
Knowledge-based Product Derivation –
Research Topics of the ConIPF Project

Lothar Hotz, Thorsten Krebs, Katharina Wolter

One major challenge in software industry is to cope with increasingly complex products and
development processes. Nowadays, products are composed not only of hardware but also of
software. The process of assembling such complex products can be supported by configuration
mechanisms. The approach presented in this article combines mechanisms from structure-
based configuration, which is well known in the AI community, with the software product line
approach used in software engineering to expand the reuse of software. The aim of our
approach is to enhance the capabilities of reusing components shared by different but similar
products. Features are used for selecting the desired functionality and serve as a starting point
for the product derivation process. The main objective is to manage the complexity of the
derivation process, i.e. to guarantee completeness and correctness of the solution and to make
sure that dependencies between artefacts are respected.

1 Introduction
In software industry, there are two contrary trends. On the one hand, software systems
(must) become larger and of a higher quality because of increasing customer requirements
and more complex system functionality. On the other hand, there is a need for reducing costs
and shortening time-to-market in order to stay competitive.
Often the software cannot be addressed separate from the hardware environment it is
embedded in – resulting in software-intensive systems. In this paper Car Periphery
Supervision (CPS) systems that monitor the environment of a car are used for illustration
purposes (see Section 2.1). The growing complexity and variability of technical systems
replaces the development of single software products with the development of product
families. Product families are used to describe variability and commonalities of different but
similar products and enable high level software reuse, especially through the product line
approach [Bosch 2000] (see Section 3.1). The goal of the ConIPF project (Configuration in
Industrial Product Families) is to support and realise product development with methods from
structure-based configuration (see Section 3.2). In Section 4 we focus on some major issues
discovered in configuring software-intensive systems by describing requirements and their
solutions.
ConIPF is a three year project that is supported by the EU under the grant IST-2001-34438.
Four partners (two industrial and two university partners) are participating in the research
work: Robert Bosch GmbH, Thales Naval Nederland, the University of Hamburg and the
University of Groningen. In this paper we describe an intermediate result of the project and
present research topics that are of interest to the University of Hamburg.

2 Aspects of Application Domains
In an analysis and characterization phase of the project several domains in the area of
vehicle development were examined. As an example in this paper the CPS domain is
presented (Section 2.1). From this analysis major distinctions between configuration of
hardware and software components are identified (Section 2.2).

2.1 The CPS Domain
Car Periphery Supervision (CPS) systems monitor the local environment of a car. CPS
systems comprise a family of automotive systems that are based on sensors installed around
a vehicle. The recording and evaluation of sensor data enables different kinds of
applications. These can be grouped into safety-related applications like pre-crash detection
and comfort-related applications like parking assistance [Thiel et al. 2001].

 1

Figure 11 shows the ranges of different sensor types that can be mounted on a vehicle.
Different applications need different kinds of sensor data. For instance, while for parking
assistance the range of 2.5 meters surveyed by using ultrasonic sensors is sufficient and
also gives higher accuracy in that range, for pre-crash detection a longer distance has to be
monitored and short range radar is required.

s

2.2 Differences b
Two major differences
identified in the applica

• In hardware con
the manufactur
of a store and a
implementation
configuration.

• Software is eas
configuration of
of potentially un

3 Underlying T
In ConIPF software pro
foundation of research

3.1 Software Pro
Software product lines
components. The deve
distinguished. These d
engineering (compare

• In domain engin
developed. Exp
achieved by us
distinctive user-
taxonomies with

• In application e
by analysing re
the following th

1 The figure is made availab
Figure 1 – Sensor Types and Supervision Range
etween Hardware and Software Configurations
between hardware and software system configurations can be
tion domains surveyed in ConIPF:

figuration there is a strict separation between the configuration and
ing of the required product, i.e. collecting the desired components out
ssembling them. In software configuration the “manufacturing”, i.e. the
 can be easily done on the same platform as the product

ily modifiable and therefore constantly changing. This makes
 software products more complex because of the increasing number
known variants and versions of components and their dependencies.

echniques
duct lines and structure-based configuration form the methodical

. They are briefly introduced in the following.

duct Lines
provide a highly successful approach to strategic reuse of product
lopment of a product line and the development of products can be
evelopment tasks are identified as domain engineering and application
[Bosch et al., 2001]):

eering, architectures and reusable software components are
loiting commonality and managing variability is necessary and can be
ing feature models [Kang et al. 2002]. Features are ‘prominent or
visible aspects of a system’ [Kang et al. 1990] and can be modelled in
 mandatory, optional and alternative properties.

ngineering existing artefacts are used to assemble specific products
quested features, selecting architecture and adapting components. In
is process is called product derivation process.

2

le by Robert Bosch GmbH.

Domain engineering and application engineering do not describe chronological tasks, but the
distinction between developing a product line and developing products using the product line.
The product derivation process is currently realised by communication facilities between
participating humans and standardised documents in order to capture customer
requirements or to define system specifications, and to realise change management.
However, a general methodology for realising or supporting application engineering does not
exist [Hein et al. 2003]. Therefore, it is a common to use previously developed products or
platforms by a “copy and modify approach” to suit current customer needs. In large domains,
however not every developer knows all existing code fragments and chooses from
components known to him. This is rather error-prone in the sense that functionality is
implemented anew where reuse would have been possible or incompatibilities between code
fragments may not be detected leading to incorrect solutions.
One ConIPF goal is to fill this methodology gap and to support this process with mechanisms
of structure-based configuration.

3.2 Structure-based Configuration
Configuration is a well known approach to supporting the composition of products from
several parts. The configuration of technical systems is one of the most successful
application areas of knowledge-based systems [Günter and Kühn 1999]. Basic modelling
facilities enable the differentiation between three kinds of knowledge:

•

•

•

Conceptual knowledge includes concepts, taxonomic and compositional relations as
well as restrictions between arbitrary concepts (constraints).

Procedural knowledge declaratively describes the configuration process.

A task specification specifies properties and constraints that a product must fulfil.

The configuration itself is performed in an incremental approach, where each step represents
a configuration decision and after each step a global mechanism can optionally be applied
for testing, simulating or checking with constraint techniques [Günter 1995, Hotz et al. 2003].
Global in this case means that the entire configuration is examined. Conflicts2 that are
detected e.g. during the use of such global mechanisms are handled by conflict resolution
mechanisms. However, applying configuration methods to software systems is in an early
stage (see e.g. [Soininen et al. 1998]).

4 The ConIPF Approach
The main objective of the ConIPF project is to define and validate a methodology for
knowledge-based product derivation of software-intensive systems that are based on a
product family. Because of the large amount of variability in product families, the task of
product derivation is time consuming and error-prone. By using structure-based configuration
mechanisms, it is possible to model all assets developed during domain engineering and
their relations in order to support the product derivation process. This is described in Section
4.1. Furthermore, integration of product configuration and product realisation in one process
is introduced in Section 4.2. Because software is easily modified and therefore constantly
changing, the aspect of evolution is of special interest and will be discussed in Section 4.3.
When applying knowledge-based configuration to software-intensive systems, existing
development environments have to be considered. To implement the methodology in an
organization the methodology has to be tailored to the existing requirements. Furthermore,
formal underpinning of the methodology for syntax and semantics (e.g. by applying
description logics, compare [Möller et al. 1997]) is planned. These last two subjects are also
research topics considered at the University of Hamburg but they are not further addressed
in this article.

2 A conflict is defined as a situation where the decisions made by the user, their logical impacts (e.g. computed
by global mechanisms) and the configuration model are not consistent.

 3

4.1 Consistency, Completeness, Correctness
Following manual processes like “copying and modifying” source code for similar products,
the generated solutions can easily be inconsistent, e.g. the selected components do not fit
because their interfaces do not match. Moreover, solutions can be incomplete, i.e. necessary
components are missing in the product or solutions can be incorrect, i.e. components are
included in the product but do not realise the needed functionality. Using structure-based
configuration mechanisms provides support for such problems. When using models perfectly
reflecting the product family and complete or partial mappings between features and
artefacts, products are derived whose properties are consistent, complete and correct. Thus,
it is ensured that the configured product is consistent, complete and correct with respect to
the model.
Construction of a model that correctly reflects the product line is simplified by the following
aspects:

• Because of using a product line, the underlying components are already implemented
for reuse, which simplifies the formalization of variability and commonalities in a
configuration model. In a more monolithically implementation the variability is more
implicit and thus, more difficult to model.

• Methods like testing or verification are directly related to the product line, because
they use the components, thus reflect the real world. Because methods like testing or
verification are included in the ConIPF approach by means of global mechanisms the
configuration model is checked during the product derivation process against the
existing product line implementation.

In order to obtain models reflecting the product family there is a need to model all reusable
assets in the product family. The first step is to describe the different kinds of assets that
should be assembled during configuration and the relations between these assets. Assets
under consideration are features, architecture, software and hardware components as well
as their parameters and relations to other assets (e.g. requires, excludes, realises, etc.).
Regarding software-intensive systems there are several levels of abstraction that need to be
modelled for different tasks like features for modelling product capabilities, architectures on a
high level and system functionality on a lower level. Furthermore, for software-intensive
systems, hardware and relations between software and its hardware environment are also
important in order to assemble a complete and consistent product.
In ConIPF, structure-based configuration and constraints are used to model and then
configure CPS systems and software-intensive systems in general. Therefore, a domain-
independent language is developed and used. Its modelling facilities are general enough to
model and process the above described aspects of software-intensive systems.

4.2 Knowledge-based Product Derivation Process
The result of an application engineering process and software development in general is a
concrete software artefact (i.e. a product) whereas configuration creates an abstract
description of a product. In contrast to hardware domains, it is possible for software to realise
the product within the derivation process (e.g. to compile source code, to calibrate the
product, etc.). Therefore two processes are involved in knowledge-based product derivation:
configuration and realisation. Since these two processes are dependent on each other they
need to be synchronized.
The knowledge-based product derivation process defined in ConIPF addresses the entire
development process. Thus, selecting features, architecture and hardware and software
components are part of the derivation process just like the realisation of the software itself.
Integration of configuration and realisation means for instance that code is generated and
compiled during the configuration process. Code generation and code compilation can be
initiated by means of global mechanisms (see Section 3.2). The point in the derivation
process when compilation should be initiated is defined by procedural knowledge. This

 4

ensures that it is not possible to start the compilation before all relevant configuration
decisions have been made.
As described in Section 4.1, it is possible to guarantee a consistent and complete product
using structure-based configuration. However, it is very important to document how e.g. a
feature is realised and which components (e.g. sensors or software modules) are used for
this because the application engineer then can comprehend the relation between customer
requirements and the specific parts of the solution.
In structure-based configuration features and their interrelations, the structure of possible
products and the mapping between features and products are defined in the configuration
model. Therefore the relations between features and system components during the
derivation process as well as for the solution can be documented.
Although the configuration process always leads to a consistent solution during the process
there can be inconsistent partial solutions called conflicts. This can happen when e.g. the
user selects certain features or components that cannot be combined. A conflict also occurs
when a global mechanism recognizes an incompatibility, e.g. when the compilation cannot be
executed successfully. To cope with such situations a history of all user decisions and the
computed impacts is necessary to be able to select decisions that can be backtracked or
modified for resolving this conflict. Because structure-based configuration uses an
incremental configuration approach, all decisions and their chronological order are known
and can be used to resolve conflicts.
It is possible that a conflict cannot be resolved - i.e. no correct solution can be generated for
the customer requirements and the given configuration model. In such a situation evolution
comes into play. This means, existing assets (and their corresponding description in the
configuration model) are modified during the derivation process.

4.3 Evolution
All kinds of configurable assets are subject to evolution – including features, software and
hardware components. For extending the configuration model, knowledge about the newest
and / or all versions of the corresponding components is necessary.
In traditional application areas of knowledge-based systems (i.e. technical domains like
aircrafts, drive systems, etc.), development and manufacturing of components is final. This
means, all components are present, but have to be selected and parameterized by
processing the configuration model. Due to easily changeable artefacts in the software
domain a different situation exists. During the product derivation process, even when existing
software artefacts are reused, modifications on those artefacts are often needed [Krebs et al.
2002]. The configuration model describes all members of a product family that can be
derived using knowledge-based configuration techniques. Thus, the configuration model
describes admissible configurations. This can be extended by anticipating future evolution to
a certain extent e.g. by modelling planned features [Hein et al. 2001]. But eventually there
are unpredicted requirements (like bug fixes) or other situations where evolution planning is
not practical.
Evolution during domain engineering is the task of extending the configuration model, i.e.
modelling new variants and versions of components or modifying existing ones. Methods of
knowledge acquisition are sufficient for this task. During application engineering, the model is
usually fixed for structure-based configuration techniques. This means possibilities for
dynamically modifying the configuration model have to be taken into account to cope with
new functionality during product derivation. Generating solutions that lie outside the modelled
solution space is addressed in innovative configuration [Günter 1995].
The configuration model can be used for supporting evolution. It reflects all existing
components and their dependencies. Thus, the impacts of a component modification or an
addition of a component of a specific type can be computed by examining the configuration
model. E.g. a component with fewer relations to other components can be evolved more
easily than a component with more dependencies to others [Krebs et al. 2003].
Knowledge acquisition is the central aspect for modelling new concept descriptions as well
as modifying existing concepts. So far, knowledge acquisition has only been taken into
account for building a fixed configuration model. The same acquisition techniques can also

 5

be applied to identifying and modelling new concept definitions or modifying existing concept
definitions. With these tasks, a special emphasis has to be put on consistency because
changes to the model can have impacts on the currently developed partial configuration.

5 Outlook
The newly developed methodology will be applied in experiments at both industrial partners.
Data will be collected during those experiments and assessed. Topics of assessment are
appropriateness of the knowledge representation, tools and the derivation process as well as
improvements in the process compared to previous approaches and accommodation of
reuse, adaptation and evolution strategies.

References
[Bosch 2000] J. Bosch, Design & Use of Software Architectures: Adopting and Evolving

a Product Line Approach, Addison-Wesley, 2000.

[Bosch et al. 2001] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink and K. Pohl,
Variability Issues in Software Product Lines, In: Proc. of the Fourth
International Workshop on Product Family Engineering(PFE-4), Bilbao,
Spain, October 3-5, 2001.

[Günter 1995] A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.

[Günter and Kühn 1999] A. Günter and C. Kühn, Knowledge-Based Configuration - Survey and
Future Directions, In: Proc. of XPS-99: Knowledge Based Systems,
Würzburg, Germany, 1999.

[Hein et al. 2001] A. Hein, J. MacGregor, and S. Thiel, Configuring Software Product Line
Features, In: Proc. of ECOOP 2001 - Workshop on Feature Interaction in
Composed Systems, Budapest, Hungary, June 18, 2001.

[Hein et al. 2003] A. Hein, J. MacGregor, Managing Variability with Configuration
Techniques, in Proc. of the Workshop on Software Variability Management
at the ICSE, Portland, Oregon, USA, May, 2003.

[Hotz et al. 2003] L. Hotz, A. Günter, and T. Krebs, A Knowledge-Based Product Derivation
Process and some Ideas how to Integrate Product Development (position
paper), In Proc. of Software Variability Management Workshop, page
136-140, Groningen, The Netherlands, February 13-14, 2003.

[Kang et al. 1990] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, Feature-oriented
Domain Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-
TR-021, Carnegie Mellon University, Pittsburgh, PA, USA, 1990.

[Kang et al. 2002] K. Kang, J. Lee and P. Donohoe, Feature-oriented Product Line
Engineering. In: IEEE Software, 7/8, pages 58–65, 2002.

[Krebs et al. 2002] T. Krebs, L. Hotz, and A. Günter, Knowledge-based Configuration for
Configuring Combined Hardware/Software Systems, In: Proc. of 16.
Workshop, Planen, Scheduling und Konfigurieren, Entwerfen (PuK2002),
Freiburg, Germany, October 10-11, 2002.

[Krebs et al .2003] T. Krebs, L. Hotz, C. Ranze and G. Vehring, Towards Evolving
Configuration Models, In: Proc. of 17. Workshop, Planen, Scheduling und
Konfigurieren, Entwerfen (PuK2003), pages 123-134, Hamburg, Germany,
September 15-18, 2003.

[Möller et al. 1997] R. Möller, C. Schröder and C. Lutz, Analyzing Configuration Systems with
Description Logics: a Case Study, University of Hamburg, 1997.

[Soininen et al. 1998] Soininen, T., Tiihonen, J., Männistö, T. and Sulonen, R., Towards a
General Ontology of Configuration, Artificial Intelligence for Engineering
Design, Analysis and Manufacturing (1998/12), pages 357-372,
Cambridge University Press, USA, 1998.

[Thiel et al. 2001] S. Thiel, S. Ferber, T. Fischer, A. Hein and M. Schlick, A Case Study in
Applying a Product Line Approach for Car Periphery Supervision Systems,
in Proc. of In-Vehicle Software 2001, pages 43-55, Detroit, Michigan, USA,
March 5-8, 2001.

 6

 7

Contact
Katharina Wolter
Universität Hamburg, FB Informatik
Vogt-Kölln-Str. 30
22527 Hamburg, Germany
tel: +49 (0)40 42883 2610
email: kwolter@informatik.uni-hamburg.de

Lothar Hotz is a researcher at the Hamburger Informatik Technologie Center (HITeC) located at the
University of Hamburg. He participated in several projects related to topics of configuration, knowledge
representation, constraints, diagnosis, qualitative simulation, parallel processing and object-oriented
programming languages.

Thorsten Krebs is a researcher at the Laboratory for Artificial Intelligence (LKI) at the University of
Hamburg. He has participated in developing the configuration tool EngCon at the Centre for
Computing Technologies (TZI) at the University of Bremen.

Katharina Wolter is a researcher at the Laboratory for Artificial Intelligence (LKI) at the University of
Hamburg, where she also did her masters thesis. Her primary research interests are in the area of
knowledge-based configuration and human-computer interaction.

http://www7.gmx.net/de/cgi/mailnew?CUSTOMERNO=12539154&t=de1854638.1070297023.451eb098&FOLDER=inbox&TO=kwolter%40informatik%2Euni%2Dhamburg%2Ede

	Introduction
	Aspects of Application Domains
	The CPS Domain
	Differences between Hardware and Software Configurations

	Underlying Techniques
	Software Product Lines
	Structure-based Configuration

	The ConIPF Approach
	Consistency, Completeness, Correctness
	Knowledge-based Product Derivation Process
	Evolution

	Outlook
	References
	
	Contact

