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Abstract. This paper presents a conceptual framework that allows
the configuration of aggregates using existing parts observed in re-
ality. Typical problems that can be solved with such an approach
are recognition problems that construct aggregates from given ob-
servations. One instance of the conceptual framework is given by the
system SCENIC, which allows the interpretation of video scenarios
showing table-laying scenes.

1 Introduction

Configuration is the construction of aggregates using partsof a cer-
tain domain. In a typical configuration schema, starting from a given
goal object that represents the aggregate to be configured, this ag-
gregate is decomposed in its parts step by step. Thus, a goal-driven,
top-down approach is typically used for constructing a configura-
tion. Furthermore, the parts that should be in the aggregateare previ-
ously described in a configuration model. This configurationmodel
describes implicitly all configurations that can be constructed. Typ-
ically a knowledge acquisition process creates that configuration
model. A knowledge engineer acquires existing components to be
configured and formalizes them in the configuration model. Ina sec-
ond step, the configuration process uses the configuration model for
configuring new products. During this configuration processthe con-
figuration model is seen as fixed. If parts exist, that should be inte-
grated into the aggregate, they are defined in a task specification on
the basis of the configuration model before the configurationprocess
starts. No further existing parts are considered, beside those. Thus,
during the configuration process the real existing parts areonly con-
sidered indirectly through the configuration model. The configura-
tion process relays on the fact that the real world is in the state as
it was during knowledge acquisition. If new parts are created in the
real world during the configuration process, those components are
not taken into account. Only if the configuration model is updated
(e.g. by a third step - an evolution step), those new parts could be
taken into account. Summarizing, we speak of a three-step approach
— knowledge acquisition, configuration process, evolutionprocess.
The relationship between the configuration model and the real world
is only established during knowledge acquisition, the taskspecifica-
tion and probably an evolution process, but not during the configura-
tion process. An example of such an approach is given in [6].

In the standard configuration schema, as often in knowledge-based
systems, a gap exists between the real world and the configuration
model. However, this schema is suitable for non dynamic, technical
domains, e.g. hardware configuration [8, 2, 7, 11, 9]. For situations
with a number of changes (e.g. software configuration) or even dy-
namic situations (e.g. interpretation of video scenes) this three-step
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approach can be improved by taking into account the parts that can
be observed during the configuration process.

In this paper, we discuss theconfigure-from-observed-partsprob-
lem, orCofOP-Problemfor short. This problem focuses on configu-
rations that can be derived from real existing and observed parts at a
first place. Only in a second step requirements are included to com-
pute the desired configurations. In this case, it can be ensured that the
resulting configuration has really counterparts in the realworld.

In Section 2, we have a closer look at the CofEP-Problem. Section
3 focuses on structural configuration as a starting point. Asthe core
of the paper, we present a conceptual framework (see Section4), a
general system (see Section 5) as well as a concrete instanceof such a
system, a system for interpreting video scenes (Section 6).The paper
concludes with a discussion (Section 7) and an outlook in Section 8.

2 Problem Description

Theconfigure-from-observed-parts(CofOP-Problem) can simply be
rephrased with following questions:

1. Given a number of parts, what aggregates can be built with these
parts? What can we do with the things that exist?

2. Now, we have a partial aggregate made from existing parts,what
is missing to make this aggregate to fulfill given requirements?

3. What role do aggregates play in finding a final configuration?
What customer requirements can be fulfilled with the aggregates
that are constructed?

In the CofOP-Problem we do not start the configuration from re-
quirements and than try to infer needed parts, but we start from the
things that exist and infer the use of the constructed aggregates.

Typical application examples are those where it is not clearin the
beginning what should be configured, or what the aggregate will look
like. In these cases, goal objects can not be given, but only the parts,
which should form the aggregate to be constructed. Thus, a more ex-
plorative task has to be performed for handling the CofOP-Problem.
Examples are:

• Systems that interpret images; existing parts in this case are shapes
or objects an image processing system can identify in the images.

• Systems that interpret videos; existing parts in this case might be
tracked objects that can be identified by a tracker (e.g. SCENIC
see Section 6).

• Systems that build software; existing parts in this case aresoftware
components provided by an asset store or software configuration
management system.

An extension of the CofOP-Problem is given with the question:

4. What happens if a new part is observed during the configuration
process?
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In this case, not only previously given parts are consideredin the
configuration but parts that are dynamically created. Examples are
parts that are created in a development process or dynamic situations
of a video film, which should be interpreted.

3 A Structural Configuration System

A typical structural configuration system designed to support the
configuration of aggregates based on component descriptions in a
knowledge-base is organized in four separate modules:

Concept Hierarchy Conceptsare described using a highly expres-
sive concept description language, and embedded in a taxonom-
ical hierarchy (based on theis-a relation) and a compositional
hierarchy (based on the structural relationhas-parts). Parame-
ters specify concept properties with value ranges or sets ofvalues.
Instancesselected for a concrete configuration are instantiations
of these concepts.

Constraints Constraintspertaining to properties of more than one
object are administered by a constraint net. Conceptual constraints
are formulated as part of the conceptual knowledge base and
instantiated as the corresponding objects are instantiated. Con-
straints are multi-directional, i.e. propagated regardless of the or-
der in which constraint variables are instantiated. At any given
time, the remaining possible values of a constraint variable are
given as ranges or value sets.

Task Description A configuration task is specified in terms of an
aggregate which must be configured (the goal) and possibly addi-
tional restrictions such as choices of parts, prescribed properties,
etc. Typically, the goal is the root node of the compositional hier-
archy.

Procedural Knowledge Configuration strategies can be specified
in a declarative manner. For example, it is possible to prescribe
phases of bottom-up or top-down processing conditioned on cer-
tain features of the evolving configuration.

A stepwise configuration could be executed by the configuration sys-
tem according to the following basic algorithm:

Task specification
Repeat

Determine current strategy
Determine possible configuration steps
Select from agenda and execute one of

{ aggregate instantiation,
aggregate expansion,
instance specialization,
parameterization,
instance merging }

Propagate constraints
Check for conflict

An aggregate is completely configured if all properties of the ag-
gregate have been parameterized, all its required parts have been
completely configured, and all constraints are satisfied. A conflict
is encountered when the constraint net cannot be satisfied with the
current partial configuration. In this case, automatic backtracking
occurs. Backtracking can be controlled by procedural knowledge to
achieve ”intelligent backtracking”. An example of such a system is
KONWERK [1, 3]. For a more general ontology for configuration
see [10]; for an overview of standard approaches see [4, 13].

4 Conceptual Framework

The CofOP-Problem requires a distinction of the following aspects2:

The reality (Realität) are things in the outside, materialized world.
In our case, the real existing parts that can be used for configuring
span the reality.

Substantiality (Wirklichkeit) covers everything the system knows
about the reality. From the view point of the system the substan-
tiality constitutes the real world. The substantiality is divided into
the outer and inner substantiality.

Evidence space (the outer substantiality, perceived reality)
(Äussere Wirklichkeit) is the representation of the reality in the
system. The real world isreflected. The evidence space represents
the observed parts that can be used in the configuration. Objects
in this space are calledevidence. Evidence is seen as given and
not alterable.

Hallucination space (the inner substantiality) (Innere Wirk-
lichkeit) is the representation of the things that might exist,
i.e. that can be imagined. Objects in this space are calledreal
objectsbecause seen from the system point of view, those objects
constitute the real world, even if they do not exist. Each real
object might have or might not have evidence; it might or might
not be justified in the evidence space, i.e. in the reality. Thus,
real objects can be justified by evidence or can be imagined
(hypothesizedor hallucinated). Real objects that are imagined
(i.e. have no evidence) are calledimagined objectsor hypotheses.
Those real objects that are in fact in the reality (i.e. have evidence)
are calledperceived objects. Imagined and perceived objects
can be distinguished from each other. However, real objects, if
justified or not, can be part of aggregates, thus, can form the
resulting configuration. In the hallucination space new inferences
about the substantiality can be made.

The domain-dependent configuration model(die Bedeutung)
contains the knowledge about a certain domain, typically repre-
sented in a knowledge base, i.e. configuration model. This model
is used to interpret the substantiality and to infer new realobjects.

5 Technical Aspects

In this section, technical issues concerning the realization of a system
that solves the CofOP-Problem are presented.

5.1 Architecture

The general architecture consists of two systems, a low-level sensoric
system and a high-level inference system. The low-level system es-
tablishes the connection to the reality. Examples are:

• an image processing systems which computes shapes or objects of
an image;

• a warehousing system providing a constantly updated, complete
description of all existing parts of a technical system;

• a software asset store or configuration management system pro-
viding existing software components.

The output of the low-level system is mapped to the evidence space
and represented as evidence in the high-level system (see Figure 1).

The high-level inference system is a configuration system, that em-
ploys a certain upper model. This upper model represents theconcep-
tual framework described in Section 4. The upper model consists of:

2 This distinction is inspired by Spitzing’s distinctions made in the photogra-
phy research, see [12].
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Figure 1. General architecture including the upper model representing the
conceptual framework.

• the conceptevidence-object. Its instances represent the
parts that exist in the reality, i.e. its instances form the outer sub-
stantiality. Evidence-objects can have parts, if the low-level sys-
tem is able to observe those, or have no parts, if the low-level sys-
tem can only observe non-structured objects, which is typically
the case.

• the conceptreal-object. Its instances and parts represent all
what is known and what is hallucinated by the system, i.e. itsin-
stances form the inner substantiality.

The conceptsevidence-object andreal-object are re-
lated to each other by the relationevidence-of and its inverse
has-evidence. A real object may have evidence or may have not,
an evidence object should always be related to a real object;both re-
lational aspect are represented with number restrictions.Real objects
with ahas-evidence relation of cardinality0 represent imagined
objects, real objects with ahas-evidence relation of cardinality
greater1 represent perceived objects. Thus, there are no concepts for
imagined or perceived objects, because every real object can be in
both roles for distinct situations.

The relationhas-evidence has following semantics: If an in-
stance of the conceptevidence-object exists, than an appro-
priate instance of the conceptreal-object is created. However,
if an instance of the conceptreal-object existsno instance of
the conceptevidence-object is created, because evidence ob-
jects represent the reality, i.e. only the low-level sensoric system can
trigger the creation of such instances. Thus, they represent imagined
objects as long as no evidence objects are observed by the low-level
system.

Domain dependent configuration models are added to the up-
per model by specializing the conceptsreal-object and
evidence-object. The specializations ofevidence-object
strongly depend on the low-level sensoric system’s facilities and the
data it can deliver, e.g. structured objects or no structured objects,
types of objects or descriptions via properties.

The relationevidence-of establishes a mapping from the ev-
idence space into the hallucination space. This mapping is domain
dependent. The mapping has to be made with the information pro-
vided by the evidence object.

5.2 Operational Aspects

The configuration steps introduced in standard configuration systems
can be used for configuring an aggregate with observed parts (see
Section 3 and [5]). However, following aspects are of major impor-
tants for handling the CofOP-Problem:

Configuration from bottom to top, from parts to aggregates:
Processing integration steps from parts to aggregates is the first

step performed when using observed parts. For example the
configuration of theevidence-of relation for an evidence
object is an integration step.
The bottom-up steps can continue into the hallucination space as
long as unique decisions can be made. Thus, all inferences that
are justified by the reality are drawn. One may think of this phase
as the determination of those things that can be inferred from the
evidences; or the answer to the question “What can be done with
the parts that exist?” (i.e. Question 1. of Section 2).

Top down for generating hypotheses:In this second step a goal-
object can be selected, which represents certain requirements.
Starting from this goal-object the normal configuration process is
performed. For example, a specialization is done by selecting an
appropriate sub concept, which represents a hypothesis made from
top-down. Through decomposition further hypotheses are gener-
ated and integrated in the configuration. One may think of this
phase as an exploration of high-level concepts, which mightbe
responsible for the objects and occurrences observed so far. Fur-
thermore, this phase identifies such parts that are missing for con-
structing a complete configuration. Missing parts are thosereal
objects that do not have evidence, i.e. the imagined objects(Ques-
tion 2. of Section 2).

Use of bottom-up generated objects:If through top-down analy-
sis a required part is identified, it has to be checked, if an appropri-
ate real object already exists in the configuration, becauseit could
have been generated in the bottom-up phase. This operation cre-
ates a configuration that contains both, imagined real-objects and
evidence-based, perceived real-objects (Question 3. of Section 2).

Fuse real objects: If a part is generated from top-down and one
from bottom-up, it could be the case, that those two parts are
in fact the same. In this case only one part should be in the re-
sulting configuration. If these generated parts fulfill a certain fuse
condition, which ensures that they should really be one object,
these parts can be fused. This means, that one real object is cre-
ated, which contains all relations and parameters of the former
two parts. The parameter and relation values of the fused object
are computed by building intersections. This means that real ob-
jects that are related to the former two parts are also considered to
be fused (deep fuse).

Spontaneous instantiation: To handle dynamic aspects a config-
uration step is needed that instantiates an arbitrary concept of
the evidence space. For example, if a new objects enters a video
scene, a new evidence instance should be created. Thus, the low-
level system and the high-level system should be synchronized by
synchronization points or steady polling. When new evidence in-
stances are created at timet, those have to be integrated in the
configuration even if the defined configuration procedure would
focus on another configuration step at timet. Furthermore, back-
tracking has to be initiated, because the inferred conclusions could
be wrong, because the evidence base is changed (Question 4. of
Section 2).

Backtracking to the hypotheses generation:During configura-
tion conflicts might occur as seen above. Because in the described
schema the bottom-up steps are seen as unique inferences from
the evidences, only the top-down hypotheses generation canbe
backtracked. The first hypothesis which was made can be seen
as a backtracking point. While the evidence instances including
their inferences stay in the configuration, all made hypotheses are
withdrawn and the configuration process proceeds with another
hypothesis.

6 SCENIC - an Example Applications
In this section, we shortly present the experimental systemSCENIC
(SCENe Interpretation as Configuration) which utilizes configuration
technology for concrete scene interpretation experiments[5].
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The SCENIC System was built employing the conceptual frame-
work presented in this paper. The example scenes are taken from
a table-laying scenario: A video camera is installed above atable
and observes a tabletop. Human agents, sometimes acting in paral-
lel, place dishes and other objects onto the table, for example, cover
a dinner-for-two. It is the task of the scene interpretationsystem
to generate high-level interpretations such as ”place-cover” or ”lay-
dinner-table-for-two”. Occurrences of this kind are complex enough
to involve several interesting aspects of high-level sceneinterpreta-
tion such as temporally and spatially constrained multiple-object mo-
tion, a knowledge base with compositional structure, and the need for
mixed bottom-up and top-down interpretation steps.

According to the conceptual framework we introduced above,
SCENIC consists of a low-level system, in this case an image pro-
cessing system. Via a video camera and a tracking system the low-
level system observes the table. A so calledgeometric scene descrip-
tion (GSD) is generated by the low-level system, which represents
the objects and their properties seen in the video film. The high-level
system consists of KONWERK and a configuration model contain-
ing the presented upper model and a domain specific model for table-
laying scenarios (see Figure 2). KONWERK performs the symbolic
interpretation subtask in SCENIC.

Domain-Object

Real object Evidence object

Physical-Object

has-evidence, 0..n

View

Static-View

Motion-View

Specialization

Stationary-Object

Moving-Object

has-evidence, 0..n

has-evidence, 0..n

has-evidence, 0..n

Decomposition

has-move, 0..1

has-stationary, 0..1 has-statics, 0..1

has-motions, 0..1

Figure 2. An extract of the domain specific specialization of the upper
model presented in Figure 1.

From the GSD evidence objects are created during configuration.
The GSD contains the observed objects as well as their motionin
time and space. The bottom-up strategy integrates the evidence ob-
jects into real objects and those into aggregates of the hallucination
space. For example, in SCENIC transports (like a hand-platetrans-
port) are identified during this phase. When the bottom-up strategy
is exhausted, top-down expansion begins. In SCENIC a hypothe-
sis about a possible table-scene is generated as an aggregate, e.g.
dinner-for-two. This aggregate is decomposed and further hy-
potheses are generated. This way hypotheses about a furtherdevelop-
ment of a scene are generated by the typical configuration steps (e.g.
aggregate decomposition see Section 3). During this expansion of
possible occurrences the real objects created by the bottom-up strat-
egy are used if possible. Thus, a configuration orscene interpretation
is constructed, which consists of real objects with evidence and those
without evidence, i.e. imagined and perceived real objects. In Figure
3 perceived objects are in realistic shape, imagined objects with pos-
sible positions are shown with icons.

A fuse operation in SCENIC occurs, when the low-level system
cannot provide distinct information about an object. For example, a
certain object can only be identified as adish, not as acup (e.g. the
cup on the right in Figure 3 cannot clearly separated from thesaucer
underneath). From top-down it is inferred that this object has to be a
cup, because the hypotheses generation determines that at this certain
position of a cover only a cup can exist. At this point a real-object

Figure 3. Result of a scene interpretation: realistic shape for evidence
objects, hypothesized objects including their possible spatial regions are

represented with icons and rectangles.

is created from top-down, representing a hypothesized cup,and a
real-object is created from bottom-up, representing a dish. Those two
real objects can be fused, if a fuse condition (like positionand time
overlap) is satisfied. This fusion represents the insight ofthe system,
that the previously not identifiable dish is in fact a cup, given certain
hypotheses. This possibility to disambiguate low-level sensoric input
through high-level inferences is unique to this approach.

SCENIC was used to interpret video scenes consisting of about
300 frames. During this sequence 28 evidence objects (including
those evidence objects representing motions) are processed, 81 imag-
ined real-objects are created for the hypothesisdinner for two(again
including those representing motions). For keeping track of spatial
and time relations 130 constraints are created during configuration.
51 interpretation steps were needed to obtain the first intermediate
scene interpretation (see Figure 3), using 90 sec of CPU time(1.8
GHz PC). Backtracking and additional 8 interpretation steps were
needed to arrive at an alternative intermediate interpretation for the
hypothesissingle dinnerusing additional 45 sec of CPU time.

The configuration model consists of 50 types of real objects and
34 conceptual space and time constraints. The operational aspects
presented in Section 5.2 are covered by 8 strategies.

7 Discussion
Data-driven approaches may take existing parts into account, if
they refer to them during the configuration process. Data-driven ap-
proaches perform bottom-up construction of aggregates from their
parts. If those parts are identified during the configurationprocess, a
similar scenario as described in this paper has to be handled. How-
ever, the conceptual framework presented in this paper clearly sepa-
rates hypotheses and evidences. Thus, following four situations can
be distinguished:

1. Hypothesis, which is supported by an evidence, i.e. the relation
has-evidence is established (perceived object).

2. Hypothesis, for which no evidence is yet found. This is due, when
the real object has no relation to an evidence object (imagined
object).

3. Evidence, which is already interpreted, i.e. the relation
evidence-of is established (accepted evidence).

4. Evidence, for which it is not yet decided how the evidence should
be interpreted. This is due, when the evidence has no relation to
an imagined object (not accepted evidence).

For data-driven approaches employing a schema, where evidences
are instances of concepts, case 2 cannot be represented and be used
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for reasoning, because no distinguishable instances for evidence ob-
jects and hypotheses exist.

A further opportunity to use the presented conceptual framework
is its ability to support the evolution process, e.g. in software config-
uration. To handle the question: What happens if a new observed part
comes into play during the configuration process that has no mapping
into the hallucination space? This would indicate evidencefor some-
thing which is still unknown for the system (not accepted evidence).
However, because the evidence-object is generic each new developed
part (e.g. a software component) can be represented by an instance of
evidence-object and thus can be consideredduring the config-
uration process. If such a part cannot be mapped to a real object the
configuration system would raise a conflict. Thus, this conflict could
be handled by evolving the configuration model according to the new
developed part [6].

8 Summary and Outlook

The configuration from observed parts is a problem in the areaof
recognition or interpretation of images and videos. But also in techni-
cal configuration like elevators or software-intensive systems a repre-
sentation of observed parts, which should be used for configuration,
is of importance. In this paper, we present a conceptual framework
that explicitly represents observed parts and distinguishes them from
other parts, without an existing representative in the reality.

An example for an instance of the conceptual framework is given
by the system SCENIC, which interprets video films about table-
laying scenes. In an upcoming system, which will be used for inter-
preting images of buildings, photographed from the front orfrom a
satellite, we will also apply the described framework. The goal here is
to identify regions in buildings like windows, doors, roofs, chimneys
as well as aggregates like row of houses or roofs. Similar to SCENIC
from a low-level system geometric scene descriptions are provided,
which are interpreted with the high-level configuration system. The
imagined real objects will be used to give feedback to the low-level
system; for example, to focus on a certain part of the image for iden-
tifying a certain detail of a building.
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