by at least 25% of any region of the ground

truth and are therefore considered false detections. The reasons

for misdetections of altogether 4 out of 319 blocks can be

explained by insufficient contrast, as in the Greek set, or too

small region size, both causing a signal below the threshold.

Reasons for false detections (19 incidents altogether) are pat-

terns like a watermark with regular structure within the Greek

set or coincidentally occurring regular structures involving

single-line text or stains.

Regarding the values for line distance and orientation, nei-

ther orientation nor line distance could be correctly determined

for three textblocks of the Berlin set, consisting of three or four

lines, due to an overly irregular line structure and some noise.

Apart of these, the agreement is good for all regions which

overlap by more than 70%, and even for areas with smaller

area match. The main reason for the good conformance is the

fact that quite often text blocks with similar line structures and

orientation are placed in close distance and therefore not split

up. This is especially striking in the case of Folio547b, where

only the two text blocks at the left and right could be matched,

while the two in the middle were not separated due to the

conforming line structure, and therefore could not be matched,

leading to a suboptimal recognition rate for this poster. The

same is true for the Greek set, where most segmentation errors

are caused by neighbouring text blocks of similar line distance

and orientation.

The lack of white space areas in the Borno set makes

processing of these documents extremely difficult. When es-

tablishing the ground truth, the separation of text blocks could

in some cases only be identified by a change in the ink type,

in the writing style or by a thin drawn line. The structure of

most of the main text area could be determined for this set,

though many paratext lines have been inserted between the

main text lines. As the main text is written in a very dark ink

and with thicker strokes, the structure of the main text block

predominates the smaller structures, proving the robustness of

the approach against significant noise.

The threshold which separates text from non-text regions,

mentioned in Section III-D, was adjusted for only four of all

forty documents.

Figure 9 presents one typical result for each set.

V. CONCLUSION

In our paper we propose a binarization-free method for

determining the characteristics of text blocks of any shape

written in arbitrary orientations in handwritten documents. In

a further step we show the segmentation of these text blocks,

based only on computed orientation and line distance, without

presuming special properties like the script size or shape of

text blocks. Our approach is based on the Gabor Transform

to identify text regions with roughly homogeneous line ori-

entation and line distance. We have shown that our approach

is robust enough to allow slight variations of orientation and

line distance within individual text blocks. Our system is not

limited to any particular kind of script and can be applied

to arbitrary digital images containing text. Our segmentation

process fails mainly when text blocks with similar orientation

and line distance touch. This could be improved by rotating

questionable regions into a horizontal or vertical orientation,

and then applying methods of the spatial domain, such as

XY-cut. This would greatly improve the result on Folio547b.
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