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Zusammenfassung

Dieser Bericht enthält eine Übersicht über verschiedene me-
thodische Ansätze zum Erkennen und Lernen von Ereignis-
sen in Video-Filmen. Die Ansätze zur Ereigniserkennung wer-
den grob in 1) statistische Mustererkennung und 2) symboli-
sches Schließen gegliedert. In einem statistischen Ansatzwer-
den die Arten von Ereignismustern, die erkannt werden kön-
nen, durch die jeweiligen probabilistischen Modelle bestimmt
und können nicht leicht verallgemeinert werden. Ein logik-
basierender Rahmen für symbolisches Schließen bietet dage-
gen einen allgemeineren und systematischeren Ansatz für die
Repräsentation und Verwaltung einer umfangreichen Ereig-
niswissensbasis. Hier scheint ein Aggregat ein natürliches und
nützliches Konstrukt zur Repräsentation höherer Konzeptewie
Objektkonfigurationen, Vorgänge und Ereignisse zu sein. Bei
einer Szeneninterpretation können taxonomische und kompo-
sitionelle Beziehungen zwischen Aggregatkonzepten ausge-
nutzt werden, wobei visuelle Evidenz und Kontextinformation
einbezogen werden.

Konzepte für primitive Vorgänge, die die visuelle Evidenz
für eine symbolische Szeneninterpretation darstellen, werden
häufig durch Vektorquantisierung (VQ) gelernt. Bei VQ wird
der Raum kontinuierlicher Objektmerkmale in eine endliche
und kleine Zahl relevanter Prototypen diskretisiert. Alternativ
kann ein Hidden-Markov-Model (HMM) verwendet werden,
um zeitlich zusammenhängende qualitative Primitive zu reprä-
sentieren und zu entdecken. Eine häufig beobachtete Folge von
Aktionen kann mit einem HMM ebenfalls gelernt werden. All-
gemeinere zeitliche Muster können mit einer Beschreibungs-
sprache definiert werden, die Reihenfolgebeschränkungen zwi-
schen Zeitpunkten oder Intervallen ausdrückt. Das Erlernen
temporaler Muster wird häufig durch eine Suche vom All-
gemeinen zum Speziellen realisiert. Logikbasierte Induktion
(z.B. ILP- oder AMA-Algorithmen) bieten offenbar eine ge-
nerische Lösung für das Problem, hierarchische Ereignismu-
ster zu erlernen. Ansätze dieser Art kann man im Hinblick auf
die Ausdrucksfähigkeit der verwendeten Beschreibungsspra-
che und die Komplexität des Induktionsprozesses differenzie-
ren.
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Abstract

This paper reviews several computational frameworks for rec-
ognizing and learning events from a video stream. Approaches
to event recognition are largely classified into 1) statistical pat-
tern recognition, and 2) symbolic reasoning. In a statistical
approach, the types of event patterns that can be recognized
are governed by the choice of probabilistic models, and are
difficult to generalize. A logic-based framework in symbolic
reasoning provides a more general and systematic approach
for representing and maintaining a large knowledge base of
events. In symbolic reasoning, an aggregate seems to be a nat-
ural and useful construct for representing high-level concepts
such as object configurations, occurrences and events. Scene
interpretation can exploit the taxonomical and compositional
relations between aggregate concepts while incorportating vi-
sual evidence and contextual information.

Primitive occurrences (which provide visual evidence for
scene interpretation) are often learned by Vector Quantization
(VQ). In VQ, the continuous space of object-level features is
discretized into a finite and small number of relevant proto-
types. Alternatively, a hidden Markov model (HMM) may be
used to detect the coherency in qualitative primitives overa
time interval. A commonly observed consecutive sequence
of actions can also be learned by HMMs. Other temporal
patterns can be expressed by a language that places order-
ing constraints on either the time-points or the intervals of
events. Temporal pattern mining is often realized by a general-
to-specific search technique. A logic-based induction (e.g.,
ILP and AMA-based algorithms) seems to provide a generic
solution to the learning of hierarchical event models. These
techniques are differentiated by the expressiveness of thelan-
guages used for representing the events and the complexity of
inductive process.
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1 Introduction

Recognizing and learning events taking place in a video stream are of key
importance in cognitive vision systems. Events to be recognized may be
simple motions of an agent acting alone (e.g., hand signing), or an agent
acting upon an object (e.g., a hand picking up an object). Events can also
be very complex, involving many agents (e.g., setting up plates and cutlery
on a dining table). It is natural for humans to describe theseevents in
terms of semantic concepts with regard to the types of agents, how they
move (or how they are moved) in relation with some other agents. To
enable an interaction with humans, a cognitive vision system must bridge
the gap between the input video signal data and the event concepts. This
is a particularly difficult task because the visual evidenceis not always
complete (e.g., in an evolving scene or in a partially visible scene) and the
mapping between evidence and and event concepts is not one-to-one.

Approaches to event recognition in the last two decades can be largely
classified into 1) statistical pattern recognition and 2) symbolic reasoning.
In a statistical approach, it is assumed that there are underlying probabilis-
tic models that generate visual patterns. The types of eventpatterns that
can be recognized are often governed by the chosen probabilistic models.
For example, a hidden Markov model (HMM) is a state-based random pro-
cess that can be trained to recognize sequences of simple actions [16]. A
HMM consists of a set of event states and probabilistic transitions among
the states. Each state is assumed to uniquely generate a characteristic dis-
tribution of motion features. Therefore, it is less effective to train a HMM
with composite event states, where the motion features may vary in an un-
predictable way (which is common in an interaction of multiple agents).
Some adaptations of the HMMs (e.g., a coupled HMM [14]) have been
proposed recently, where an interaction of up to three agents can be mod-
eled. It is often difficult to train these models because the parameter space
becomes prohibitively large very quickly. Generalizing and reusing parts
of the HMM models are also difficult.

In symbolic reasoning, a logic-based language is used to represent
knowledge and background facts in a domain of interest. Non-logical sym-
bols can then be interpreted based on deduction and entailment. Applied
to dynamic scene understanding, a knowledge base of events must be con-
structed. Some expressive languages often allow events to be modeled in
a hierarchical fashion, easily understood by human users. For example,
simple events may be propositions on spatial-temporal characteristics of
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motions of an agent. A more complex event may be composed of ax-
ioms that relate some spatial-temporal properties of thesesimple events.
Given partial evidence, scene interpretation is performedby making hy-
potheses about potential models and invalidating hypotheses of unlikely
events. Since event models are highly structured, deductions and entail-
ments can be done efficiently.

One disadvantage of the symbolic reasoning approach is thatevent
models must be carefully handcrafted. For example, one needs to write
all axioms relating non-logical symbols to make sure that the proposition
one wants to be true are entailed by and consistent with the knowledge
base. Another disadvantage is that it is assumed that simpleevents can
be abstracted from visual scenes reliably. When this is not the case, the
system requires a strategy to handle conflicting evidence. Also, the hy-
pothesis space of possible events to be explored is normallylarge and there
is need for a control mechanism that guides the search. Eventlikelihood
(probability) can provide such guidance and there has been some studies
on the unification of statistical pattern recognition and symbolic reasoning
approaches.

In a unified approach, simple events are abstracted from object mo-
tion based on a statistical method and are associated with a likelihood de-
gree of the matching. Unlike in a traditional statistical approach, com-
plex events (e.g., interactions between objects) are modeled explicitly by
a spatio-temporal logic. During scene interpretation, probabilities of sim-
ple events can be combined subject to the defined spatio-temporal relations
and can be used to gauge the likelihood of the hypothesis being made about
the complex events.

Regardless of the choices of event representation, it is difficult to pre-
dict and handcraft all possible event models. Event patterns may change
over time and new patterns may arise. The parameters of the statistical
models of simple events may need to be modified to adapt to a newcon-
text. Event relations defined for the hierarchical models ofcomplex events
may need to be revised. For example, the spatio-temporal constraints be-
tween events in a model may need to be tightened or augmented to include
a new event. It is evident that a scene interpretation systemrequires a
mechanism for learning and adapting event models. Researchin machine
learning has focused on both symbolic and statistical learning techniques
in many application domains (e.g., computer vision, database), but there is
little research effort in event learning for dynamic scene interpretation.

In this paper, we review the state-of-the-art in event recognition and
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learning. Several modes of learning (e.g., supervised, unsupervised) de-
vised for various event representations (e.g., statistical and logical repre-
sentations) will be discussed. Section 2 describes the construction of event
models and the scene interpretation process. The review of the learning
methods developed for each preocessing level is in Section 3. We con-
clude our review with a discussion in Section 4.

2 Dynamic Scene Interpretation

We present in this section the development of a scene interpretation system
for understanding table-top events. In particular, we use the “table laying”
scene described by Neumann et al. [13] as a guiding scenario.We focus on
the requirements of various processing components and representations,
which are common to the systems developed for other domains.

In a “table laying” scene (Figure 1), one observes objects such as plates
and knives being transported to and arranged on the table over a certain
time interval. The spatial configuration of the arrangementis subject to
the type of meal being served (e.g., dinner, breakfast). Also, there exist
temporal constraints, e.g., a saucer is always transportedbefore a cup.

Figure 1: Snapshot of a table-laying scene.

It is evident that humans use diverse knowledge beyond the visual ob-
servation to describe an evolving scene in qualitative terms. For example,
one can describe not only the primitive occurrences (e.g., “plate-laying”,
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“saucer-laying”), but also the fact that they are part of theglobal event
“dinner setting” and that there are other missing object-laying events (e.g.,
a fork will later be placed to theleft of the plate).

To equip a cognitive system with such capabilities, it is apparent that
the system must know a typical set of primitive occurrences and how they
are abstracted from quantitative visual observations (possibly through a
learning process). The cognitive system also needs to prescribe how a
complex event concept (i.e., a scene model) is defined from these primi-
tive occurrences. These scene models are often handcraftedby knowledge
engineers, but can also be acquired through a learning process. Finally, the
system must be equipped with a scene interpretation mechanism, where
some of these conceptual models are hypothesized from the available vi-
sual evidence and used to reason about the missing events or occurrences.

In this section, we briefly describe the conceptual framework, in which
a high-level scene interpretation is determined by constructing a descrip-
tion of the scene in terms of concepts provided in a conceptual knowledge
base. The survey of the learning mechanisms for both primitive occur-
rences and the conceptual event models is presented in Section 3.

2.1 Conceptual Knowledge Base

A conceptual knowledge base (CKB) consists of scene models,which are
conceptual entities for high-level scene interpretations. To define a scene
model in a CKB, one must choose an appropriate representational formal-
ism. In [13], “aggregates” are introduced as representational units for ob-
ject configurations, occurrences, episodes and other concepts which oc-
cur in high-level interpretations. The structure of an aggregate has several
properties that are found to be natural and useful for high-level scene inter-
pretations. First, the structure is composed of parts with relations between
the parts, giving rise to a partonomy which is the hierarchical structure in-
duced by part-of relations. Second, it supports a subsumption hierarchy
(taxonomy), where a model may be a specialization of anothermodel (or
the other way around). Third, constraints can be specified qualitatively
and concretely within an aggregate, which is useful for modeling spatial
temporal relations in model definitions.

An aggregate can be represented using a frame-based model which
contains the following information: 1) concept name, 2) taxonomical par-
ent concepts, 3) parts, and 4) constraints between parts. Figure 2 shows
a frame that describes an occurrence of placing a cover on a table. In the
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parts section, local names and concept memberships of the visual phenom-
ena (i.e., a table-top, a cover configuration, and the transport occurrences of
the objects that are parts of the cover) are tied together to form a concept
and satisfying certain constraints, which are expressed inthe constraints
section of the frame. Furthermore, there are time marks which refer to
the beginning (tb) and ending (te) of the place-cover occurrence. In the
constraints section, there are identity constraints that relate constituents of
different parts to each other (e.g., the object of a plate transport occurrence
must be identical to the plate in the cover configuration). There are also
qualitative constraints on the time marks associated with sub-occurrences.
Spatial constraints are expressed by a cover configuration which is mod-
eled by another aggregate, e.g., a cup must be placed on top ofthe saucer.
This example shows that an aggregate may have other aggregates as parts.
Hence, a compositional hierarchy is induced.

Figure 2: A frame-based model for a place-cover. From [13]

The frame-based model is an expressive formalism for representing a
concept and can be paraphrased into other formalisms such asDescription
Logics, which has well-founded reasoning services.

2.2 Primitive Occurrence Detection

Under a controlled environment, it is possible to detect andtrack a lim-
ited number of objects and obtain object-level descriptions (e.g., object
classes, motion flows, 3D trajectories) from a video sequence. To perform
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a high-level scene interpretation, one must map these quantitative object-
level descriptions into primitive occurrences defined as a basis in the con-
ceptual framework. In most systems, the models of primitiveoccurrences
are constructed manually based on an extensive knowledge ofthe domain
of interest. Also, one must know the significant primitive occurrences in
advance.

In [13], the mapping is achieved through multiple layers of abstraction.
First, perceptual primitives are computed from object features, providing
the measurements (e.g., distance, angle) between object features. Then,
qualitative primitives are defined and computed as predicates over percep-
tual primitives. For example, a predicate “nearness” can bedefined by a
hard threshold on distance. Finally, a primitive occurrence is defined as a
conceptual entity that characterizes the coherency of a qualitative primitive
over a time interval (e.g., object in motion, object at rest). The computa-
tion of perceptual primitives and qualitative primitives in [13] requires a
manual construction of the models and a careful hand-tuningof the param-
eters (e.g., in choosing the thresholds or segmenting the primitive occur-
rences). In Section 3, we discuss various mechanisms for automatic (or
semi-automatic) detection of primitive occurrences.

2.3 Scene Interpretation

In [13], scene interpretation is based on a hypothesis-and-test procedure.
An observed scene is described in terms of instantiated scene models from
the CKB. These instantiated models are called hypotheses and are main-
tained (by verifying their spatial-temporal consistency)in the interpreta-
tion base. Primitive occurrences detected from object-level descriptions
provide partial evidence and will be the entry points for part-whole rea-
soning. In part-whole reasoning, hypotheses in the interpretation base are
generated and connected based on the part-of links specifiedin the mod-
els. For example, hypotheses about the transports of a plateand a saucer
are parts of the “place-cover” and may generate a “place-cover” hypothe-
sis, if all constraints are satisfied and considered as strong evidence. The
verification of an instantiated scene model consists of propagating the time
marks of the updated primitive occurrences to incrementally constrain the
appropriate time marks of all connected entities in the interpretation base.
Spatial constraints are also propagated in a similar fashion in a 3D space.

In [13], the construction of the model base and the implementation
of the scene interpretation process are realized by a configuration system
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called KonWerk [7]. The representation language in KonWerkis object-
oriented and supports frame-like representations. KonWerk provides a
mechanism for constructing a configuration (or a hypothesized scene model)
and has a dedicated constraint verification system. A more recent work by
Neumann et al. [13] explores the implementation of the sceneinterpre-
tation using Description Logics (DL). DL also offers logical inferences
based on formal semantics, similar to the inferences in first-order predi-
cate logic. Such a logic-based reasoning system is useful for maintaining
the consistency of a large knowledge base.

3 Learning of Event Models

A major issue in implementing a scene interpretation systemis where the
knowledge of all primitive occurrence types and the structures of scene
models in CKB comes from. In most cases, this knowledge is explicitly
programmed by a human user. However, this can be a tedious anderror
prone process. Also, when the system is applied in a different setting or
context, a different set of primitive occurrences and eventstructures will be
required. In this section, we discuss some of the techniquesfor acquiring
such knowledge (semi-) automatically from actual video data.

3.1 Learning Primitive Occurrences

Primitive occurrences are basically qualitative representations of the con-
tinuous space of object-level descriptions and can be obtained by discretiz-
ing the space into a finite and small number of relevant possibilities (or
prototypes). The results of discretization may be, hence, different for one
domain from another. One common method for learning discrete represen-
tations is Vector Quantization (VQ) [6].

VQ is a data compression technique originally used for approximat-
ing the probability density function of a vector variablex(t) using a finite
number of prototype vectorsci(t), i = 1,2, ...,k. It has been also applied in
event learning as a method for acquiring prototypical spatio-temporal rep-
resentations. Galata et al. [10] use a VQ algorithm as a method for learning
the discrete interaction primitives between two vehicles in a traffic scene.
As object-level descriptions, a feature vectorFrt is used to describe the
relative velocity and the spatial relationship between a reference car and
another car that falls within its attentional window. The object interaction
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primitives are abstracted from sequences of feature vectorsFr0,Fr1, ...,Frm,
by replacingFrt with their nearest (in a Euclidean sense) prototype from a
finite set of prototypical object interactions. Figure 3 illustrates the learnt
primitive interactions by VQ for the traffic domain example application.
These can be viewed as a qualitative discretization of the continuous rela-
tional space. This representation is obtained by maximizing the discern-
ability given a granularity (i.e., the number of relations desired).

Figure 3: Learnt primitive interactions between a pair of vehicles in a traf-
fic scene. From [10].

A limitation of most VQ techniques (specifically, the k-means algo-
rithm) is that the final distribution of prototypes relies onthe learning bias
(e.g., the number of prototypes and their initial placementwithin the fea-
ture space). Choosing a wrong bias can result in sub-optimaldistributions.

An alternative method for learning prototypes is based on detecting the
coherency in qualitative primitives over a time interval. This is in contrast
with the VQ, where the dynamics of a feature sequence is disregarded. A
common observation is that an object moves in a task-oriented manner,
during which time its motion is consistent. For example, consider a scene
whereCAR1 is overtakingCAR2. First, CAR1 changes to a neighboring
lane that is free of obstruction. Then,CAR1 speeds up to position itself
ahead ofCAR2. Finally, CAR1 changes the lane back to be in front of
CAR2. Considering an overtaking action as a sequence of three types of
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movements, a dynamic state-based model such as a hidden Markov model
(HMM) can be used to learn the distributions of movement prototypes as
well as the dynamics of the sequential actions (e.g., the time segmentation
of motion prototypes). A limitation of the state-based model is that the
number of prototypes must be given to obtain an optimal result (same as
the VQ). In addition, it also requires that the video data must be segmented
and labeled (e.g., “overtaking”, “following”).

3.2 Learning High-Level Scene Models

To our knowledge, there is very little amount of work in learning a dynamic
scene model. One of the reasons is that treating time as an additional di-
mension of a 3D space and applying the same techniques for learning a
3D structure is not valid in general. Time is a unique dimension and can
imply complex causal relations among actions. Such causality generates
an exponential branching factor in the search space. Therefore, learning
a high-level scene model often involves enforcing a learning bias (e.g., in
terms of constraints on the structures or the representational languages) in
order to control the search space. We divide the literature in this area into
three categories: finite-state machine induction, temporal pattern mining
and logic-based induction.

3.2.1 Finite-state machine induction

Arguably, one of the most common object behaviors is a consecutive se-
quence of actions. A classical learning approach is to use a probabilistic
finite-state machine (e.g., HMM) to find temporal dependencies between
primitive occurrences. An HMM of action sequences consistsof a set of
hidden event states, each of which encodes a characteristicdistribution
of motion features. The dynamics of action sequences are encoded by
the probabilistic transitions among the event states. Given the number of
states, these motion feature distributions and the state transition proba-
bilities must be learned from the training video data. Afterlearning, the
HMMs can be used for segmenting sequences of primitive occurrences in
a video. One of the weaknesses of a HMM is that the number of states are
often not known in advance, requiring an extensive trial anderror. With-
out an educated choice of the number of states, the HMM statesdo not
necessarily correspond to occurrence concepts in a naturallanguage. In
recent years, some researchers have proposed methods for learning highly-
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structured HMMs.
In [2] , Brand develops a method for discovering normative behavior in

an office environment, which is represented by a “concise” hidden Markov
model. The learning algorithm introduces and exploits an entropic prior
for fast, simultaneous estimation of model structure and parameters. These
entropically trained models are more concise and highly structured than the
conventionally trained HMMs.

In [10], Galata et al. use variable-length Markov models (VLMMs)
to encode interactive vehicle behavior in a traffic scene. A VLMM is a
random process in which the memory length varies, in contrast to a first-
order Markov model. The advantage of having a variable memory length is
the ability to locally optimize the length of memory, capturing both higher-
order and lower-order temporal dependencies adaptively. Also, in contrast
with the hidden states of HMMs, the states of a VLMM correspond to the
conceptual prototypes discussed in Section 3.1.

3.2.2 Temporal pattern mining

Techniques for mining temporal patterns have been studied mostly in the
context of database mining. For example, events in a database of sales
transactions may consist of customer transactions, each ofwhich is tagged
with a customer-id, the transaction time and the items bought. An exam-
ple of temporal pattern may be that “computers and mice” are purchased
first, followed by “printers”, and then “memory sticks”. Unlike in HMMs,
events in such a pattern need not be consecutive and customers may pur-
chase other things in between. Elements of a sequential pattern may also
consist of other sub-patterns.

The research in sequence-mining contains many general-to-specific al-
gorithms for finding sequences. In most earlier work, researchers have
studied the problem of mining temporal patterns using languages that place
constraints on partially or totally ordered sets of time points, e.g., sequen-
tial patterns [1] and episodes [15]. More recently there hasbeen work on
mining temporal patterns using interval-based pattern languages [9, 3, 8].
Even though the languages and learning frameworks vary among these
approaches, they all use standard general-to-specific search techniques,
where the learning results obtained at stepk are used to constrain the search
space of the models to be specified further at stepk+1. One advantage of
these methods is that the patterns are searched based on frequency and can
handle a noisy temporal data set.
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3.2.3 Logic-based induction

As described in section 2.1, temporal events can be represented using a
logic-based language. Given a set of both positive and negative training
examples, a common general-purpose relational learning technique such
as inductive logic programming (ILP) [12] can be applied. In[4], relations
among audio-visual concepts in a game playingpaper-scissor-stoneare
learnt using PROGOL [11]. Relations of event concepts in PROGOL are
represented by horn clauses and lack the handling of concrete domains
(both time and space) necessary for a general visual event representation.

In [5], Fern et al. propose a simple logic called AMA (simplified
from Allen’s temporal logic) for representing temporal events. Spatial
relations of objects are represented implicitly using simple concepts of
force-dynamic (e.g., the touching of object bounding boxes). Based on
the AMA language, they provide a mechanism for learning temporal, rela-
tional, force-dynamic event definitions from a positive-only input.

4 Discussion

In this review, we have illustrated several computational frameworks for
dynamic scene interpretation. A common approach in Computer Vision is
to model visual events as a statistical process (e.g., HMM).In a large con-
ceptual knowledge base, such statistical approaches are doomed to fail and
a logic-based representation provides an attractive alternative. In a logic-
based approach, an event is modeled in a hierarchical fashion, where prim-
itive occurrences are abstracted from pixel-based image representations.
These primitive occurrences provide a basis, on which a scene model is
constructed using logic-based languages.

We have reviewed some learning techniques that automatize the model
construction processes for primitive occurrences and high-level scene mod-
els. Visual event learning is an inherently ill-posed problem, due to the
complex causal relations induced by time. Even though recent advances
have been made in all fronts, many of the existing learning techniques can
only cope with simple event patterns.

A logic-based induction seems to provide a generic solutionto the
learning of hierarchical event models necessary for a largeconceptual knowl-
edge base. Logic-based inductive learning approaches are differentiated
by the languages used for representing the events. While thelogic lan-
guage needs to be expressive enough to represent realistic scene models,
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it is known that the determination of concept subsumption inthe expres-
sive First-Order Logics is semi-decidable. Most learning approaches often
simplify the representational languages that limit the bounds of the sub-
sumption and generalization problems. We believe that the trade-off be-
tween the expressiveness of the language and the complexityof inductive
process is likely to play a key role in the future research.
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