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Abstract.
the configuration of aggregates using existing parts obseiv re-
ality. Typical problems that can be solved with such an apgho
are recognition problems that construct aggregates fraengob-
servations. One instance of the conceptual framework engdy the
system SCENIC, which allows the interpretation of videonsec®s
showing table-laying scenes.

1 Introduction

Configuration is the construction of aggregates using pdréscer-
tain domain. In a typical configuration schema, startingnfleogiven
goal object that represents the aggregate to be configumsdagd-
gregate is decomposed in its parts step by step. Thus, algeah,
top-down approach is typically used for constructing a cunfi-
tion. Furthermore, the parts that should be in the aggregatprevi-
ously described in a configuration model. This configuratiwodel
describes implicitly all configurations that can be constied. Typ-
ically a knowledge acquisition process creates that cor#tgn
model. A knowledge engineer acquires existing componentset
configured and formalizes them in the configuration modeh $ec-
ond step, the configuration process uses the configuratiatenfior
configuring new products. During this configuration prodbgscon-
figuration model is seen as fixed. If parts exist, that shoeldhbe-
grated into the aggregate, they are defined in a task spéicifican
the basis of the configuration model before the configurgirocess
starts. No further existing parts are considered, besidsethThus,
during the configuration process the real existing part®algcon-
sidered indirectly through the configuration model. Thefigama-
tion process relays on the fact that the real world is in thgesas
it was during knowledge acquisition. If new parts are creédtethe
real world during the configuration process, those compisnare
not taken into account. Only if the configuration model is ated
(e.g. by a third step - an evolution step), those new part&ddoel
taken into account. Summarizing, we speak of a three-steaph
— knowledge acquisition, configuration process, evolupoocess.
The relationship between the configuration model and tHenredd
is only established during knowledge acquisition, the sstcifica-
tion and probably an evolution process, but not during theigara-
tion process. An example of such an approach is given in [6].

In the standard configuration schema, as often in knowlédged

This paper presents a conceptual framework that allowsapproach can be improved by taking into account the partctra

be observed during the configuration process.

In this paper, we discuss tlwenfigure-from-observed-partsob-
lem, or CofOP-Problenfor short. This problem focuses on configu-
rations that can be derived from real existing and obsereet jat a
first place. Only in a second step requirements are incluoledm-
pute the desired configurations. In this case, it can be edgbat the
resulting configuration has really counterparts in the weald.

In Section 2, we have a closer look at the CofEP-Problemi@ect
3 focuses on structural configuration as a starting pointh&score
of the paper, we present a conceptual framework (see Setfian
general system (see Section 5) as well as a concrete ingtbswweh a
system, a system for interpreting video scenes (Sectiorh@)paper
concludes with a discussion (Section 7) and an outlook ini@e8.

2 Problem Description

The configure-from-observed-par{€ofOP-Problem) can simply be
rephrased with following questions:

1. Given a number of parts, what aggregates can be built \vétbet
parts? What can we do with the things that exist?

2. Now, we have a partial aggregate made from existing pattat
is missing to make this aggregate to fulfill given requireta@n

3. What role do aggregates play in finding a final configur&tion
What customer requirements can be fulfilled with the aggesga
that are constructed?

In the CofOP-Problem we do not start the configuration from re
quirements and than try to infer needed parts, but we stamt the
things that exist and infer the use of the constructed aggesg

Typical application examples are those where it is not dlene
beginning what should be configured, or what the aggregdtoak
like. In these cases, goal objects can not be given, but belparts,
which should form the aggregate to be constructed. Thusra exe
plorative task has to be performed for handling the CofO&blem.
Examples are:

e Systems thatinterpretimages; existing parts in this cassteapes
or objects an image processing system can identify in thgésa

e Systems that interpret videos; existing parts in this caghte
tracked objects that can be identified by a tracker (e.g. SCEN
see Section 6).

systems, a gap exists between the real world and the cortfiqura o Systems that build software; existing parts in this cassaftevare

model. However, this schema is suitable for non dynamidrteal
domains, e.g. hardware configuration [8, 2, 7, 11, 9]. Farasibns
with a number of changes (e.g. software configuration) on elye
namic situations (e.g. interpretation of video scenesg) tiniee-step

1 HITeC e.V., University of Hamburg, Germany, email: hotz@imatik.uni-
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components provided by an asset store or software configarat
management system.

An extension of the CofOP-Problem is given with the question

4. What happens if a new part is observed during the configuarat
process?
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In this case, not only previously given parts are considénethe
configuration but parts that are dynamically created. Exasnare
parts that are created in a development process or dynatuétishs
of a video film, which should be interpreted.

3 A Structural Configuration System

A typical structural configuration system designed to suppiwe
configuration of aggregates based on component descigpiioa
knowledge-base is organized in four separate modules:

Concept Hierarchy Conceptsare described using a highly expres-
sive concept description language, and embedded in a taxono

ical hierarchy (based on thes- a relation) and a compositional
hierarchy (based on the structural relaticas - par t s). Parame-
ters specify concept properties with value ranges or setaloés.

Instancesselected for a concrete configuration are instantiations

of these concepts.

Constraints Constraintspertaining to properties of more than one

object are administered by a constraint net. Conceptuaitiaints

are formulated as part of the conceptual knowledge base and

instantiated as the corresponding objects are instadti&ten-
straints are multi-directional, i.e. propagated regaslief the or-
der in which constraint variables are instantiated. At aivergy
time, the remaining possible values of a constraint vagiabk
given as ranges or value sets.

Task Description A configuration task is specified in terms of an

aggregate which must be configured (the goal) and possildiy ad
tional restrictions such as choices of parts, prescribegepties,
etc. Typically, the goal is the root node of the compositidner-
archy.

Procedural Knowledge Configuration strategies can be specified

in a declarative manner. For example, it is possible to pifesc
phases of bottom-up or top-down processing conditionedeon ¢
tain features of the evolving configuration.

A stepwise configuration could be executed by the configumatys-
tem according to the following basic algorithm:

Task specification
Repeat
Det ermi ne current strategy
Det er mi ne possi bl e configuration steps
Sel ect from agenda and execute one of
{ aggregate instantiation,
aggr egat e expansi on,
i nstance speci al i zation,
par anet eri zati on,
i nstance nerging }
Propagate constraints
Check for conflict

An aggregate is completely configured if all properties &f Hy-
gregate have been parameterized, all its required pares besn
completely configured, and all constraints are satisfied oAflict
is encountered when the constraint net cannot be satisfigdithe
current partial configuration. In this case, automatic backing
occurs. Backtracking can be controlled by procedural kedge to
achieve "intelligent backtracking”. An example of such ateyn is

4 Conceptual Framework

The CofOP-Problem requires a distinction of the followisgects:

The reality (Realitéa) are things in the outside, materialized world.
In our case, the real existing parts that can be used for aoifig
span the reality.

Substantiality (Wirklichkei) covers everything the system knows
about the reality. From the view point of the system the subst
tiality constitutes the real world. The substantiality igided into
the outer and inner substantiality.

Evidence space (the outer substantiality, perceived redji)

(Aussere Wirklichkejtis the representation of the reality in the
system. The real world ieflected The evidence space represents
the observed parts that can be used in the configurationc@bje
in this space are calleeividence Evidence is seen as given and
not alterable.

Hallucination space (the inner substantiality) (Innere Wirk-

lichkeit) is the representation of the things that might exist,

i.e. that can be imagined. Objects in this space are calatl

objectsbecause seen from the system point of view, those objects

constitute the real world, even if they do not exist. EacH rea
object might have or might not have evidence; it might or righ
not be justified in the evidence space, i.e. in the realitjusTh
real objects can be justified by evidence or can be imagined

(hypothesizedr hallucinated. Real objects that are imagined

(i.e. have no evidence) are calliedagined objectsr hypotheses

Those real objects that are in fact in the reality (i.e. haigence)

are calledperceived objectsimagined and perceived objects

can be distinguished from each other. However, real ohjécts
justified or not, can be part of aggregates, thus, can form the
resulting configuration. In the hallucination space newliehces
about the substantiality can be made.

The domain-dependent configuration model(die Bedeutuny
contains the knowledge about a certain domain, typicalyee
sented in a knowledge base, i.e. configuration model. Thideo
is used to interpret the substantiality and to infer new obgcts.

5 Technical Aspects

In this section, technical issues concerning the reatinaif a system
that solves the CofOP-Problem are presented.

5.1 Architecture

The general architecture consists of two systems, a loel-nsoric
system and a high-level inference system. The low-leveksy®s-
tablishes the connection to the reality. Examples are:

e animage processing systems which computes shapes orsobiject
an image;

e a warehousing system providing a constantly updated, catmpl
description of all existing parts of a technical system;

e a software asset store or configuration management systm pr
viding existing software components.

The output of the low-level system is mapped to the evidepeee
and represented as evidence in the high-level system (gaseFi).
The high-level inference system is a configuration systhat,.&m-
ploys a certain upper model. This upper model representotieep-
tual framework described in Section 4. The upper model stssi’:

KONWERK [1, 3]. For a more general ontology for configuration 2 Thjs distinction is inspired by Spitzing’s distinctions deein the photogra-

see [10]; for an overview of standard approaches see [4, 13].

phy research, see [12].
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Figure 1. General architecture including the upper model represgtkie
conceptual framework.

e the conceptevi dence- obj ect . Its instances represent the
parts that exist in the reality, i.e. its instances form theeosub-
stantiality. Evidence-objects can have parts, if the lewel sys-
tem is able to observe those, or have no parts, if the low-ssrge
tem can only observe non-structured objects, which is allyic
the case.

e the concept eal - obj ect . Its instances and parts represent all
what is known and what is hallucinated by the system, i.enits
stances form the inner substantiality.

The conceptevi dence- obj ect andr eal - obj ect are re-
lated to each other by the relati@vi dence- of and its inverse
has- evi dence. Areal object may have evidence or may have not,
an evidence object should always be related to a real otjetit;re-
lational aspect are represented with number restrictidaal objects
with ahas- evi dence relation of cardinalityd represent imagined
objects, real objects withlaas- evi dence relation of cardinality

greaterl represent perceived objects. Thus, there are no concepts fo

imagined or perceived objects, because every real objecbean
both roles for distinct situations.

The relationhas- evi dence has following semantics: If an in-
stance of the conceptvi dence- obj ect exists, than an appro-
priate instance of the concepeal - obj ect is created. However,
if an instance of the concepteal - obj ect existsno instance of
the concepevi dence- obj ect is created, because evidence ob-
jects represent the reality, i.e. only the low-level seitsgystem can
trigger the creation of such instances. Thus, they reptésegined
objects as long as no evidence objects are observed by tHevelw
system.

Domain dependent configuration models are added to the up-

per model by specializing the conceptsal - obj ect and
evi dence- obj ect . The specializations @vi dence- obj ect
strongly depend on the low-level sensoric system’s faediand the
data it can deliver, e.g. structured objects or no strudtutgects,
types of objects or descriptions via properties.

The relationevi dence- of establishes a mapping from the ev-
idence space into the hallucination space. This mappin@nsath
dependent. The mapping has to be made with the information pr
vided by the evidence object.

5.2 Operational Aspects

The configuration steps introduced in standard configuratystems
can be used for configuring an aggregate with observed psets (
Section 3 and [5]). However, following aspects are of majopor-
tants for handling the CofOP-Problem:

Configuration from bottom to top, from parts to aggregates:
Processing integration steps from parts to aggregate ifirtt
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Backtracking to the hypotheses generation:During

step performed when using observed parts. For example the
configuration of theevi dence- of relation for an evidence
object is an integration step.

The bottom-up steps can continue into the hallucinatiorezes

long as unique decisions can be made. Thus, all inferenegs th
are justified by the reality are drawn. One may think of thiaggh

as the determination of those things that can be inferrad fre
evidences; or the answer to the question “What can be dotne wit
the parts that exist?” (i.e. Question 1. of Section 2).

Top down for generating hypotheses:In this second step a goal-

object can be selected, which represents certain requitsme
Starting from this goal-object the normal configurationqass is
performed. For example, a specialization is done by selgah
appropriate sub concept, which represents a hypothesis frad
top-down. Through decomposition further hypotheses anemge
ated and integrated in the configuration. One may think af thi
phase as an exploration of high-level concepts, which might
responsible for the objects and occurrences observed .seuiar
thermore, this phase identifies such parts that are missirgph-
structing a complete configuration. Missing parts are thesd
objects that do not have evidence, i.e. the imagined obf€ates-
tion 2. of Section 2).

Use of bottom-up generated objects:If through top-down analy-

sis arequired part is identified, it has to be checked, if qmawi-
ate real object already exists in the configuration, becaueseild
have been generated in the bottom-up phase. This operaten ¢
ates a configuration that contains both, imagined realetdbgnd
evidence-based, perceived real-objects (Question 3.atfdBe?).

Fuse real objects: If a part is generated from top-down and one

from bottom-up, it could be the case, that those two parts are
in fact the same. In this case only one part should be in the re-
sulting configuration. If these generated parts fulfill at@ierfuse
condition, which ensures that they should really be oneabpje
these parts can be fused. This means, that one real objagt-is ¢
ated, which contains all relations and parameters of theador
two parts. The parameter and relation values of the fuseetcbbj
are computed by building intersections. This means thatotea
jects that are related to the former two parts are also cereicto

be fused deep fusp

Spontaneous instantiation: To handle dynamic aspects a config-

uration step is needed that instantiates an arbitrary @bnaie
the evidence space. For example, if a new objects entersea vid
scene, a new evidence instance should be created. Thuswthe |
level system and the high-level system should be synchedrby
synchronization points or steady polling. When new eviéene
stances are created at timethose have to be integrated in the
configuration even if the defined configuration procedureld/ou
focus on another configuration step at timé&urthermore, back-
tracking has to be initiated, because the inferred cormhsstould
be wrong, because the evidence base is changed (Questién 4. o
Section 2).

configura-

tion conflicts might occur as seen above. Because in theidedcr
schema the bottom-up steps are seen as unique inferenoes fro
the evidences, only the top-down hypotheses generatiorbean
backtracked. The first hypothesis which was made can be seen
as a backtracking point. While the evidence instances diogu
their inferences stay in the configuration, all made hypsgkeare
withdrawn and the configuration process proceeds with @noth
hypothesis.

6 SCENIC - an Example Applications

In this section, we shortly present the experimental syS&ENIC
(SCENEe Interpretation as Configuration) which utilizesfauration
technology for concrete scene interpretation experimi@hts



The SCENIC System was built employing the conceptual frame-

work presented in this paper. The example scenes are takam fr

a table-laying scenario: A video camera is installed abovabte
and observes a tabletop. Human agents, sometimes actiregah p
lel, place dishes and other objects onto the table, for elgmpver
a dinner-for-two. It is the task of the scene interpretatsystem
to generate high-level interpretations such as "placeCaar "lay-
dinner-table-for-two”. Occurrences of this kind are coexpénough
to involve several interesting aspects of high-level sdaterpreta-
tion such as temporally and spatially constrained mukgidgect mo-
tion, a knowledge base with compositional structure, andtred for
mixed bottom-up and top-down interpretation steps.

According to the conceptual framework we introduced above,

SCENIC consists of a low-level system, in this case an image p
cessing system. Via a video camera and a tracking systenouhe |
level system observes the table. A so calledmetric scene descrip-

tion (GSD) is generated by the low-level system, which reprasent

the objects and their properties seen in the video film. Tge-fevel
system consists of KONWERK and a configuration model contai
ing the presented upper model and a domain specific modeltite-t
laying scenarios (see Figure 2). KONWERK performs the syliobo
interpretation subtask in SCENIC.

Domain-Object

Real object
T

Physical-Object

~o has-stationary, 0..1

]
has-move, 0.1} - = " has-evidence, 0..n —
' Stationary-Object F===========~ Static-View

Specialization
=% Decomposition

Figure 2. An extract of the domain specific specialization of the upper
model presented in Figure 1.

From the GSD evidence objects are created during configaati
The GSD contains the observed objects as well as their mation
time and space. The bottom-up strategy integrates the resedeb-
jects into real objects and those into aggregates of thediadition
space. For example, in SCENIC transports (like a hand-ptates-
port) are identified during this phase. When the bottom-umtesgy

is exhausted, top-down expansion begins. In SCENIC a hgpoth

sis about a possible table-scene is generated as an aggregat

di nner - f or -t wo. This aggregate is decomposed and further hy-

potheses are generated. This way hypotheses about a fuetredop-
ment of a scene are generated by the typical configuratigs $teg.
aggregate decomposition see Section 3). During this eiqarms
possible occurrences the real objects created by the batpostrat-
egy are used if possible. Thus, a configuratioeaane interpretation
is constructed, which consists of real objects with evidegmud those
without evidence, i.e. imagined and perceived real objdatBigure
3 perceived objects are in realistic shape, imagined abjeith pos-
sible positions are shown with icons.

A fuse operation in SCENIC occurs, when the low-level systems'

cannot provide distinct information about an object. Faraple, a
certain object can only be identified asliah not as acup (e.g. the
cup on the right in Figure 3 cannot clearly separated fronstheer
underneath). From top-down it is inferred that this objexs to be a
cup, because the hypotheses generation determines thistetain
position of a cover only a cup can exist. At this point a reajeot

Figure 3. Result of a scene interpretation: realistic shape for exide
objects, hypothesized objects including their possib&iapregions are
represented with icons and rectangles.

n

is created from top-down, representing a hypothesized aog,a
real-object is created from bottom-up, representing a disbse two
real objects can be fused, if a fuse condition (like posiaod time
overlap) is satisfied. This fusion represents the insiglthefystem,
that the previously not identifiable dish is in fact a cup ggivcertain
hypotheses. This possibility to disambiguate low-levekseic input
through high-level inferences is unique to this approach.

SCENIC was used to interpret video scenes consisting oftabou
300 frames. During this sequence 28 evidence objects @imgju
those evidence objects representing motions) are prate¥kenag-
ined real-objects are created for the hypothdsiser for two(again
including those representing motions). For keeping trefckpatial
and time relations 130 constraints are created during amafiign.
51 interpretation steps were needed to obtain the firstnradiate
scene interpretation (see Figure 3), using 90 sec of CPU (ting
GHz PC). Backtracking and additional 8 interpretation stere
needed to arrive at an alternative intermediate interpoetdor the
hypothesissingle dinnerusing additional 45 sec of CPU time.

The configuration model consists of 50 types of real objests a
34 conceptual space and time constraints. The operaticpaicts
presented in Section 5.2 are covered by 8 strategies.

7 Discussion

Data-driven approaches may take existing parts into ad¢cafin
they refer to them during the configuration process. Daitgedrap-
proaches perform bottom-up construction of aggregates tieir
parts. If those parts are identified during the configuragimtess, a
similar scenario as described in this paper has to be handte-
ever, the conceptual framework presented in this paperlglsepa-
rates hypotheses and evidences. Thus, following fourtgtugcan
be distinguished:

1. Hypothesis, which is supported by an evidence, i.e. tlsioa
has- evi dence is establishedgerceived objegt

Hypothesis, for which no evidence is yet found. This is, dugen
the real object has no relation to an evidence objenagined
objec).

Evidence, which is already interpreted, i.e.
evi dence- of is establishedgccepted evidenge

Evidence, for which it is not yet decided how the evideritausd
be interpreted. This is due, when the evidence has no reldio
an imagined objectnpt accepted evidenge

For data-driven approaches employing a schema, whererneade
are instances of concepts, case 2 cannot be representee asdd

2.

the refatio

4.
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for reasoning, because no distinguishable instances fdemse ob- [9]

jects and hypotheses exist.

A further opportunity to use the presented conceptual freonie
is its ability to support the evolution process, e.g. inwafie config-
uration. To handle the question: What happens if a new obdeyart
comes into play during the configuration process that hasaypping

into the hallucination space? This would indicate evideocsome- |15,

thing which is still unknown for the system (not acceptedienice).
However, because the evidence-object is generic each neloged

part (e.g. a software component) can be represented bytandesof  [12]
evi dence- obj ect and thus can be considerddringthe config-  [13]

uration process. If such a part cannot be mapped to a reaitdbg
configuration system would raise a conflict. Thus, this conéiould
be handled by evolving the configuration model accordingéatew
developed part [6].

8 Summary and Outlook

The configuration from observed parts is a problem in the afea
recognition or interpretation of images and videos. Bu aigechni-
cal configuration like elevators or software-intensiveteyss a repre-
sentation of observed parts, which should be used for camafiign,
is of importance. In this paper, we present a conceptual dvaork
that explicitly represents observed parts and distingisishem from
other parts, without an existing representative in thetseal

An example for an instance of the conceptual framework isryiv
by the system SCENIC, which interprets video films abouteabl
laying scenes. In an upcoming system, which will be usedrtari
preting images of buildings, photographed from the fronfrom a
satellite, we will also apply the described framework. Theldere is
to identify regions in buildings like windows, doors, ropthimneys
as well as aggregates like row of houses or roofs. SimilaQ&I$IC
from a low-level system geometric scene descriptions aveiqed,
which are interpreted with the high-level configurationteys. The
imagined real objects will be used to give feedback to thelkwel
system; for example, to focus on a certain part of the imagelém-
tifying a certain detail of a building.
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