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Zusammenfassung

Dieser Bericht enthalt eine Ubersicht tiber verschiedene me
thodische Ansatze zum Erkennen und Lernen von Ereignis-
sen in Video-Filmen. Die Ansatze zur Ereigniserkennung wer
den grob in 1) statistische Mustererkennung und 2) symboli-
sches Schliel3en gegliedert. In einem statistischen Amsatz
den die Arten von Ereignismustern, die erkannt werden kon-
nen, durch die jeweiligen probabilistischen Modelle basti

und kénnen nicht leicht verallgemeinert werden. Ein logik-
basierender Rahmen flr symbolisches Schliel3en bietet dage
gen einen allgemeineren und systematischeren Ansatzdtir di
Reprasentation und Verwaltung einer umfangreichen Ereig-
niswissensbasis. Hier scheint eigdkegat e nattrliches und
natzliches Konstrukt zur Reprasentation hoherer Konase
Objektkonfigurationen, Vorgange und Ereignisse zu sein. Be
einer Szeneninterpretation kénnen taxonomische und kempo
sitionelle Beziehungen zwischen Aggregatkonzepten ausge
nutzt werden, wobei visuelle Evidenz und Kontextinforroati
einbezogen werden.

Konzepte fir primitive Vorgange, die die visuelle Evidenz
fur eine symbolische Szeneninterpretation darstellemgere
haufig durch Vektorquantisierung (VQ) gelernt. Bei VQ wird
der Raum kontinuierlicher Objektmerkmale in eine endliche
und kleine Zahl relevanter Prototypen diskretisiert. Altdiv
kann ein Hidden-Markov-Model (HMM) verwendet werden,
um zeitlich zusammenhangende qualitative Primitive zudep
sentieren und zu entdecken. Eine haufig beobachtete Falge vo
Aktionen kann mit einem HMM ebenfalls gelernt werden. All-
gemeinere zeitliche Muster kdnnen mit einer Beschreibungs
sprache definiert werden, die Reihenfolgebeschrankungien z
schen Zeitpunkten oder Intervallen ausdriickt. Das Erferne
temporaler Muster wird haufig durch eine Suche vom All-
gemeinen zum Speziellen realisiert. Logikbasierte Inidukt
(z.B. ILP- oder AMA-Algorithmen) bieten offenbar eine ge-
nerische Losung fur das Problem, hierarchische Ereignrismu
ster zu erlernen. Ansatze dieser Art kann man im Hinblick auf
die Ausdrucksfahigkeit der verwendeten Beschreibungsspr
che und die Korplexitat des Induktionsprozesses differenzie-
ren.



Abstract

This paper reviews several computational frameworks for re
ognizing and learning events from a video stream. Approgche
to event recognition are largely classified into 1) stat&dtpat-

tern recognition, and 2) symbolic reasoning. In a stafstic
approach, the types of event patterns that can be recognized
are governed by the choice of probabilistic models, and are
difficult to generalize. A logic-based framework in symigoli
reasoning provides a more general and systematic approach
for representing and maintaining a large knowledge base of
events. In symbolic reasoning, an aggregate seems to be a nat
ural and useful construct for representing high-level emts
such as object configurations, occurrences and eventse Scen
interpretation can exploit the taxonomical and composilo
relations between aggregate concepts while incorpogain

sual evidence and contextual information.

Primitive occurrences (which provide visual evidence for
scene interpretation) are often learned by Vector Quaitdiza
(VQ). In VQ, the continuous space of object-level featuses i
discretized into a finite and small number of relevant proto-
types. Alternatively, a hidden Markov model (HMM) may be
used to detect the coherency in qualitative primitives aver
time interval. A commonly observed consecutive sequence
of actions can also be learned by HMMs. Other temporal
patterns can be expressed by a language that places order-
ing constraints on either the time-points or the intervdls o
events. Temporal pattern mining is often realized by a gdner
to-specific search technique. A logic-based induction.(e.g
ILP and AMA-based algorithms) seems to provide a generic
solution to the learning of hierarchical event models. Ehes
techniques are differentiated by the expressiveness déthe
guages used for representing the events and the compléxity o
inductive process.



1 Introduction

Recognizing and learning events taking place in a vide@strare of key
importance in cognitive vision systems. Events to be rezeghmay be
simple motions of an agent acting alone (e.g., hand signorgan agent
acting upon an object (e.g., a hand picking up an object)niSvean also
be very complex, involving many agents (e.g., setting ugegland cutlery
on a dining table). It is natural for humans to describe thmsmts in
terms of semantic concepts with regard to the types of aghotg they
move (or how they are moved) in relation with some other agyefio
enable an interaction with humans, a cognitive vision systeust bridge
the gap between the input video signal data and the eveneptsicThis
is a particularly difficult task because the visual eviderscaot always
complete (e.g., in an evolving scene or in a partially viskdene) and the
mapping between evidence and and event concepts is nobesreet

Approaches to event recognition in the last two decades edarbely
classified into 1) statistical pattern recognition and Znbglic reasoning.
In a statistical approach, it is assumed that there are lyiigprobabilis-
tic models that generate visual patterns. The types of quaitérns that
can be recognized are often governed by the chosen praiahitiodels.
For example, a hidden Markov model (HMM) is a state-basedaanpro-
cess that can be trained to recognize sequences of simmesfi6]. A
HMM consists of a set of event states and probabilistic ttims among
the states. Each state is assumed to uniquely generateagianestic dis-
tribution of motion features. Therefore, it is less effeetio train a HMM
with composite event states, where the motion features ragyin an un-
predictable way (which is common in an interaction of mudipgents).
Some adaptations of the HMMs (e.g., a coupled HMM [14]) hagerb
proposed recently, where an interaction of up to three agsam be mod-
eled. It is often difficult to train these models because trameter space
becomes prohibitively large very quickly. Generalizinglarusing parts
of the HMM models are also difficult.

In symbolic reasoning, a logic-based language is used teesept
knowledge and background facts in a domain of interest. Mgital sym-
bols can then be interpreted based on deduction and entdilrApplied
to dynamic scene understanding, a knowledge base of eveistdm con-
structed. Some expressive languages often allow events toddleled in
a hierarchical fashion, easily understood by human usess.ekample,
simple events may be propositions on spatial-temporalacteristics of



motions of an agent. A more complex event may be composed-of ax
ioms that relate some spatial-temporal properties of teeaple events.
Given partial evidence, scene interpretation is perforimganaking hy-
potheses about potential models and invalidating hypethes unlikely
events. Since event models are highly structured, dechvscod entail-
ments can be done efficiently.

One disadvantage of the symbolic reasoning approach isetreatt
models must be carefully handcrafted. For example, onesneedrite
all axioms relating non-logical symbols to make sure thatgloposition
one wants to be true are entailed by and consistent with tbevlkecige
base. Another disadvantage is that it is assumed that sievelets can
be abstracted from visual scenes reliably. When this ismotcase, the
system requires a strategy to handle conflicting evidendso,Ahe hy-
pothesis space of possible events to be explored is nortagily and there
is need for a control mechanism that guides the search. Hkehhood
(probability) can provide such guidance and there has beere studies
on the unification of statistical pattern recognition anchbyplic reasoning
approaches.

In a unified approach, simple events are abstracted frontibhje-
tion based on a statistical method and are associated wikkldgnbod de-
gree of the matching. Unlike in a traditional statisticapegach, com-
plex events (e.g., interactions between objects) are raddetplicitly by
a spatio-temporal logic. During scene interpretationpphulities of sim-
ple events can be combined subject to the defined spatioet@helations
and can be used to gauge the likelihood of the hypothesig Ine@tle about
the complex events.

Regardless of the choices of event representation, itfiswlifto pre-
dict and handcraft all possible event models. Event pateray change
over time and new patterns may arise. The parameters of dtiststal
models of simple events may need to be modified to adapt to acaew
text. Event relations defined for the hierarchical modelsomhplex events
may need to be revised. For example, the spatio-temporatments be-
tween events in a model may need to be tightened or augmenitedude
a new event. It is evident that a scene interpretation sysegmires a
mechanism for learning and adapting event models. Res@arnhchine
learning has focused on both symbolic and statistical Iegrtechniques
in many application domains (e.g., computer vision, datapaut there is
little research effort in event learning for dynamic scemteripretation.

In this paper, we review the state-of-the-art in event redagn and



learning. Several modes of learning (e.g., supervisedjpersised) de-
vised for various event representations (e.g., statistied logical repre-
sentations) will be discussed. Section 2 describes tharcmtion of event
models and the scene interpretation process. The revieteokarning
methods developed for each preocessing level is in Sectioé con-
clude our review with a discussion in Section 4.

2 Dynamic Scene I nterpretation

We present in this section the development of a scene iet@tpyn system
for understanding table-top events. In particular, we hs€'table laying”
scene described by Neumann et al. [13] as a guiding scendedocus on
the requirements of various processing components andsepiations,
which are common to the systems developed for other domains.

In a “table laying” scene (Figure 1), one observes objeath as plates
and knives being transported to and arranged on the tableaogertain
time interval. The spatial configuration of the arrangenisrdubject to
the type of meal being served (e.g., dinner, breakfast)o Alsere exist
temporal constraints, e.g., a saucer is always transpbetede a cup.

Figure 1: Snapshot of a table-laying scene.

It is evident that humans use diverse knowledge beyond thealob-
servation to describe an evolving scene in qualitative $erffor example,
one can describe not only the primitive occurrences (epdaté-laying”,
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“saucer-laying”), but also the fact that they are part of ¢habal event
“dinner setting” and that there are other missing objegirigevents (e.g.,
a fork will later be placed to théeft of the plate).

To equip a cognitive system with such capabilities, it isappt that
the system must know a typical set of primitive occurrencetslaow they
are abstracted from quantitative visual observationssipbsthrough a
learning process). The cognitive system also needs to fivesisow a
complex event concept (i.e., a scene model) is defined frasetiprimi-
tive occurrences. These scene models are often handcbgftatbwledge
engineers, but can also be acquired through a learninggsoE@ally, the
system must be equipped with a scene interpretation mesthamvhere
some of these conceptual models are hypothesized from thialae vi-
sual evidence and used to reason about the missing everdswrences.

In this section, we briefly describe the conceptual framéwiarwhich
a high-level scene interpretation is determined by coonstrg a descrip-
tion of the scene in terms of concepts provided in a concékhwaviedge
base. The survey of the learning mechanisms for both pxienticcur-
rences and the conceptual event models is presented iS8cti

2.1 Conceptual Knowledge Base

A conceptual knowledge base (CKB) consists of scene modé&ish are
conceptual entities for high-level scene interpretatiofs define a scene
model in a CKB, one must choose an appropriate represemsfiarmal-
ism. In [13], “aggregates” are introduced as represemntationits for ob-
ject configurations, occurrences, episodes and other ptsmeéich oc-
cur in high-level interpretations. The structure of an agaite has several
properties that are found to be natural and useful for heglellscene inter-
pretations. First, the structure is composed of parts veldtions between
the parts, giving rise to a partonomy which is the hieramahstructure in-
duced by part-of relations. Second, it supports a subsoempiierarchy
(taxonomy), where a model may be a specialization of anatioatel (or
the other way around). Third, constraints can be specifieditgtively
and concretely within an aggregate, which is useful for niadespatial
temporal relations in model definitions.

An aggregate can be represented using a frame-based mouél wh
contains the following information: 1) concept name, 2)oaemical par-
ent concepts, 3) parts, and 4) constraints between pangsireF2 shows
a frame that describes an occurrence of placing a cover dola tk the



parts section, local names and concept memberships ofshal\yghenom-
ena (i.e., atable-top, a cover configuration, and the t@mspcurrences of
the objects that are parts of the cover) are tied togethesrto & concept
and satisfying certain constraints, which are expressetdrconstraints
section of the frame. Furthermore, there are time marks lwreéer to
the beginning (tb) and ending (te) of the place-cover oenge. In the
constraints section, there are identity constraints #late constituents of
different parts to each other (e.g., the object of a platesppart occurrence
must be identical to the plate in the cover configuration)eréhare also
qualitative constraints on the time marks associated wathaccurrences.
Spatial constraints are expressed by a cover configuratiochws mod-
eled by another aggregate, e.g., a cup must be placed on top séucer.
This example shows that an aggregate may have other ageseaparts.
Hence, a compositional hierarchy is induced.

name: place-cover
parents: :is-a agent-activity
parts: pe-tt :is-a table-top

pe-tpl :is-a transport with (tp-obj :is-a plate)
pe-tp2:is-a transport with (tp-obj :is-a saucer)
pe-tp3 :is-a transport with (tp-obj :is-a cup)
pe-cv iis-a cover

time marks:  pc-th, pe-te :is-a timepoint

constraints:  pe-tpl.tp-ob = pc-cv.cv-pl
pe-tp2.tp-ob = pc-cv.cv-sc
pe-tp3.tp-ob = pc-cv.cv-cp

pe-tp3.tp-te = pe-tp2.tp-te
pe-tb = pe-tp3.tb
pe-te = pe-cv.cv-tb

Figure 2: A frame-based model for a place-cover. From [13]

The frame-based model is an expressive formalism for repteg) a
concept and can be paraphrased into other formalisms su2ésasiption
Logics, which has well-founded reasoning services.

2.2 Primitive Occurrence Detection

Under a controlled environment, it is possible to detect tiadk a lim-
ited number of objects and obtain object-level descrigti(eg., object
classes, motion flows, 3D trajectories) from a video seqgeienc perform



a high-level scene interpretation, one must map these itptare object-
level descriptions into primitive occurrences defined aagisin the con-
ceptual framework. In most systems, the models of primiieeurrences
are constructed manually based on an extensive knowledtye afomain
of interest. Also, one must know the significant primitivecoences in
advance.

In [13], the mapping is achieved through multiple layerslsteaction.
First, perceptual primitives are computed from objectuesd, providing
the measurements (e.g., distance, angle) between obguatds. Then,
qualitative primitives are defined and computed as preelscaver percep-
tual primitives. For example, a predicate “nearness” cadddamed by a
hard threshold on distance. Finally, a primitive occureeiscdefined as a
conceptual entity that characterizes the coherency of ktafinge primitive
over a time interval (e.g., object in motion, object at re3the computa-
tion of perceptual primitives and qualitative primitives[iL3] requires a
manual construction of the models and a careful hand-tusfittye param-
eters (e.g., in choosing the thresholds or segmenting thatwe occur-
rences). In Section 3, we discuss various mechanisms fometic (or
semi-automatic) detection of primitive occurrences.

2.3 Scenelnterpretation

In [13], scene interpretation is based on a hypothesistestidprocedure.
An observed scene is described in terms of instantiatecesvedels from
the CKB. These instantiated models are called hypotheskar@main-
tained (by verifying their spatial-temporal consisteniy}he interpreta-
tion base. Primitive occurrences detected from objectHdescriptions
provide partial evidence and will be the entry points fortjpanole rea-
soning. In part-whole reasoning, hypotheses in the intéation base are
generated and connected based on the part-of links speicifteé mod-
els. For example, hypotheses about the transports of aqiat@ saucer
are parts of the “place-cover” and may generate a “placestdwpothe-
sis, if all constraints are satisfied and considered asgteoience. The
verification of an instantiated scene model consists ofggaping the time
marks of the updated primitive occurrences to incrementalhstrain the
appropriate time marks of all connected entities in therpriation base.
Spatial constraints are also propagated in a similar fashia 3D space.
In [13], the construction of the model base and the impleatert
of the scene interpretation process are realized by a coafign system



called KonWerk [7]. The representation language in KonWer&bject-
oriented and supports frame-like representations. Kok\ideovides a
mechanism for constructing a configuration (or a hypotleesszene model)
and has a dedicated constraint verification system. A maentavork by
Neumann et al. [13] explores the implementation of the scetezpre-
tation using Description Logics (DL). DL also offers logidgaferences
based on formal semantics, similar to the inferences indirdér predi-
cate logic. Such a logic-based reasoning system is usefahdintaining
the consistency of a large knowledge base.

3 Learning of Event Models

A major issue in implementing a scene interpretation syssawhere the
knowledge of all primitive occurrence types and the striegwf scene
models in CKB comes from. In most cases, this knowledge isi@ttp
programmed by a human user. However, this can be a tediousraod
prone process. Also, when the system is applied in a diffesetting or
context, a different set of primitive occurrences and eséuictures will be
required. In this section, we discuss some of the technifprescquiring
such knowledge (semi-) automatically from actual vide@dat

3.1 Learning Primitive Occurrences

Primitive occurrences are basically qualitative représt@ms of the con-
tinuous space of object-level descriptions and can be iy discretiz-
ing the space into a finite and small number of relevant pdsigb (or
prototypes). The results of discretization may be, henifierent for one
domain from another. One common method for learning disgegiresen-
tations is Vector Quantization (VQ) [6].

VQ is a data compression technique originally used for apprat-
ing the probability density function of a vector variabde) using a finite
number of prototype vectors(t),i = 1,2, ...,k. It has been also applied in
event learning as a method for acquiring prototypical spegimporal rep-
resentations. Galata et al. [10] use a VQ algorithm as a rddtrdearning
the discrete interaction primitives between two vehictea traffic scene.
As object-level descriptions, a feature veckr is used to describe the
relative velocity and the spatial relationship betweenfaremce car and
another car that falls within its attentional window. Theeab interaction
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primitives are abstracted from sequences of feature \&€toi, , ..., F,,

by replacingr, with their nearest (in a Euclidean sense) prototype from a
finite set of prototypical object interactions. Figure Bigirates the learnt
primitive interactions by VQ for the traffic domain examplgpéication.
These can be viewed as a qualitative discretization of théraoous rela-
tional space. This representation is obtained by maxirmgie discern-
ability given a granularity (i.e., the number of relatioresded).

I i
{ g LX i
1
l ! ; !
1
{ 1 I .
] 1 ! i
7

Figure 3: Learnt primitive interactions between a pair diices in a traf-
fic scene. From [10].

A limitation of most VQ techniques (specifically, the k-meaaigo-
rithm) is that the final distribution of prototypes relies i learning bias
(e.g., the number of prototypes and their initial placenveititin the fea-
ture space). Choosing a wrong bias can result in sub-optsgbutions.

An alternative method for learning prototypes is based aediag the
coherency in qualitative primitives over a time intervahig'is in contrast
with the VQ, where the dynamics of a feature sequence isghstded. A
common observation is that an object moves in a task-odemanner,
during which time its motion is consistent. For example,sder a scene
whereCAR, is overtakingCAR,. First, CAR; changes to a neighboring
lane that is free of obstruction. TheBAR, speeds up to position itself
ahead ofCAR.. Finally, CAR; changes the lane back to be in front of
CAR.. Considering an overtaking action as a sequence of thress typ
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movements, a dynamic state-based model such as a hiddeowraddel
(HMM) can be used to learn the distributions of movementgixgies as
well as the dynamics of the sequential actions (e.g., the segmentation
of motion prototypes). A limitation of the state-based nadehat the
number of prototypes must be given to obtain an optimal tésaime as
the VQ). In addition, it also requires that the video datarbesegmented

and labeled (e.g., “overtaking”, “following”).

3.2 Learning High-Level Scene Models

To our knowledge, there is very little amount of work in leaga dynamic
scene model. One of the reasons is that treating time as atmoadtidi-
mension of a 3D space and applying the same techniques foirigaa
3D structure is not valid in general. Time is a unique dimensind can
imply complex causal relations among actions. Such caysgdinerates
an exponential branching factor in the search space. Tdreseearning
a high-level scene model often involves enforcing a leaytias (e.g., in
terms of constraints on the structures or the representtianguages) in
order to control the search space. We divide the literatutbis area into
three categories: finite-state machine induction, tempzagern mining
and logic-based induction.

3.2.1 Finite-state machineinduction

Arguably, one of the most common object behaviors is a carisecse-
guence of actions. A classical learning approach is to ugelaapilistic
finite-state machine (e.g., HMM) to find temporal dependentietween
primitive occurrences. An HMM of action sequences conséts set of
hidden event states, each of which encodes a charactetistidution
of motion features. The dynamics of action sequences arededcby
the probabilistic transitions among the event states. 16silie number of
states, these motion feature distributions and the statesitron proba-
bilities must be learned from the training video data. Afearning, the
HMMs can be used for segmenting sequences of primitive oecaes in
a video. One of the weaknesses of a HMM is that the number tefsstaie
often not known in advance, requiring an extensive trial amdr. With-
out an educated choice of the number of states, the HMM sthte®t
necessarily correspond to occurrence concepts in a ndamgliage. In
recent years, some researchers have proposed methodsfong¢ehighly-
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structured HMMs.

In [2] , Brand develops a method for discovering normativiegwor in
an office environment, which is represented by a “concisédd@én Markov
model. The learning algorithm introduces and exploits anog@c prior
for fast, simultaneous estimation of model structure amdipaters. These
entropically trained models are more concise and highiycttired than the
conventionally trained HMMs.

In [10], Galata et al. use variable-length Markov models [ANIs)
to encode interactive vehicle behavior in a traffic scene. LAV is a
random process in which the memory length varies, in conteas first-
order Markov model. The advantage of having a variable mgheogth is
the ability to locally optimize the length of memory, captg both higher-
order and lower-order temporal dependencies adaptivédp, An contrast
with the hidden states of HMMs, the states of a VLMM corresptimthe
conceptual prototypes discussed in Section 3.1.

3.2.2 Temporal pattern mining

Techniques for mining temporal patterns have been studstiynin the
context of database mining. For example, events in a databfasales
transactions may consist of customer transactions, eaghioh is tagged
with a customer-id, the transaction time and the items bbu@jh exam-
ple of temporal pattern may be that “computers and mice” arelased
first, followed by “printers”, and then “memory sticks”. Uké in HMMs,

events in such a pattern need not be consecutive and customagrpur-
chase other things in between. Elements of a sequentiarpattay also
consist of other sub-patterns.

The research in sequence-mining contains many genesgeoiic al-
gorithms for finding sequences. In most earlier work, redesns have
studied the problem of mining temporal patterns using laggs that place
constraints on partially or totally ordered sets of timep®ie.g., sequen-
tial patterns [1] and episodes [15]. More recently thereldesen work on
mining temporal patterns using interval-based pattergdages [9, 3, 8].
Even though the languages and learning frameworks vary grtteese
approaches, they all use standard general-to-specificts¢achniques,
where the learning results obtained at ¢@pe used to constrain the search
space of the models to be specified further at &te[d.. One advantage of
these methods is that the patterns are searched based verfcggand can
handle a noisy temporal data set.
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3.2.3 Logic-based induction

As described in section 2.1, temporal events can be regezsesing a
logic-based language. Given a set of both positive and iveg@iaining
examples, a common general-purpose relational learncignigue such
as inductive logic programming (ILP) [12] can be applied[4] relations
among audio-visual concepts in a game playpager-scissor-stonare
learnt using PROGOL [11]. Relations of event concepts in BRQ are
represented by horn clauses and lack the handling of cendenhains
(both time and space) necessary for a general visual evergisentation.

In [5], Fern et al. propose a simple logic called AMA (sim@di
from Allen’s temporal logic) for representing temporal erige Spatial
relations of objects are represented implicitly using dengoncepts of
force-dynamic (e.g., the touching of object bounding bdxe8ased on
the AMA language, they provide a mechanism for learning t@malprela-
tional, force-dynamic event definitions from a positivdyanput.

4 Discussion

In this review, we have illustrated several computatiomaifeworks for
dynamic scene interpretation. A common approach in Connpigeon is
to model visual events as a statistical process (e.g., HNiV.large con-
ceptual knowledge base, such statistical approaches aneabto fail and
a logic-based representation provides an attractivenaitie. In a logic-
based approach, an event is modeled in a hierarchical fashiiere prim-
itive occurrences are abstracted from pixel-based imagesentations.
These primitive occurrences provide a basis, on which aescmwdel is
constructed using logic-based languages.

We have reviewed some learning techniques that automagzaodel
construction processes for primitive occurrences and-teghl scene mod-
els. Visual event learning is an inherently ill-posed pewsh) due to the
complex causal relations induced by time. Even though teagvances
have been made in all fronts, many of the existing learniogrigues can
only cope with simple event patterns.

A logic-based induction seems to provide a generic solutothe
learning of hierarchical event models necessary for a kewgeeptual knowl-
edge base. Logic-based inductive learning approachesiféeeedtiated
by the languages used for representing the events. Whilthe lan-
guage needs to be expressive enough to represent reatistie mmodels,
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it is known that the determination of concept subsumptiothenexpres-
sive First-Order Logics is semi-decidable. Most learnipgraaches often
simplify the representational languages that limit therimsuof the sub-
sumption and generalization problems. We believe thatrdetoff be-

tween the expressiveness of the language and the compbéxitgiuctive

process is likely to play a key role in the future research.
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