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Abstract. Because of the possibly large variability in software systems and the
complex dependencies between individual software components, product deriva-
tion in the context of software product families is not a trivial task. In this paper,
we present reasoning methods known from structure-based configuration. These
methods have been successfully applied to product derivation in technical do-
mains and are deemed suitable also for software-intensive domains. Starting with
i) a model describing the variability of already realized software components and
ii) a concrete task specification for a specific product, during a knowledge-based
product derivation process a description of the needed software components is
derived. This description is to be used for realizing, i.e. assembling the desired
product. The applicability and usefullness of the reasoning methods are shown
by configuring features of a car periphery system.
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1 Introduction

One goal of software product lines is to enable and enhance planned reuse of soft-
ware components [1, 2]. For a giventask specification, which describes product ca-
pabilities needed for realizing specific customer requirements, it is desirable to select
the necessary software components that realize these customer requirements. Further-
more, when automating this process at suitable places several aspects likecompleteness
(i.e. selecting all necessary components) andcorrectness(i.e. selecting only compatible
components) must be ensured. This can be achieved by using models of features [3]
(feature models), software components (component models) and their relations describ-
ing all variability in the product line. In our work we explore the possibility to use
such kind of knowledge for an automated product derivation process using methods
of knowledge-based configuration especiallystructure-based configurationdeveloped
in Artificial Intelligence [4, 5]. Thus, we call our approach aknowledge-basedproduct
derivation process (kb-pd).



In this paper, we present the basics of the knowledge-based product derivation pro-
cess which is used to derive a product specific for a given set of requirements. Those
basics are given by reasoning methods which are discussed in the following. Further-
more, a case study taken from an automotive domain shows how an implementation of
the proposed automated derivation process based on the described semantic aspects can
be realized. Syntactic issues are not considered, see [6] for a Lisp-like notation, [7] for
an XML-notation and [8] for an UML-notation.

The remainder of this paper is organized as follows: first we give a short introduc-
tion in the examples domain (Section 2). In Section 3 we present preconditions which
have to be fulfilled for using inference mechanisms that are discussed in more detail
in Section 4. In Section 5 we shortly present our experiments which demonstrate the
applicability of the previously discussed reasoning methods and conclude in Section 7.

2 Example Domain: Car Periphery Supervision

In this paper, for illustrating we take examples from the Car Periphery Supervision
(CPS) domain. CPS systems monitor the local environment of a car. They comprise a
family of automotive systems that are based on sensors installed around a vehicle. The
recording and evaluation of sensor data enables different kinds of applications (prod-
uct capabilities). These can be grouped into safety-related applications like pre-crash
detection, blind spot detection and adaptive control of airbags and seat belt tensioners,
and comfort-related applications like parking assistance and adaptive cruise control [9].
Different applications need different kinds of sensor data. For instance, while for park-
ing assistance the range of 2.5 meters surveyed by using ultrasonic sensors is sufficient
and also gives higher accuracy in that range, for pre-crash detection a longer distance
has to be monitored and short range radar is required.

Applications realizing CPS-systems consist of a number of hardware and software
components resulting insoftware-intensivesystems. Furthermore, for realizing different
customer needs a wide variability of hardware and software components are present, out
of which the appropriate components must be selected to fulfill the needs. Thus, those
domains give raise to probablyautomaticproduct derivation support.

3 Preconditions for Logical Inferencing

In order to be able to use logical inferencing, the following preconditions have to hold:

– A modelof all components usable for product derivation (theasset store) has to be
set up (this process is calledmodeling). The language we develop for specifying
knowledge about variability in the product line is logic-based and domain indepen-
dent. Thus, models contain logical concepts describing features of a system as well
as software and hardware components (see Section 3.1) [10,11]. The language used
in our approach is calledConfiguration knowledge modeling langauge(CKML).

– Consistencyof the model has to be guaranteed. Basically consistency means, that
no contradicting forms are included in the model. For ensuring consistency, several
checks are presented in Section 3.2.



– For a specific product, the customer requirements are abstracted by thetask specifi-
cation(see Section 3.3). This task specification describes features and components
that are desired by the customer, thus, which have to be selected from the configura-
tion model as a minimum. The goal is to infer all needed components for realizing
the application by using automatic reasoning. To guaranteecompletenessof the so-
lution, the process has to select all necessary components that together realize the
required functionality.

In the knowledge-based product derivation process – i.e. a process starting from
the task specification and using the configuration model – aconfiguration description
is derived. This is done by starting with aninitial configuration which represents the
selected features and components from the task specification, then going via several
partial configurations which describe the intermediate states, to anendconfiguration
that can be used to retrieve appropriate software components from the asset store.

3.1 Modeling for Knowledge-based Product Derivation

We distinguish between theconceptual modelfor describing all variability of features
and components in a product line and theprocedural modelfor describing the process
of derivation, thus basically, the order of configuration decisions. In the following, the
modeling facilities and their semantics in the kb-pd process are presented. Furthermore,
the meaning realted to the end configuration is discussed.

Conceptual model A conceptual modeldescribes basic product entities by means of
concepts. Each conceptc is specified by a nameid(c), parametersP (c) and relations
R(c). The setProp(c) is calledpropertiesof conceptc and is the union of its param-
eters and relationsP (c)

⋃
R(c). Three relation types are defined:structural relations,

specializationsand restrictions between concepts and their properties expressed bycon-
straints.

– A concept nameid(c) of conceptc specifies the concept type and is used for refer-
ring to this concept from various places in the model. The semantics of a name with
respect to the kb-pd process is an abbreviation for all properties which are defined
within that concept. In the resulting configuration description the name specifies
the type or class of the configured component.

– Each parameterp ∈ P (c) of a conceptc consists of anameid(pc) and avalue range
v(pc) specified by anobject descriptor. The set of all parameter names of concept
c is identified byP id(c) =

⋃
id(pc). Object descriptors can be symbols (strings),

numbers, intervals and sets of symbols, numbers or intervals. During the kb-pd
process, each parameter is set to aterminal value3 which lies in the pre-defined
value range. In the resulting configuration description the parameter describes an
attribute of the configured component.

3 A terminal value is a value that is completely specified with respect to the task specification.
It can be a single value or a set.



– A specialization relation is defined by relating a conceptsub to exactly one super-
conceptsup, vice versa, a superconcept can have several subconcepts. All proper-
ties of the superconcept are inherited by all subconcepts. Properties of the super-
concept can be overridden in the subconcept description, but all values of properties
in subconcepts have to besubsetsof the related property values of the superconcept
(see also Equation 1).

– Each structural relationr ∈ R(c) of a conceptc is described by a relation de-
scription consisting of a nameid(rc) and arelation descriptorv(rc). A relation
descriptor is defined by giving aspecifieras a common type for all parts (i.e. the
superconcept of all parts)vtype(rc) and a specifier for each related partvpari(rc).
This defines aone (aggregate) ton (parts) relation. Each specifier consists of a type
stype, a minimum numbersmin and a maximum numbersmax. The type refers to
concept names applicable for this relation. The number restrictions specify the car-
dinality of one specific type (e.g. optional parts are represented bysmin = 0 and
smax = 1).
Parts of a relation description (parts(rc) =

⋃n
i=1 vpari(rc)) have to bedisjoint –

i.e. no two parts of the same type or subtype can participate in one relation. The
main semantics of a structural relation with respect to the kb-pd process is: when
the aggregate exists in the current partial configuration, the related parts also have to
exist according to the provided cardinalities. For the other way round, i.e. if a part
exists, what happens with the aggregate. A structural relation can have different
characteristics, these areaggregation, compositionandset-composition:
Aggregation An aggregation defines a structural relation where for the existing

aggregate the parts have to be instantiated according to their cardinalities. But
if one part exists the aggregate has not to be existent. The existence of a part is
anecessarycondition for the aggregate but not asufficientone.

Composition A composition is a stronger form of an aggregation. In this case
the parts cannot exist without the corresponding composite. This means that
relations from this type are processed in both directions – i.e. the composite
also has to be instantiated when one of the parts exists. The existence of a part
is anecessaryandsufficientcondition for the aggregate.

Set-Composition A set-composition is a special form of a composition. Here the
composite is only instantiated when all of its parts exist.

– Restrictions between properties of arbitrary concepts are expressed byconstraints.
During the kb-pd process constraints ensure a consistent labeling of the properties,
whereconsistentmeans that for each value of a property, a value for all related
property can be computed – i.e. values of properties participating in a constraint
relation can be computed by the constraint. Thus, constraints can be used to de-
scribe and ensure interrelations in the resulting configuration description, e.g. for
describing compatibility (requires, excludes, etc.). Constraintsrestrictvalue ranges
of properties, i.e. they do not extend those ranges, to ensure the basic reasoning
mechanism.

Conceptual models can be used to describe product entities like features, hardware
components and software modules. An example concept definition is given in Figure
1. Parking Assistance is a concept derived from the superconceptApplication



and isappliaction−of a CPS System. The value rangev(has−sensorsSensor) is
specified by thevtype(has−sensorssupervision) = [Sensor 2 4] with stype = Sensor,
smin = 2, andsmax = 8 and twovpari(has−sensorssupervision): [Front 2 4] and
[Rear 0 4]. This means that aParking Assistance has at least two and at most 4
Front Sensors and optionally up to 4Rear Sensors .

Concept

Name: Parking Assistance

Superconcept: Application

Parameters:

Range [10 25]

Relations:

application-of CPS-System

has-sensors

[Sensor 2 8] :=

[Front 2 4]

[Rear 0 4]

Fig. 1.A concept definition with parameters, specialization and decomposition relations.

Procedural model A procedural modeldescribes the order in which configuration
decisions are processed. It mainly consists of a description ofstrategies. A strategyfo-
cuseson a specific part of the conceptual model. E.g. a strategy can focus on features,
on software components or on the system as a whole. Furthermore, conflict resolution
knowledge is used for resolvingconflict situations4 (e.g. by introducing explicit back-
tracking points).

The order of configuration decisions is not significant with respect to the solution.
This means, when the same value is chosen for each configuration step in two different
ordered configuration procedures with same decisions this does not affect the configu-
ration solution. Thus, this kind of knowledge is not important for further discussion on
inferencing, because it influences only theorderof the inferences made, not theresult.

3.2 Consistency of the Model

After modeling, besides syntactical checks the following consistency checks can be
performed on the conceptual model:

– For the specialization relation between two conceptssub → sup the subset relation
for each property must be fulfilled:

4 A conflict is defined as a state in which the partial configuration is not sound with respect to
the configuration model and / or the task specification.



sub ⊂ sup ⇔ ∀p ∈ Prop(sup) if ∃p′ ∈ Prop(sub)
{id(p′) = id(p) ⇒ v(p′) ⊆ v(p)} (1)

In the subconcept not every property of the superconcept must be defined. In this
case the property of the superconcept is inherited, thus, it hold also for the subcon-
cept.
The subset relation for all parameter types (integer, float, sets and ranges) is well
defined in commonly known math – for relation descriptors it is defined in Equation
2. There, the number restrictions and the concept descriptions of the parts are tested.
If a structural relation with a specific id is specified in both, the superconceptsup
and the subconceptsub, the relation descriptor of the subconceptv(rsub) has to be
a subset of the corresponding relation description in the supersetv(rsup). This is
defined as follows:

v(rsub) ⊆ v(rsup) ⇔
vtype(rsub) ⊆ vtype(rsup) ∧ ∀si ∈ parts(rsup),

∀tj ∈ parts(rsub) with ttype
j ⊆ stype

i

{
n∑

j=1

tmin
j ≥ smin

i ∧
n∑

j=1

tmax
j ≤ smax

i }

(2)

This means, if a relation is defined in both, the superconceptsup and the subconcept
sub, first the common type of the superconcept relation descriptionvtype(rsup) has
to be a superset of the subconcept relation descriptionvtype(rsub). Furthermore,
the sum of all number restrictions (tmin andtmax) specified in the subconcept that
match a certain specifier of the superconcept have to be in the≥ (for minimum)
and≤ (for maximum) relation as indicated in Equation 2. All parts of one relation
description in a concept have to be disjoint. However, two concepts can be related
via multiple distinct relations.
A specialization relation can be seen as a shortcut, which allows the factorization
of common information in a superconcept. If a property is specified in both, the
superconcept and a related subconcept, the value of this property (i.e. the object
descriptor) of the subconcept has to be a subset of the related property in the super-
concept. With the specialization relation aspecialization hierarchyis constructed.

– For the structural relation in the aggregatea and for each partpi a relation is speci-
fied. In the aggregate ahas−related−concepts relation has to be specified with a
relation description describing the parts (for Figure 1has−sensors is defined as a
has−related−concepts relations (not shown)) and in each part arelated−to re-
lation is specified, which refers to the name of the aggregate it is related to (id(a)).

– Consistency according to constraints is determined by boundary checks: a con-
straint onlyreducesvalue ranges specified in the conceptual model. Furthermore,
each constraint is related to some properties of concepts byconstraint variables.
Those are restricted (constrained) by the constraint – i.e. the related value ranges
are reduced. Thus, by invoking each constraint separately with the value ranges



taken from the concept definitions, the result of each constraint variable has to be
equal to or a subset of the related properties defined in the conceptual model. If a
superset or the empty set is computed for some constraint variable, the constraint
is not consistent with the conceptual model.

3.3 Task Specification

The task specification describes the configuration goal – i.e. the features, components
and restrictions a product must have. For this, a set of goal conceptsGC is pre-defined
in the configuration model.

More complex specificationscan include further details about the desired configu-
ration solution [12,13]. Such additional specifications can be the integration of already
existing (partial) configurations, the selection of additional goal concepts or the spec-
ification of concept properties. Examples forcomplex task specificationsmight be the
selection of aParking Assistance and a set of FrontSensors or the selection of a
Sensor with a given value for the attributeRange.

4 Knowledge-based Product Derivation

In the previous section we have shown how to model variability for product derivation
and how this configuration model is kept consistent. In this section we proceed with
describing how such configuration models can be used for our knowledge-based product
derivation approach.

4.1 Configuration Steps and Related Reasonings

To distinguish between the reusable conceptual model and a configuration task, partial
configurations consisting of concept instances are used for representing the current state
of the configuration for a specific product derivation. Initially the concept instancesic
are generated according to the task specification and contain the parameter value ranges
v(pc) and relation descriptionsv(rc) of the related conceptc. Those value ranges are
successively restricted during the kb-pd process.

In general, a configuration step describes “setting a property of a concept instance
to a more specific value”. Each subset of the current value range is a more specific
value. Four different types of configuration steps are supported. For each configuration
step anew valueis determined by asking the user or using computational methods like
functions or default values. For each configuration step this new value has different
impacts:

Parameterization A parameteris an attribute of a concept instance - i.e. a tuple con-
sisting of a name and a value. Thus, a parameterization step is setting the attribute
value such that the new value is more specific than before (i.e. a subset of the pre-
vious value range).



Specialization Each concept instance belongs to one concept definition determining
the concept type. With a specialization, the concept type of a concept instance is
changed to a more specific concept type (in a lower level of the specialization hi-
erarchy). Typically more specific concepts contain more specific and new attribute
definitions, those areinferred when a specialization is performed. Furthermore,
properties which are only specified in the superconcept and not in the subconcept
are inherited from the superconcept. This inference is based on modus ponens:

sub chosen in the specialization step
sub → sup given in the model
sup inferred by modus ponens.

A further inference step concerning specialization is given byautomatic special-
ization. If all property values of a concept instanceic of type c are set to subsets
of related properties of a conceptc′ (i.e. v(pc′) ⊂ v(pc) ∀ pc′ ∈ Prop(c′), pc ∈
Prop(c)) andc′ is a subconcept ofc (i.e. c′ → c), and there is no suchc′′ → c
for which v(pc′′) ⊂ v(pc) ∀ pc′′ ∈ Prop(c′′), pc ∈ Prop(c) holds, then the con-
cept type ofic is automatically changed fromc to c′. This means, the instanceic is
automatically specialized to be an instance ofc′.

Decomposition Configuring structural relations is done by the configuration step called
decomposition. The relation description as it is described in the concept is used as
a starting point for the new value. Existing instances are compared with this new
value for using them in the decomposition. If no such instances exist they are instan-
tiated and included in the current partial configuration. Thus, in a decomposition
step the parts are generated according to their cardinalities – if they are not already
present in the partial configuration. The relations between the aggregate and its new
parts are established in the instances.

Integration In an integrationstep, an already existing concept instance is integrated
into the appropriate aggregate. The new value is either given by an instance repre-
senting the aggregate or by a concept. In the last case it is necessary to instantiate
this concept, i.e. a new instance for representing the aggregate is generated. Like
in the decomposition step here relations between the part and the (probably new)
aggregate are established, too.

4.2 Generating the Initial Configuration

When selecting a conceptc from the set of goal conceptsGC as a task specification, a
subtreeof instances is generated via structural relations. This subtree includes instances
of all mandatory parts of the goal conceptc and its successors, which can be transitively
reached via structural relations. These instances build up theinitial configuration. The
optional parts are included if they are selected by the user or through automated mecha-
nisms like taxonomic inferences or constraints (see decomposition step in Section 4.1).

For instance the conceptParking Assistance from Figure 1 can be chosen as a
task specification. In this case, the initial configuration also comprises the mandatory
Front Sensors .

When givingseveralconceptsci from the set of goal conceptsGC the transitive
closure is generated fromall of them. However, instances ofci must not necessarily be
connected to each other. This is done in the integration step described in Seciont 4.1.



4.3 The Configuration Cycle

The kb-pd process is cyclic; for each non-terminal property taken from the conceptual
model a new value is determined, introduced in the partial configuration, possible in-
ferences are made and potential conflicts are handled (see [14]). After this, optionally
global mechanismsare executed for inferring system-wide impacts of the new value,
i.e. several concept instances can be affected by single configuration steps. With global
mechanisms it is possible to include external mechanisms, which do not use the con-
figuration model. However, they can be used for verifying the current partial configu-
ratiuon. Examples arecompiling the configured software componentsor simulating the
product’s behaviorin an external simulation module.

An important global mechanism is the constraint mechanism [15]. With constraints,
relations between the properties of arbitrary concepts can be specified in the conceptual
model. Because properties can be referred to in multiple constraint relations, a con-
straintnetis generated. When a property is set by some configuration step, the constraint
net ispropagatedand new values for the related properties are recursively computed.

5 A Case Study

For approving the applicability of the previously described logical reasoning methods
in product derivation we use the configuration tool KONWERK [16] (which deals as
a blueprint for the commercial tool EngCon [17]) and model a feature tree as the in-
put knowledge base. The feature model, which describes features of the CPS domain
(see Section 2) [18], was given as a DOORS5 model by Robert Bosch GmbH6. These
tools provide a modeling language which has the semantics described in Section 3 and
Section 4. This language was used to model the CPS feature model. Attributes of and
relations between features likeoptional, requires, excludesandrecommended(see [3])
are modeled.

The feature model consists of approximately170 features with100 relations and
was divided into two views, a customer-related view describing product capabilities
in customer-understandable terms and a technical view describing product attributes
necessary for realizing these product capabilities. In Figure 2 an example for modeling
a requires relation between a customer view feature and a technical view feature is given
(Requires−Tv−Features) as well as the relationhas−subfeature between customer
view features. Furthermore a part of a specialization hierarchie is shown on the left.

By using the configuration tool it is directly possible to automatically derive a de-
scription of all necessary product components and their attributes when a set of needed
product capabilities is given. This is depicted in Figure 3 where the user decides step 1
and 2 and thus selectsACC−Stop&Go as an application. By using the model, the sys-
tem infers further required customer features and technical features. The white boxed
features indicate further decisions that have to be made.

5 http://www.telelogic.com
6 http://www.bosch.de



Fig. 2.Relations Example (Screenshot of the tool KONWERK.)

6 Related Work

In [10], modeling of configurable products is introduced which is done with a similar
language as the one described in this paper. However, we focus on reusing methods from
structure-based configuration that can be used for product derivation and where such a
model is given. We describe how feature models can be used for product derivation,
similar to the FODA approach [3] that emphazises on the the modeling aspect. With
our case study it is shown how such a feature model can be mapped to a configuration
language and used for product derivation.

7 Conclusion

The product derivation process in variation-rich domains is a difficult task when a large
number of components and interrelations between those are present. In this paper, we
show how a model consisting of components and features can be used to support the
product derivation process by automatically computing interrelations of user-selected
decisions. A precondition for this inference mechanisms is a logically consistent model.
We outline a representation language for modeling components by means of concepts,
properties (parameters and structural relations), a strict, subset-based specialization re-
lation, and constraint relations. Given such a model diverse inference steps can be com-
puted automatically for getting a description of software components that together build
up a product. This description can be used in subsequent steps for gathering the appro-
priate software components (e.g. libraries, files).

The basic reasoning mechanisms are implemented in the systems KONWERK [16]
and EngCon [7] and the use of those tools are shown with a feature model conmprising
multiple levels of abstraction.

How this approach can be further applied to software-intensive systems is currently
examined in the ConIPF project [19,20].
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