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Abstract

In this paper, a novel approach for creating config-
uration models is supplied by introducing a meta-
knowledge base that enables the construction of
configuration models. The meta-knowledge base
represents all knowledge bases that can be ex-
pressed with a given configuration language, in the
case of this paper, with the Component Descrip-
tion Language CDL. The meta-knowledge base it-
self is again represented with CDL and thus, at the
metalevel it can use configuration tools that relay
on CDL. With this approach inference techniques
that are normally used for configuration of techni-
cal systems can be applied for the construction of
configuration model, i.e. during knowledge acqui-
sition and evolution.

1 Introduction

Knowledge-based configuration has its origin in the task of
configuring physical components like drive systems [Ranze
et al., 2002] or elevators [Marcus er al., 1988]. For example
in [Giinter, 1995] configuration is defined as “the composi-
tion of technical systems from parameterisable objects to a
configuration, that fulfills a certain task™ or Stefik defines in
[Stefik, 1995] configuration tasks as tasks that “select and ar-
range instance of parts from a set”. The focus is set on the
composition of parts to aggregates and thus, on the composi-
tional relation has-parts.

Naturally, in all approaches descriptions of objects are
composed, not the physical objects themselves. By doing
so, configuration can be understood as model construction
[Buchheit et al., 1995; Hotz and Neumann, 2005; Hotz,
2009]. From the configuration point of view model construc-
tion deals with the composition of arbitrary artifacts on the
basis of a logical theory. Where a strict separation of the log-
ical theory, i.e. the knowledge base or configuration model,
and the logical model, i.e. the configuration or better con-
struction is issued. Starting from a knowledge base a con-
figuration system composes a construction that is consistent
with the knowledge base, i.e. a logical model of the knowl-
edge base is created.

Following this understanding of the configuration task the
above mentioned has—-parts relation is more a has rela-

tion, which is applied to various domains e.g. services [Ti-
ihonen et al., 2006], where e.g. a client has a certain in-
surance demand, or to software [Hotz et al., 2004], where
a software component has a certain feature, to scene inter-
pretation [Hotz, 2006], where a certain scene description has
observed or hypothized objects or actions. The has rela-
tion determines what part descriptions are to be integrated
in a resulting construction (i.e. a system description). By
taking up such a perspective sometimes considered concep-
tual mismatches [Tiihonen et al., 2006], which may come up,
when using configuration systems in non-physical domains,
are avoided.

Taking a further step, one may look at configuration models
as a type of software that is constructed during a knowledge-
acquisition process. Thus, the questions arise: “Can the con-
struction of configuration models be supported by configura-
tion tools?” or “What are the parts that are composed in such
an approach?” or “How does a configuration model that en-
ables the configuration of configuration models (i.e. a meta-
configuration model) 1ook like?”.

An application of such a meta-configuration model is nat-
urally to support the knowledge-acquisition process needed
for knowledge-based configuration systems. In a first phase
of a knowledge-acquisition process the typically tacit knowl-
edge about a domain is extracted by applying knowledge-
elicitation methods and high interaction between a knowl-
edge engineer and the domain expert (knowledge-elicitation
phase). A model sketch is the result, which in turn is for-
malized during the domain-representation phase. During
this phase a configuration model is created. The configura-
tion model has to be expressed with the facilities of a con-
figuration language. The meta-configuration model can be
used to check such configuration models for being consistent
with the configuration language. Thus, by using the meta-
configuration model as a knowledge base of a configuration
system, the domain-representation phase can be supported
similarly to a configuration process.

In this paper, we will elaborate answers to the mentioned
questions by first presenting a construction language, i.e. the
Component Description Language CDL, which enables the
description of domain objects (see Section 2). We than in-
vestigate in a concept for a configurator that enables the con-
figuration of arbitrary configuration models, i.e. a meta con-
figurator and its meta-configuration model (Section 3). We



partly implement such a meta configurator by using the con-
figuration system KONWERK [Giinter and Hotz, 1999]. A
discussion and a summary is provided in Section 4 and Sec-
tion 5 respectively.

2 The Component Description Language

2.1 A Sketch of CDL

The Component Description Language CDL introduced here
is similar to existing other configuration languages as they
are described in [Soininen et al., 1998; Stumptner, 1997;
Felfernig et al., 2002; Cunis et al., 1991; Giinter, 1995]. The
language mainly consists of two modeling facilities:

Concept Hierarchy Domain objects are described using
concepts, a specialization hierarchy (based on the is-a
relation), and structural relations. Concepts gather all
properties, a certain set of domain objects has, under a
unique name. A specialization relation relates a super-
concept to a sub-concept, where the later inherits the
properties of the first. The structural relation is given
between a concept c and several other concepts 7, which
are called relative concepts. With structural relations a
compositional hierarchy based on the has-parts rela-
tion can be modeled as well as structural relationships
like has-feature or has—concept. Parameters spec-
ify domain-object attributes with value intervals, sets of
values (enumerations), or primitive values. Parameters
and structural relations of a concept are also referred to
as properties of the concept. Instances are instantiations
of the concepts and represent concrete domain objects.
When instantiated, the properties of an instance are ini-
tialized by the values or value ranges specified in the
concepts.

Constraints Constraints summarize conceptual constraints,
constraint relations, and constraint instance. Conceptual
constraints consists of a condition and an action part.
The condition part specifies a structural situation of in-
stantiated concepts. If this structural situation is fulfilled
by some instances (the instances match the structural sit-
uation), constraint relations that are formulated in the
action part are instantiated to constraint instances.'

Constraint relations can represent restrictions between
properties like all-isp or create-instance. Fig-
ure 1 shows the definition of the predefined constraint
relations used in the following. The constraint rela-
tions create—instance and integrate-instance
are later used for constructing structural relations and
thus, provide main facilities for creating resulting con-
structions.

Knowledge processing is done by the inference techniques
taxonomical reasoning, value-related computations like inter-
val arithmetic, establishing structural relations, and constraint
propagation. The structural relation as the main machinery

!Thus, conceptual constraints are similar to rules, except the ac-
tion part yields to instantiations of constraint relations not to changes
in objects like rules do.

integrate-instance <setl instancel instance2 set2>
Integrate instancel into set2 and instance? into
setl. instancel and instance?2 than have
established structural relations among them.

all-isp <set type>
Ensures that all objects in set are subtype of type.

Figure 1: Some predefined relations of CDL.

(define-relation :name has-elements
:inverse element-of
:mapping m-n)

(define-concept :name Door
:specialization-of Opening
:element-of
((:type Scene-Aggregate :min 0 :max 2)
(:type Entrance :min 0 :max 1)
(:type Balcony :min 0 :max 1)))

(define-concept :name Entrance
:specialization-of Opening
:has-elements

((:type Scene-Object :min 1 :max 3)

(:type Door :min 1 :max 1)
(:type Wall :min 0 :max 1)
(:type Roof :min 0 :max 1)
(:type Stairs :min 0 :max 1))

(define-concept :name Balcony
:specialization-of Scene-Aggregate
:has-elements

((:type Scene-Object :min 1 :max 3)

:type Railing :min 1 :max 1)
:type Window :min 0 :max 1)
(:type Door :min 0 :max 1)))

Figure 2: Example of a concept definition in CDL. The struc-
tural relation has-elements is defined, which relates one
aggregate with several parts and one part with several aggre-
gates. Furthermore, several concepts are defined with number
restricted structural relations. The right side of the operator
: = consists of the super-concept of all relative concepts and
the total minimal and maximal number of those concepts. The
left side restricts the number of each type.

causes the constructive notion of the language: if such a rela-
tion is given between a concept c and several relative concepts
r, depending on what exists first as instances in the construc-
tion (c or one or more of the relative concepts r), instances for
the other part of the relation are created and the construction
increases.

A configuration process (or better model-construction pro-
cess) applies these inference techniques in a certain way and
constructs step-by-step a construction. At each step a current
partial construction is issued. The knowledge needed for this
processing is modeled by further modeling facilities, i.e. a
task description and procedural knowledge. The task descrip-
tion is given in terms of an aggregate, which must be con-
figured (the goal), and possibly additional restrictions such
as choices of parts, prescribed properties, etc. Furthermore,
the configuration process provides a stepwise composition of
a construction. Each step is one of the following kinds of



construction steps: fop-down structuring (e.g. aggregate in-
stantiation), bottom-up structuring (e.g. part integration), in-
stance specialization, and parameterization. A step reduces
a property value of an instance to a subset or finally to a con-
stant. Procedural knowledge declaratively describes the se-
lection of those steps and the inference techniques to be used.

Thus, adding facilities for task descriptions and procedu-
ral knowledge to CDL one gets a complete configuration lan-
guage like the Configuration Knowledge Modeling Language
CKML described in [Hotz et al., 2006]. However, in this pa-
per we concentrate on the first mentioned modeling facilities
of concepts and constraints and try to express them with CDL
again. CDL is fully described in [Hotz, 2009].

2.2 Parts of the Metamodel of CDL

For expressing the goals of this paper, we give more details
for the definition of structural relations in CDL.

Concepts and constraints of CDL are given by an abstract
syntax (see Figure 3), a concrete syntax (see Figure 2 for an
example?), and several consistency rules.

For describing CDL with an abstract syntax, we introduce
three facilities: a knowledge element, a taxonomical relation
between knowledge elements, and a compositional relation
between knowledge elements. However, these facilities are
not to be mixed up with the above mentioned CDL facilities:
concepts, a specialization relation, and structural relations.
See Figure 3, a CDL concept is represented with a knowledge
element of name concept, a CDL structural relation is rep-
resented with the knowledge element relation-descriptor.
The fact that CDL concepts can have several structural rela-
tions is represented with a compositional relation with name
has-relations. Similarly parameters are represented. Thus,
the above mentioned modeling facilities of CDL are repre-
sented with these metalevel facilities.

In Figure 4 further parts of the metamodel are given for
representing structural relations. The fact that a concept is
related by a structural relation of other concepts (the relative
concepts) is represented with three knowledge elements and
three compositional relations in a cyclic manner.

Several consistency rules define the meaning of the syntac-
tic constructs. For the structural relation, one rule defines that
the types of the relative concepts of a structural relation have
to be sub-concepts of the concept on the left side of the opera-
tor : = (rule-5). Additionally consistency rules are given that
check CDL instances, e.g. one rule defines when instances
match a conceptual constraint (rule-6).

3 A Concept for a Meta Configurator
3.1 What CDL provides

The main feature of CDL is given by the use of its inference
techniques like constraint propagation (see Section 2). By
representing the knowledge of a domain with modeling fa-
cilities of CDL (like concepts with specialization, structural,

2For the examples, the facade domain is used where the domain
objects are parts of houses like balcony, door, stories. The purpose
is to construct scene interpretations from facade images (see [Hotz,
2008]).
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Figure 3: Metamodel for a concept of CDL

concept

Fommmmmmmmm
'
'

has-concept:

relation descriptor
name
operator

structural specificator
minimum
maximum

Figure 4: Metamodel for a structural relation of CDL

and constraint relations) those inference techniques can be
applied for model construction. This representation is basi-
cally a generic description of domain objects of a domain at
hand. For the representation of concrete domain objects this
description is instantiated. Such instances are related to each
other through the relations. Furthermore, instances can be
checked for concept membership.

What does this mean for the representation of CDL in
CDL? In this case, the domain consists of CDL knowledge
bases. A Meta-CDL knowledge base (Meta-CDL-KB) gener-
ically represents all knowledge bases that can be expressed
with CDL (see Section 3.2). Doing so, the above mentioned
inference techniques can be used for CDL knowledge bases.
For example, a knowledge base G for a certain domain D
(like the fagcde domain) can be created through instances of
concepts of the Meta-CDL-KB. Examples are concept-mm
for representing concepts and parameter-mm for represent-
ing parameters (see Figure 5). These concepts are related to
each other e.g. concept-mm has-parameters parameter-
mm. Through a configuration process, which applies the in-
ference techniques of CDL in a certain way, a knowledge base
G of adomain D can be created. Furthermore, a given knowl-
edge base can be checked, if it can be constructed in principal
with the Meta-CDL-KB, i.e. if it is a CDL knowledge base.
An architecture that supports these tasks is given in Section
3.3.



3.2 CDLin CDL

For the presentation of CDL in Section 2 three facilities are
used, i.e. knowledge elements, taxonomical relation, and
compositional relation. Those are mapped to the CDL con-
structs concept, specialization relation, and structural re-
lation respectively. For example, the knowledge elements
for describing the CDL facilities in Figure 3 concept, rela-
tion, and parameters are represented with the meraconcepts
concept-mm, relations-descriptor-mm, and parameter-
mm (see Figure 5).

Furthermore, the consistency rules of CDL have to be rep-
resented. This is achieved by defining appropriate constraints,
which in turn use value-related computations (Section 2) for
computing appropriate values. In Figure 6 a conceptual con-
straint is represented, which checks the types of a structural
relation.’

Also instances can be represented on the metalevel by in-
cluding a metaconcept instance-mm for them. Through
these instances also conceptual constraints and their match-
ing instances can be represented (see Figure 7). Furthermore,
the fact that instances fulfill a certain conceptual constraint is
represented through establishing appropriate relations using
the constraint relation integrate—instance. Note, that
also self references can be described, e.g. a concept-mm is
related to itself via the has-superconcept-mm relation (see
also the loop in Figure 3).

3.3 A Meta-Knowledge Server

In this section, we describe the use of the Meta-CDL-KB for
the construction of a CDL knowledge base for arbitrary do-
mains. This use is realized by introducing a Meta-Knowledge
Server (MKS) for supervising the construction of the CDL
knowledge base. The MKS handles the current status of
the evolving CDL knowledge base during the knowledge-
acquisition process as well as the current status of CDL in-
stances during a configuration process.

In Figure 8, we sketch the first case. the MKS uses the
Meta-CDL-KB as configuration model M. Furthermore,
MKS uses the model-construction process for supervising
the construction of a configuration model G of a given do-
main. If e.g. a concept c of the domain is defined with
define-concept the MKS is informed. The MKS observes
the activities during the construction of the CDL knowledge
base, i.e. during the domain-representation phase. The MKS

e supplies services like check-knowledge-base, add-
conceptual-constraint,

e creates appropriate instances of Meta-KB-CDL meta-
concepts (e.g. concept-mm or conceptual-constraint-
mm,),

e applies the typical model-construction process by using
procedural knowledge,

e uses constraint propagation for checking the consistency
rules,

e completes the CDL knowledge base by including
mandatory parts, and

3For a complete mapping of the CDL consistency rules to con-
ceptual constraints see [Hotz, 2009].

(define—concept :name concept-mm
:specialization-of named-domain-object-mm
:concept-of-dom-mm (:type domain-mm)
:superconcept-of-mm

(:type concept-mm :min 0 :max inf
:in-some-mm (:type some-mm :min 0 :max inf)
:has-superconcept-mm

(:type concept-mm :min 0 :max 1)
:has-relations-mm

(:type relation-descriptor-mm :min 0 :max inf
:has-parameters—-mm

(:type parameter-mm :min 0 :max inf)
:has-instances—-mm

(:type instance-mm :min 0 :max inf))

(define-concept :name relation-descriptor-mm
:specialization-of named-domain-object-mm
:relation-of-mm (:type concept-mm)
thas-left-side-mm (:type some-mm :min l:max 1)
thas-right-side-mm (:type some-mm :min O:max inf
thas-relation-definition-mm

(:type relation-definition-mm :min l:max 1))

(define-concept :name some-mm
:specialization-of domain-object-descriptor-mm
:parameters ( (lower-bound [0 inf]

(upper-bound [0 inf])
rin-relation-left-mm
(:type relation-descriptor-mm)
:in-relation-right-mm
(:type relation-descriptor-mm)
:some-of (:type concept-mm))

(define-concept :name instance-mm
:specialization-of named-domain-object-mm
:instance-of-dom-mm (:type domain-mm)
rinstance-of-mm (:type concept-mm)
:matching-instance-of-mm

(:type conceptual-constraint-mm)
:has-relations-mm

(:type relation-descriptor-mm :min 0 :max inf
:has-parameters-mm

(:type parameter-mm :min 0 :max inf)

Figure 5: Formalizing the knowledge elements shown in Fig-
ure 3 with CDL concepts.

e checks consistency of created parts of G.

The MKS integrates concepts of GG as instances of meta-
concepts of M in the current partial construction, which
represents G at the metalevel. Changes in already de-
fined concepts are represented by backtracking on the met-
alevel model-construction process. By using backtracking
approaches, especially dependency-based backtracking (see
[Hotz et al., 2004; Ferber et al., 2002]), dependencies of mod-
eling decisions can be managed. Thus, changes of a CDL
configuration model (i.e. during the knowledge-acquisition
process or during evolution [Ménnisté and Sulonen, 1999])
are basically changes of G, i.e. changes of the currently con-
structed model on the metalevel. Evolution is backtracking
on the metalevel.

Besides this construction of CDL knowledge bases the
MKS can scrutinize CDL instances, which are created dur-
ing a model-construction process. For this task, MKS is sup-
plied with such instances (see Figure 9) and creates instances
of the metaconcept instance-mm. By doing so consistency
rules for instances represented as conceptual constraints on
the metalevel can be checked.

Looking from the MKS perspective the construction of a
CDL knowledge base can be seen as the interpretation of



(define-conceptual-constraint
:structural-situation

:name consistency-rule-5

((?c :name concept-mm)

(?rd :name relation-descriptor-mm
:relation-of-mm ?c)

(?svt :name some-mm
:in-relation-left-mm ?rd)

(?stdi :all :name some-mm

tin-relation-right-mm ?rd))
:constraint-calls
((all-isp ?stdi ?svt)))

Figure 6: A conceptual constraint representing consistency
rule 5. The concepts of the right side of a relation descriptor
has to be sub-concepts of the left side.

(define-concept :name conceptual-constraint-mm
:specialization-of named-domain-object-mm
:structural-situation

(:type concept-expression-mm :min 1 :max inf)
:constraint-calls
(:type constraint-call-mm :min 1 :max inf

:matching-instances

(:type instance-mm :min 0 :max inf))

(define-conceptual-constraint
:name instance-consistency-rule-6
:structural-situation
((?cc :name conceptual-constraint-mm)
(?1 :name instance-mm
:self (:condition
(instance-matches-cc-p *it* ?2cc))))
:constraint-calls
((integrate-instance-relation ?i
(matching-instance-of ?i) ?cc
(matching-instances ?cc))))

Figure 7: Describing conceptual constraints with there
matching instances on the metalevel.

an external system similar to the interpretation of an outside
scene. MKS observes the construction of the CDL knowl-
edge base and tries to integrate the observations by using the
Meta-CDL-KB. This task is similar to scene interpretation
where evidence in a scene is interpreted by constructing an
interpretation on the basis of a model for anticipated scenes.
Thus, similar implementations can be applied for the MKS
like top-down and bottom-up structuring, spontaneous instan-
tiation, and merging (see also [Hotz and Neumann, 2005;
Hotz, 2006]).

We implemented parts of the meta configurator with the
configuration system KONWERK [Giinter and Hotz, 1999].
The Meta-CDL-KB could be used for constructing knowl-
edge bases for a PC-domain. However, first experiments de-
mand the need of highly interactive facilities for visualizing
the complex relational structures of meta-level instances, e.g.
visualizing which some-mm instance belongs to the which
concept-mm during the configuration process.

4 Discussion

The model-construction view as it is emphasized in this work
is a systematic generalization of structure-oriented configu-
ration like it is provided by [Giinter, 1995; Soininen et al.,
1998] and others. This is mainly achieved by focusing on the
structural relation, which ensures existence of instances in the
resulting construction. These instances build the constructed

Constructing domain model G
for domain D

Meta knowledge server with
domain model M

Concepts as evidence | Create instances of concept concept-mm

Define CDL concepts for domain D

Process model construction including

. checking the consistency rules for concepts
Consistency results, g y p

Accepting consistent concepts and | completed domain model

additional model parts

Provide completed domain model
as current partial construction

Figure 8: Meta-knowledge server applied to constructing a
configuration model.

Constructing of a configuration of a
technical system by using domain model G

Meta knowledge server with
domain model M

Create CDL instances Instances as evidence Create instances of concept instance-mm

Process model construction including
checking the consistency rules for instances
Consistency results Provide partial configuration for the technical
system as partial configuration of domain model M

Accepting consistenc instances

Figure 9: Meta-knowledge server applied to constructing a
configuration.

model. This model is a description of the desired technical
system, which is used e.g. for the production process. In this
sense, also other configuration approaches like connection-
based [Mittal and Frayman, 1989], resource-based [Hein-
rich and Jiingst, 1991], or function-based [Najman and Stein,
1992] can be seen as model-construction approaches. This
view to configuration enables the concise application of con-
figuration tools in environments like services, software, or
like in this paper on metalevels. However, for model con-
struction seldom supported facilities are needed as there are:

e The representation and processing of cyclic relational
structures. Those techniques are sometimes avoided like
in [Magro et al., 2002; Arlt et al., 1999].

e Sophisticated control mechanisms like bottom-up and
top-down construction. Typically only top-down is em-
phasized in configuration systems.

e Connecting model construction with other external sys-
tems or the real world during the model-construction
process demands spontaneous instantiation of concepts.
In configuration systems only for creating the knowl-
edge base external data like databases are used and the
resulting configuration is exported for producing the
configured system.

The creation of a metamodel for CDL with the aid of CDL
has its tradition in self-referencing approaches like Lisp-in-
Lisp [Brooks er al., 1983] or the metaobject protocol, which
implements CLOS (the Common Lisp Object System) with
CLOS [Kiczales er al., 1991]. Such approaches demonstrated
the use of the respective language. In case of CDL the meta-
knowledge server is enabled. It makes strong use of the im-
plemented inference techniques of CDL like constraint prop-
agation.

The meta-knowledge server is basically an implementation
of a configuration tool on the basis of the Meta-CDL-KB, i.e.
of a configuration model. A typical configuration tool is im-
plemented with a programming language and an object model



implemented with it. During this implementation one has to
ensure correct behavior of model construction and the infer-
ence techniques. By using CDL this behavior (e.g. the consis-
tency rules) is declaratively modeled, not implemented. The
bases for this realization are of course the implementation of
value-computation methods and constraint mechanisms.

The here introduced meta-knowledge base has some rela-
tions to metamodeling approaches like described in [OMG,
2006; 2007; Kiihne, 2006; Hesse, 2006]. Thus, in the follow-
ing, we take a first glance to some aspects of metamodeling
(see also [Asikainen and Minnisto, 2009] for a deeper anal-
ysis of metamodeling). The main task of metamodeling is
to specify modeling facilities that can be used for defining
models, see for example [OMG, 2007]: “A metamodel is a
model that defines the language for expressing a model”. Or
compiled to terms used here: “The Meta-CDL-KB is a con-
figuration model that defines CDL, which in turn is used for
expressing a configuration model” (see Figure 10). However,
the notion of modeling is still not finally fixed (see [Kiihne,
2006; Hesse, 2006]), or as [Hesse, 2006] says: “A complete
and unanimously accepted theory of modeling is still emerg-
ing.”. Besides these theoretical issues, in our approach a more
pragmatical and operational view is taken, i.e. how to apply
a metamodel for supporting the use of the language the meta-
model defines. From this perspective, let us examine the Re-
quirements Specification Language RSL [Kaindl er al., 2007,
Smialek et al., 2007; Hotz et al., 2009]. A metamodel defines
elements typically used for specifying requirements as their
are use-cases, scenarios etc. A tool (RSL-Tool) enables a re-
quirements engineer to express her use-cases etc. through a
user interface and the tool constructs a requirements specifi-
cation expressed in RSL. Thus, the metamodel of RSL is used
by the implementor of the RSL-tool, which in turn ensures a
requirements specification that is compliant to the metamodel
of RSL (see Figure 10). However, the implementation is done
manually and specific for the RSL-metamodel. The creation
of metamodel compliant models can be supported by a con-
figuration tool.

A configuration tool supplies mainly three tasks:

1. It enables the expression of a configuration model that
is consistent with the configuration language, which the
tool implements. For this task, it performs consistency
checks of given configuration models (or parts of it) with
the language specification.

2. On the basis of the configuration model, the configura-
tion tool supports the creation of constructions that are
consistent with the configuration model. For this task,
the tool interprets the logical expressions of the con-
figuration model and creates constructions according to
these definitions.

3. The configuration tool supplies user interfaces for ex-
pressing the configuration model and for guiding the
construction process. The configuration model can be
typically given in textual forms or with graphical user
interfaces that enable the creation of concepts and con-
straints.

Thus, a configuration tool contains means for supporting
the step from a domain model to a system specific model (see

Figure 10). By introducing configuration models in the model
chain as presented in Figure 10, an additional level is intro-
duced, i.e. the domain-model level. This level represents all
systems of a domain. The model for a system is an instan-
tiation of the domain model. This instantiation is computed
by a configuration tool. In our metamodeling approach based
on the Meta-CDL-KB this instantiation facility is used for
supporting the step from the configuration language to the
domain model, i.e. the domain-representation phase. By ap-
plying the configuration tool to a domain model that contains
every model of a language, i.e. by applying it to the Meta-
CDL-KB, the construction of a domain model of an arbitrary
domain is supported. This is achieved because of the gen-
eral applicability of the language constructs of CDL, which
are based on logic (see Section 2). Furthermore, other advan-
tages of configuration tools, like a declarative representation
of the configuration model, or the use of the inference tech-
niques can thus applied to the Meta-CDL-KB.

A similar approach as supplied by the meta-knowledge
server is provided by [Kienzler, 2000] who uses meta plan-
ning. A primary construction process is supported by a sec-
ondary analysation process on the metalevel. The configura-
tion process is controlled by a meta planner. The meta planner
is strongly coupled with the configuration process. However,
it is realized by a further external implementation not in the
configuration language itself.

Other approaches like [Dietrich er al., 2004] also use a
meta-model approach for supporting the configuration pro-
cess. However, by using a configuration language for ex-
pressing the metamodel, in our approach a configuration tool
can directly applied for making use of the metalevel.

5 Summary

The paper shows how a configuration language can be ex-
pressed with its own representation facilities. Thus, the parts
that are composed in such a case are the modeling facilities
the configuration language supplies, i.e. concepts, parame-
ters, constraints etc. The configuration model contains con-
cepts, parameters, constraints that again represent concepts,
parameters etc. By doing so, inference techniques that are
provided by the language can be used for constructing config-
uration models and thus, support the knowledge-acquisition
process. In this case, the configuration tool is mainly used
for checking the consistency of the constructed configuration
models. Thus, the use of the inference techniques support
the formal basis of such processes. Further work will empha-
size user-interface tools that support the visualization and ma-
nipulation of highly structured relationships including cyclic
structures that occur on the metalevel.
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