
Unsupervised Learning of Multi-Object Event
Classes ∗

Somboon Hongeng
Cognitive Systems Group, Dept. of Computer Science
University of Hamburg, D-22527 Hamburg, Germany

hongeng@kogs.informatik.uni-hamburg.de

Abstract

We present a novel approach for automatically inferring models of multi-
object events. Objects are first detected and tracked, their motion is then
segmented into a set of primitive events. These primitive events then form
the nodes in a Markov network that encodes the entire event space. A bottom-
up/top-down search algorithm is developed to detect typical event structures
that are used for classifying an observed multi-object event. We demonstrate
our algorithm on clustering and inferring events in a table-laying scene.

1 Introduction

Current event understanding systems often assume that significant events are known in
advance and model them accordingly [3, 4, 1]. It is, however, very difficult to handcraft
the models of complex events. Also, event patterns may change over time and novel
patterns may arise. To augment the current systems, this paper investigates an unsuper-
vised learning of event classes. We are particularly interested in multi-object events. We
define a primitive event as a consistent motion state of an object (e.g., “moves” from A
to B, “stays” at B). These events can often be inferred directly from motion trajectories.
Associated with a primitive event is a set of intrinsic properties of objects (e.g., color, tex-
ture) and motion properties (e.g., location, orientation, temporal span/start and end times).
More complex events consist of of a set of primitive events with constraints on their prop-
erties (e.g., a sequence of events); we call such events composite events. A multi-object
event is a composite event that involves multiple objects. We aim at learning an “event
class” defined as a collection of multi-object events that have similar constraints. Our
goal is to use the information gained from such learning for classification and for aiding
the tracking systems (e.g., to solve occlusion).

There has been limited work on unsupervised event learning, to our knowledge. Tar-
geting at classifying a single trajectory, Stauffer et al. [7] first quantize object motion de-
scriptions into a codebook of prototypical representations. Joint co-occurrence statistics
among these prototypes are accumulated and then used to create a binary-tree classifica-
tion. One weakness of this approach is the need to discretize complex input spaces. Also,
it does not produce a useful inference for trackers because the temporal information is
not considered. In [5], Galata et al. model interactions between two objects by a variable

∗This research was supported in part by the EU project “Cognitive Vision Systems”, under grant CogVis IST
2000-29375.

memory length Markov model (VLMM). Similar to [7], a set of primitive interactions are
first learned by vector quantization. VLMM is then constructed to encode all sequences
of interactions. VLMM can be used for prediction or for recognizing typical and atypical
activities, but it does not classify events. Also, it does not provide an informative feedback
to the tracking system, as it is a symbolic prediction model.

Our approach is to first detect and track objects, then segment their motion trajecto-
ries into primitive events. A multi-object event is then learned based on a coarse-to-fine
strategy. At the coarse level, our goal is to detect event classes and their approximate
structures. We construct a Markov network (MN), which has the primitive events as its
nodes, to describe the entire event space. The joint probability distributions of locally
connected events in the MN are estimated nonparametrically. An event class is detected
by a bottom-up/top-down search algorithm, where some distinctive local event properties
in the network are propagated to infer a likely global event configuration.

Given a partial observation of some events, our MN may be used to infer the unob-
served events. Inference in a MN, however, relies on a time-consuming message passing
algorithm. We propose a fine-level process, where each event sample is classified into the
event classes learned during the coarse-level process. A supervised learning method can
then be used to construct a more efficient Bayesian model. In this paper, we only report
the results from the coarse-level analysis and point out some limitations of the use of a
MN for prediction and the needs for fine-level tuning.

2 Detecting Primitive Events

A table-laying scene is an interesting domain to validate our learning approach as it shows
a variety of events that can occur (e.g., settings for breakfast, dinner, or a clutter), as
well as various tracking problems such as the reflection of silverware and the occlusions.
Figure 1 shows a typical scene of a dinner-setting, where objects are being tracked.

Figure 1: Tracking objects in a dinner-setting scene.

2.1 Detecting and Tracking Objects

We observe the scene by a static camera from the ceiling to obtain a near orthographic
view of the table top. We assume that typical views (currently only the top-view) of all
objects that may appear in the scene are known, so that shape templates can be learned.
Detection of moving regions is performed by adaptive background modeling and fore-
ground segmentation. Object view recognition is performed by rotating a moving region
such that its eigenvectors are aligned with those of a shape template. Similarity between
the two shapes is then computed by comparing the orientation of edge features [8]. Ob-
jects are tracked by establishing the identity correspondence, resulting in a sequence of
motion and shape descriptions (location, speed direction, blob size) for each time frame.

2.2 Segmenting Primitive Events

Given a sequence of motion and shape descriptions, we segment the trajectory of an object
into a number of consistent motion states called primitive events (e.g., “in-transition”,
“stops”). We are developing a primitive event detector that is based on semi-Hidden
Markov models (SHMMs) described in our earlier work [4]. In short, Bayesian networks
are used to model and compute the probabilities of simple, short-term motion descriptors
at each time frame. SHMM is then used to parse these probabilities to detect a point where
the transition from one type of motion to another occurs. We note that these SHMMs are
designed to detect only simple motion states common to all application domains.

Our primitive event has the following 4-part structure: 1) Event ID: 1, 2,...; 2) Object
View Type: Plate, Fork,...; 3) Event Type: in-motion, at-rest,...; 4) Feature Vector (F):
(ts, te, uts , vts , ute , vte , orientation, color, texture). The feature vector consists of start time
(ts), end time (te), location at start time (uts , vts) and so on. All components of the feature
vector are currently continuous variables.

3 Coarse-to-Fine Learning of Multi-Object Events

Our primitive event detector produces events that can be labeled. For example, the act
of placing a plate on the table can be segmented into “plate-transport” and “plate-at-
rest”, where the start of “plate-at-rest” begins when the plate stops moving and the hand
is leaving. This section describes the method for learning the patterns of object-at-rest
events. Suppose we detect n event primitives. A pattern of these events can be represented
as a configuration vector c f =(F1,F2, ...,Fn), where Fi is the feature vector of event i. We
can detect a multi-object class by finding a cluster of c f with a high probability mass.

A common method for clustering is K-means algorithm. Applied to our case, it works
by clustering c f s into K groups (c f 1,...,c f k). A feature vector cf is assigned to the nearest
group in a maximum-likelihood sense (normally use a Euclidean or Mahalanobis dis-
tance), and the parameters of the distribution for the group is updated accordingly. Even
though the K-means method is simple, there are several restrictions. First, the distribu-
tions of the clusters are assumed to be a Gaussian, and in some cases, with a diagonal
covariance matrix (to simplify the calculation of Mahalanobis distances). This is a strong
assumption, as it means that the placement or the color of objects on the table are un-
correlated. Second, the K-means method is less effective when K is unknown and it is
sensitive the initialization of the cluster centers. It is also sensitive to noise because a

noise data point is also assigned to a particular class. Finally, the K-means method does
not consider events to be compositional. As a result, previous clustering results cannot be
reused, when the dimension of the feature space changes.

We propose a coarse-to-fine learning approach that avoids the restrictions imposed by
the K-means method. The coarse-level processing searches for a set of the most likely c f s
in an event space modeled by a Markov network (MN). A MN is traditionally used for
factorizing a complex joint probability space into a set of less complex sub-spaces; hence,
lending itself for compositional event learning. The parameters of MN are modeled non-
parametrically to avoid the assumptions about the Gaussian distributions. At, the fine-
level processing a more precise and efficient Bayesian network for each c f is constructed
separately.

3.1 Markov Network

A Markov network is an undirected graphical model, defined by a set of nodes (V) and
edges (E). The neighborhood (also called a blanket) of a node i ∈V is defined as Γ(i) �
{ j | (i, j)∈E}. Each node i∈V is associated with a hidden random variable Xi and a noisy
local observation Yi. When applied to the modeling of the event space, the nodes V in MN
represent the set of event primitives. An edge represents a potential relation between two
events, which may be established based on heuristics about the spatial neighborhood and
the correlation of the event features.

Figure 2(a) shows a snapshot of the laying events of five objects: plate (p), knife (k),
fork (f), cup (c) and saucer (s). Figure 2(b) shows the corresponding Markov network,
which consists of five hidden nodes. The hidden random variable X i associated with the
node i, in our case, is the event feature Fi. The observation Yi is the feature Fi corrupted by
white Gaussian noise. We note that the absolute coordinates of object locations defined
in Fi are not convenient for recognition due to the effects of translation and rotation of
the spatial arrangement. Therefore, we define a reference location (l r) and orientation
(or), and transform the coordinates of the observed arrangement accordingly. A reference
location may be chosen such that it is highly correlated with the other objects in the scene.
In our experiment, we choose the plate location as l r and the direction of the plate towards
the knife as or. All other nodes are linked to the reference object. Additional edges
between the nodes whose joint features have minimal variance (e.g., knife and fork) may
be added. We note that at the coarse level processing, we do not seek the best-fitting
event model and other criteria may be considered for edge assignment, including a fully-
connected network. Inference in a such a network may take more time but our strategy is
to use it for event mining purpose, which is performed less often in most cases.

3.1.1 Probability of Multi-Object Event

Let X and Y denote the set of all hidden and observed variables, respectively. The
probability of a multi-object event is computed as P(x,y), where x ∈ X and y ∈ Y . If
P(x,y) �= 0,∀(x,y), then it factorizes as a product of strictly positive functions (poten-
tials) on the variables in a clique of nodes, where a clique is defined as a fully-connected
subgraph. Considering models with pair-wise potential functions where the edge (i, j) is
associated with a potential function ψi, j(Xi,Xj) (i.e. a non-maximal clique of two nodes),

xp

xs

xkxf

xc

yf

yp

yk

ys yc

a) Snapshot of an event b) Markov network

Figure 2: Markov network modeling of event space.

we get:

P(X ,Y) = α ∏
(i, j)∈E

ψi, j(Xi,Xj)∏
i∈V

ψi(Xi,Yi), (1)

where α is a normalizing constant.
We approximate ψi, j(Xi,Xj) by the empirical joint probability distribution of the pair

of event features (Fi,Fj). Since our observations are a mixture of event classes, a simple
Gaussian assumption cannot be made. We learn this distribution by a kernel-based non-
parametric density estimate (KDE). Let Xi j denote the feature space spanned by (Xi,Xj)
and N(x; µ ,Λ) a normalized Gaussian density with mean µ and covariance Λ, evaluated
at x. Suppose we represent each distribution with M Gaussian kernels. A KDE estimate
of ψi, j(Xi j) takes the form:

ψi, j(Xi j) =
M

∑
k=1

w(k)
i j N(Xi j; µ(k)

i j Λi j), (2)

where w(k)
i j is the weight associated with the kth kernel mean µ (k)

i j , and Λi j is a smoothing
parameter, which we choose based on the “rule of thumb” heuristic [6] . The weights
are normalized such that they sum up to one. More details about KDE estimation can be
found in [6].

Belief Propagation

Given a partial observation Y , one can make a prediction about the properties of a par-
ticular event Xi by computing P(Xi|Y). In a MN, this probability can be estimated by a
local message-passing algorithm known as belief propagation (BP). At iteration n of the
message-passing algorithm, each node j ∈ V calculates a message mn

ji(Xi) to be sent to
each neighboring node i ∈ Γ(j).

mn
ji(Xi) = α

∫
Xj

ψi, j(Xi,Xj)ψ j(Xj,Yj) ∏
k∈Γ(j)

mn−1
k j (Xj)dXj, (3)

where α absorbs all normalizing terms. At iteration n, an approximation P̂n(Xi|Y) to
P(Xi|Y) can be computed at node i by integrating all the incoming messages with the

local observation:

P̂n(Xi|Y) = αψi(Xi,Yi) ∏
j∈Γ(i)

mn
ji(Xi). (4)

We follow the approach by Sudderth et al. [2] to compute Equations 3 and 4. As with
the potential functions, we represent m ji(Xi) non-parametrically by a KDE. Suppose we
use a M-component KDE. To update the message m ji(Xi) in Equation 3, first we draw

(using a Gibbs sampling technique) M independent samples { X̂ (p)
j }M

p=1 from the product
ζ (Xj)ψ j(Xj,Yj)∏k mk j(Xj), where ζ (Xj) is the marginal of ψi, j(Xi,Xj) over Xj. Then, for

each {X̂ (p)
j }M

p=1, we sample a feature X̂ (p)
i from ψi, j(Xi|Xj = X̂ (p)

j). Finally, we construct

a KDE estimate of m ji(Xi) from {X̂ (p)
i }M

p=1.

3.2 Clustering Algorithm

We detect event clusters by searching for a c f =(F1,F2, ...,Fn) with high probability. It is
not practical to perform a linear search for the most likely c f s by computing P(c f) using
Equation 1. We have developed a bottom-up/top-down search algorithm that expedites
the clustering task. We use a heuristic that a global event configuration can be described
as a set of sub-event configurations. A search tree is constructed, where a constraint on a
sub-event configuration is asserted at each node (bottom-up). An inference is then made
about the rest of the unknown configurations (top-down). Such top-down information is
used to prune the search tree. The algorithm can be summarized as follows.

1. Let Mi j = {M1
i j, ..,M

t
i j} be the set of modes of ψi, j(Xi,Xj). We estimate the entropy

H(Mi j) as

H(Mi j) = −
t

∑
s=1

P(Ms
i j) logP(Ms

i j) (5)

Then, we sort Mi j for all edges (i, j) to obtain M = {m1, ...,mk}, where mp ∈
{Mi, j,∀(i, j) ∈ E} and H(mp) < H(mq),∀p < q.

2. From Mi j,∀ j (where (i, j) ∈ E), we obtain a set of distinct event features (Fi) of
event node i and get: µi = {µ1

i , ...,µ s
i }. By abusing the terminology slightly, µ t

i
represents a distinct feature Fi (or mode), instead of a “mean”.

3. Let c f i = {Xi
1, ...X

i
n} be a potential event cluster i. A search tree is constructed

to detect the feature value of X i
j, j = 1, ...,n. At level “l” of the tree, we choose

one of the configuration modes in ml , and assign the corresponding pair of values
to the appropriate features in X (bottom-up process). Figure 3 illustrates the case
where m1 = M12 and the first pair of mode values are M1

12 = (µ ′
1,µ ′

2). The most
likely configuration values of unknown features are then inferred using Equation 4
(top-down process). If all inferred configuration values match some of the values in
µ (see Step 2), the search terminates. Otherwise, the search continues to the level
“l+1” or until “l” is equal to k (the total number of edges).

We note that the sorting process in Step 1 is performed so that the search paths are
guided by the information measurement of the event configurations. That is, the lower the

level of the node in the search tree is, the more common event configuration it chooses
to explore. The results of our clustering algorithm are the numbers of multi-object event
clusters and their approximate spatio-temporal structures (e.g., c f 1,..., c f k).

M12

BtmUp:

m1=M12

cf1={x1
1= µ1’,

x1
2= µ2’,

x1
3= ?,

...,

x1
n= ?}

M12 M12

TopDown: Find

(x3,…xn) that

match some

values of µ3,…,µn

BtmUp:

m2=M13
M13

M13 M13

cf1={x1
1= µ1’,

x1
2= µ2’,

x1
3= µ3’,

x1
4= ?,

...,

x1
n= ?}

TopDown: Compute

P(x4|µ1’,µ2’,µ3’),..,

P(xn|µ1’,µ2’,µ3’)

1

1

2

32

3

Figure 3: Top-Down/Bottom-Up search.

3.3 Refining Event Models

Given c f 1,..., c f k, we can classify an observation Y by computing argmax
i

P(c f i|Y). Sim-

ilarly, a prediction about unobserved primitive events can also be made. However, this re-
quires an extensive computational resource due to the update of nonparametric messages
by Gibbs sampling. For real-time prediction, it is more efficient to construct separately
a more precise Bayesian network (e.g., a directed acyclic graph) for each class (c f i).
However, we do not further this discussion in this paper.

4 Results

We have tracked approximately thirty sequences, consisting of laying a dinner-setting,
a romantic-dinner-setting, a breakfast-setting, two dinner-settings, a clutter, and so on.
These settings differ by the types and the relative locations of the objects involved. For
example, a romantic-dinner-setting involves a candle, while a dinner-setting does not.
There is also a spatio-temporal variation in a repeated performance of the same setting
type. For example, the temporal ordering in which objects are placed may differ. Learning
all these event classes requires a much more extensive data collection. Instead, we have
experimented with simulated perturbations of trajectories extracted from some real events.

4.1 Simulated Perturbation of Real Events

We simplify the dinner-setting (DS) scene in Figure 1, so that objects are aligned, limiting
the variation of each object placement to one degree of freedom; we call these settings a

1D dinner-setting. Figure 4 shows two canonical 1D dinner-setting events called “right-
handed DS” and “left-handed DS”. In a “right-handed DS”, a knife and a cup are placed
on the right side of the plate, and a fork and a saucer on the left. In a “left-handed DS”,
items on the right of the plate are switched to the left and vice versa.

a) Right-handed DS b) Left-handed DS

Figure 4: Two canonical dinner-settings.

To simulate a spatial variation, we first surveyed a number of people and made a
conjecture that the spoon and fork (or the cutlery set) are normally placed with equal
distance away from the plate. Similar correlation also exists between the cup and the
saucer (or the china set). To simulate this correlation, the average distances of the cutlery
set and the china set are first corrupted with large white Gaussian noise with zero mean
and the standard deviation of 7 pixels. The spoon, fork, cup and saucer are then corrupted
independently with small Gaussian noise with the standard deviation of 2 pixels. Finally,
for each spatially perturbed sequence, the order in which objects are laid is determined
randomly from a set of four equally likely ways of object placement: pkfcs, pkfsc, pfksc
and pfkcs. For each of these orders, object laying events are placed 200 frames apart.
Therefore, simulated sequences contain a mixture of eight event classes.

4.2 Clustering Results

We constructed a Markov network as shown in Figure 2. For demonstration, the feature
vector of each laying event is simplified to contain only the start-time (t s) and the horizon-
tal location at start-time (uts). We learn ψi j(Xi,Xj) from 200 simulated sequences using a
KDE with 200 Gaussian kernels The sequences contain an equal number of samples from
eight event classes. The model for ψ i(Xi,Yi) is currently fixed as white Gaussian noise
with a diagonal covariance of 0.1. In an ideal case, the variance of the independent com-
ponents (e.g., the spatial location and the start time) of the features vectors should be also
learned. By analyzing ψi j(Xi,Xj), it is found that each hidden node other than the plate
has four configuration modes. As a result, there are potentially 256 joint configurations,
many of which will lead to an unlikely event. After applying our clustering algorithm,
we found only eight event classes (Table 1), where the maximum depth searched in the
tree is 2. We note that even though our training data set is free of noise, considering that
cluttered configurations are uniformly distributed, our algorithm should still work. It is
noticed that our algorithm can detect the correlation between object locations “knife-fork”
and “saucer-cup” that we introduce in simulated sequences. For example, if the knife is
placed further away from the plate, so is the fork.

We note that it takes several minutes on a 1.3 GHz Pentium-M machine to learn each
event class. The time-consuming part is the inference of most likely configurations (top-
down process) which relies on the nonparametric message-passing algorithm. The com-
plexity of the Gibbs sampler used for integrating messages is O(dkM 2) [2], where d is
the number of messages to be integrated (at most 4, in our case), k is the iterations of
Gibbs sampling (currently set to 100), and M is the number of components in the KDE.
Currently, we use a KDE with 200 components. Given that our training data set consists
of 200 sequences, we believe that the number of components can be reduced to expedite
the inference without change in the results.

p k f c s
(uts ,ts) (uts ,ts) (uts , ts) (uts , ts) (uts , ts)

c f 1 (0,0) (54,200) (-55,400) (90,600) (-84,800)
c f 2 (0,0) (-52,400) (52,200) (-85,600) (85,800)
c f 3 (0,0) (55,400) (-55,200) (89,800) (-88,600)
c f 4 (0,0) (-51,200) (51,400) (-85,600) (85,800)
c f 5 (0,0) (55,400) (-55,200) (90,600) (90,600)
c f 6 (0,0) (54,200) (-55,400) (89,800) (-88,600)
c f 7 (0,0) (-52,400) (52,200) (-84,800) (84,600)
c f 8 (0,0) (-51,200) (51,400) (-84,800) (84,600)

Table 1: Our clustering algorithm detects eight event classes.

4.3 Event Classification and Inference

We now demonstrate the use of our Markov network for event prediction. Figure 5 shows
how we performed our experiment. At frame 0, a plate is laid on the table at location
(u,v) = (110,115). Then, at frame 200 a fork is placed on the right of the plate at (u,v) =
(165,115). Given Yp and Yf , we use Equation 4 to compute P(Xk|Yp,Yf), P(Xc|Yp,Yf)
and P(Xs|Yp,Yf). Figure 5(a) shows the prediction about the knife-laying event after 10
iterations of message passing, where each iteration takes about three minutes to execute.
We also draw samples from the P(Xk.ut=398|Yp,Yf) which are shown as the distribution of
black circles. The locations and times of “saucer-laying” and “cup-laying” events are not
shown due to weak prediction. Now, we simulate an occlusion by blocking out the plate
and setting the start-time of “fork-laying” to 0. Given only Y f , the inference about the rest
of the events is too weak (same as when we see only a fork on the table).

With an observation of a fork-laying event at frame 600, two multi-object events are
detected with high probabilities: c f 2 and c f 4 (see Table 1). Both multi-object events have
a similar spatial configuration (“left-handed DS”), but a different temporal arrangement.
The most likely locations of occluded objects are shown in Figure 5(b), together with the
distributions (slightly shifted for clarity). After 10 iterations of message passing, the most
likely start-times of the plate-, knife- and cup-laying events are:

• Xp.ts = −400, Xk.ts = −200, Xc.ts = 392/220

• Xp.ts = −200, Xk.ts = 197, Xc.ts = 410/599

Y .loc : (110, 115)

Y .loc : (165, 115)Y .t : 0

Y .t : 200

X .loc : (57.23, 115)

X .t : 398 200

p

p

f

f

k

k

600

Y .loc : (220,115)

Y .t : 600

s

s

Y .loc : (165,115)

Y .t : 0f

f

a) Predicting “knife-laying” b) Inferring events despite occlusion

Figure 5: Inference Using a Markov Network.

a) After 5 iterations of message passing b) After 10 iterations of message ppssing

Figure 6: Distributions of P(Xc|Yf ,Ys).

We note that there are two possible start-times of a cup-laying event in both cases, and
we show the more likely one first. In the first detected temporal arrangement, regardless
of the start-times of the cup-laying event (either at frame 392 or 220), the ordering of
events is pk f cs. In the second temporal arrangement, it is predicted that the cup may also
be placed at the same time as the saucer (i.e., at frame 600). We believe that this false
prediction is due to the sub-optimal Markov network structure and that more iterations of
message passing will eventually invalidate it.

Figure 6 shows the distribution P(Xc|Yf ,Ys) after 5 and 10 iterations of message pass-
ing. It can be noticed that the probability mass gradually shifts towards the correct con-
figuration. Nevertheless, this experiment indicates that our Markov network should not
be used as a real-time inference tool. Obtaining a reliable inference is time-consuming
due to the loopy belief propagation of nonparametric messages.

5 Conclusion

Using a Markov network as an event space representation allows us to learn global event
configurations from local event configurations (a potential step for an incremental learn-
ing procedure). We have demonstrated our learning algorithm successfully on data with
simulated perturbations of object trajectories obtained from real events. Still, an exten-
sive performance evaluation using real events is needed. We believe that our approach is
generic and can be extended to include more complex event features such as colors and
textures. Finally, we hope that our probabilistic approach to event learning will bridge the
gap between a probabilistic object tracker and a high-level event reasoning system.

References

[1] H. Buxton. Learning and understanding dynamic scene activity: a review. Image and
Vision Computing, 21(1):125–136, 2003.

[2] E. Sudderth, A. Ihler, W. Freeman and A. Willsky. Nonparametric belief propagation.
In IEEE Proceedings of Computer Vision and Pattern Recognition, pages 605–612,
Madison, WI, 2003.

[3] S. Hongeng and R. Nevatia. Multi-agent event recognition. In IEEE Proceedings of
the International Conference on Computer Vision, volume 2, pages 84–91, Vancou-
ver, Canada, July 2001.

[4] S. Hongeng and R. Nevatia. Large-scale event detection using semi-hidden markov
models. In IEEE Proceedings of the International Conference on Computer Vision,
pages 1455–1462, Nice, France, 2003.

[5] A. Galata, A. Cohn, D. Magee and D. Hogg. Modeling interaction using learnt qual-
itative spatio-temporal relations and variable length markov models. In Proceedings
of the European Conference on Artificial Intelligence, pages 741–745, Lyon, France,
July 2002.

[6] B. W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman &
Hall, London, 1986.

[7] C. Stauffer and W. Grimson. Learning patterns of activity using real-time tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757,
2000.

[8] C. Steger. Occlusion, clutter, and illumination invariant object recognition. In Pro-
ceedings of the Conference on Photogrammetric Computer Vision; Vol. 34, Part 3A,
Commission III, pages 345–350, Graz, 2002.

