Towards Ontology-based Realtime Behaviour Interpretation

Wilfried Bohlken, Patrick Koopmann, Lothar Hotz and Bernd Neumann
Cognitive Systems Laboratory, University of Hamburg

Abstract

We describe a generic framework for model-based behaviour interpretation and its
application to monitoring aircraft service activities. Behaviour models are represented
in a standardised conceptual knowledge base using OWL-DL for concept definitions and
the extension SWRL for constraints. The conceptual knowledge base is automatically
converted into an operational scene interpretation system implemented in Java and JESS
which accepts tracked objects as input and delivers high-level activity descriptions as
output. The interpretation process employs Beam Search for exploring the
interpretation space, guided by a probabilistic rating system. The probabilistic model
cannot be efficiently represented in the ontology, but it has been designed to closely
correspond to the compositional hierarchy of behaviour concepts. Experiments are
described which demonstrate the system performance with real airport data.

1 Introduction

This chapter is about realtime monitoring of object behaviour in aircraft servicing
scenes, such as arrival preparation, unloading, tanking and others, based on video
streams from several cameras?. The focus is on high-level interpretation of object tracks
extracted from the video data. The term "high level interpretation” denotes meaning
assignment above the level of individually recognised objects, typically involving
temporal and spatial relations between several objects and qualitative behaviour
descriptions corresponding to concepts used by humans. We prefer to use the term
"scene interpretation” in order to avoid reference to a particular level structure. Scene
interpretation is understood to include the recognition of multi-object structures (e.g.
the facade of a building) as well as the recognition of activities and occurrences (e.g.
criminal acts). Regarding its scope, scene recognition can be compared to silent-movie
understanding.

For aircraft servicing, scene interpretation has the goal to recognise the various
servicing activities at the apron position of an aircraft, beginning with arrival
preparation, passenger disembarking via a passenger bridge, unloading and loading
operations involving several kinds of vehicles, refuelling, catering, and other activities.
Real-time monitoring may serve several purposes. For one, delays in performing
scheduled activities can be noticed and counteracted early. Secondly, predictions about
the completion of a turnaround can be provided, alleviating planning. Thirdly,
monitoring of service activities can be extended to include unrelated object behaviour,
e.g. of vehicles not allowed in the proximity of the aircraft.

1 This work was partially supported by EC Grant 214975, Project Co-Friend.

Our approach aims at developing a largely domain-independent scene interpretation
framework, designed to be adaptable to changes and to be reusable for other
applications. In fact, our basic approach of structuring the conceptual knowledge base in
terms of compositional hierarchies and guiding the interpretation process accordingly
has been used in other domains (Hotz & Neumann, 2006; Hotz, Neumann & Terzic,
2008) and by other authors (Rimey, 1993; Fusier, Valentin, Brémond, Thonnat, Borg, D.
Thirde & Ferryman 2007; Mumford & Zhu 2007). In this introductory section we shortly
discuss major contributions of past research which have influenced our current
understanding of scene interpretation and our design decisions for a framework. We
also compare with recent work on ontology-based scene interpretation.

Although scene interpretation has enjoyed much less attention in Computer Vision
research than object recognition, there exists a considerable body of related work dating
as far back as into the seventies. Badler (1975) was one of the first to derive high-level
descriptions of simple traffic scenes represented by hand-drawn sketches for lack of
computer-generated low-level data about real scenes. He used spatial relations between
pairs of objects, corresponding to spatial adverbials, to describe a snapshot of a scene,
and changes of these relational structure to describe the temporal development. A
temporal concept such as "across-motion" would be recognised by rules defined in
terms of preconditions and postconditions. His work showed that spatial predicates
form the bridge from quantitative low-level data to qualitative high-level descriptions.

A first systematic approach to motion analysis is due to Tsotsos, Mylopoulos, Covvey,
and Zucker 1980) who introduced a taxonomy of motion types. Specific high-level
motion events (in this case pathological human-heart motions) were described as a
composition of elementary motions, thus also establishing a compositional hierarchy.

Structuring motion by taxonomical and compositional hierarchies, reflecting the logical
structure of natural language terms, has played a significant part in most approaches to
model scene interpretation, also in the early work of Neumann (1989) on natural-
language description of traffic scenes. One of his additional achievements was the
separation of behaviour models from control structures for behaviour recognition.
Occurrences in street traffic were modelled as declarative aggregates enabling both
bottom-up and top-down recognition. Temporal relations between occurrences were
modelled by constraints and processed by a constraint system. As in earlier work, low-
level image analysis had to be bypassed by manually providing input data in terms of a
"Geometric Scene Description” (GSD) consisting of typed objects and quantitative object
trajectories.

A first attempt of modelling scene interpretation in a logical framework is due to Reiter
and Mackworth (1987). They showed that, for a finite domain, scene interpretation
could be formulated as a logical model construction task, i.e. as a search for
instantiations of the conceptual knowledge covering the domain, consistent with the
factual evidence. This search could be implemented as constraint satisfaction.

Later, the model construction paradigm was extended to Description Logics (DLs)
(Schroeder & Neumann, 1996; Neumann & Moeller, 2006). This was motivated by the
attractive possibilities for object-centred concept representations offered by a DL and its
guarantee for decidable reasoning processes. Unfortunately, it remains difficult to
realise scene interpretation with a DL system. One of the reasons is the need to model
the quantitative-qualitative mapping from sensory to symbolic data outside the logics.

Also, a central reasoning service for scene interpretation, the incremental construction
of a model, is not provided by existing systems.

A slightly different logical paraphrase of scene interpretation was given by Cohn, Magee,
Galata, Hogg, and Hazarika (2003), and Shanahan (2005) in terms of abduction, i.e. as a
search for high-level concepts whose instantiation would entail the evidence. Similar to
logical model construction, experiments are difficult because few logical systems offer
abduction services which can be used for scene interpretation. The pioneering work on
multimedia interpretation in the group of Moeller (Gries, Moeller, Nafissi, Rosenfeld,
Sokolski & Wessel, 2010) is a recent example for using a DL system for abduction. Here,
the RacerPro reasoner has been extended by abduction facilities.

Several researchers propose ontology-based activity recognition in a customised logical
framework which does not necessarily realise model construction or abduction. Chen
and Nugent (2009) present an activity recognition procedure where conceptual
descriptions constructed from evidence are tested for equivalence with ontological
concepts using a DL reasoner.

An interesting approach to exploiting an OWL ontology using a DL reasoner has been
reported in (Riboni & Bettini, 2011a). They use RacerPro to check the consistency of
sensor data in the elderly-care domain with asserted interpretations. This procedure
realises logical model construction for a fixed inventory of activities. It does not offer a
solution for an incremental and multi-level interpretation process.

Irrespective of difficulties in using existing reasoners, the work on a logical formulation
of scene interpretation has provided important clarifications, in particular that, from a
logical perspective, scene interpretation is inherently ambiguous. The ambiguity is quite
striking in temporal scenes where interpretations typically imply predictions about the
future. For example, a driver assistance system has to interpret an observed scene with
regard to its future development. Will the pedestrian enter the street or wait? As
humans, we seem to exploit our experiences for such decisions and prefer the most
likely or utile choice given all we know about the domain and the current scenario.
Hence, it appears natural to provide a probabilistic model for the uncertainty of logically
ambiguous choices.

The need for a preference measure is all the more evident when one considers the
stepwise process which must be used when interpreting scenes with several objects and
extending over time. As evidence is incorporated piece by piece, early and intermediate
interpretation decisions may have to be made with poor context, i.e. in highly ambiguous
interpretation situations.

Independently of the logically motivated need for a preference measure, probabilistic
approaches to scene interpretation have been developed, motivated by the success of
probabilistic methods in other areas of Computer Vision and Robotics, and the desire to
develop a seamless integration of low-level image analysis with high-level scene
interpretation. In early work (Binford, Levitt & Mann, 1989; Rimey, 1993), Bayesian
Networks (BNs) were conceived isomorphic to the compositional structure of high-level
concepts, i.e. with aggregates "causing" their parts. While this basic structure is
intuitively plausible, it implies that parts are statistically independent given aggregate
data. This is not the case in many applications, hence more general probabilistic
structures have been developed. In (Koller & Pfeffer, 1997; Getoor & Taskar, 2007) BNs
were extended in an object-oriented manner, introducing Probabilistic Relational

3

Models. This way, crisp relational structures can be augmented with an arbitrary
probabilistic dependency structure. To describe multiple levels of granularity,
hierarchical BNs were proposed by Gyftodimos and Flach (2007). More recently, Markov
Logic Networks have been employed for modelling events and activities (Murariu &
Davis, 2011). While these contributions improve the expressive power of BNs or
propose an alternative probabilistic framework, they do not adequately support
compositional hierarchies of aggregates as required for scene interpretation. For this
purpose, Bayesian Compositional Hierarchies (BCHs) have been developed (Neumann,
2008) which are also employed for the work in this chapter and will be described in
detail in Section 4.

An interesting alternative approach to combining compositional hierarchies with BNs
has been presented by Mumford and Zhu (2007). Here, a grammatical formalism takes
the place of hierarchical knowledge representation, and (probabilistic) parsing
algorithms are applied for scene interpretation, leading to efficient processing, but
complicating the integration with large-scale knowledge representation.

Our approach, presented in the following sections, tries to build on the insights gained
from past research, while simultaneously employing standardised or generally
applicable formalisms as far as possible. We have chosen OWL DLZ?, the standardised
web ontology language, for the representation of the conceptual models for scene
interpretation in general and for the specific application domain, this is presented in
Section 2. The choice of OWL emphasises our interest in connecting to logic-based
knowledge representation and reasoning services. But, as will be shown, we must make
use of the SWRL extension of OWL to express crisp dependencies between concepts, and
we must connect with components outside OWL for probabilistic modelling.

An important contribution of our work is the automatic translation of OWL concepts
into an interpretation procedure in JESS, described in Section 3. The procedure realises
a bottom-up, evidence-driven parallel Beam Search for all probable interpretations,
guided by a Bayesian Compositional Hierarchy (BCH). One of the achievements is a
decomposition of this process into independent subgoals which may provide evidence
for several higher-level concepts.

The probabilistic model is described in detail in Section 4. It provides a rating for
alternative interpretations given the evidence available so far, and also for predictions of
future events. We use a BCH to model the temporal relationships of servicing activities
and derive ratings using a very efficient probabilistic inference process.

In Section 5, we present results for interpreting aircraft turnarounds at the Toulouse
Blagnac Airport. We demonstrate the predictive power of our probabilistic framework
and show its effect when rating alternative interpretations.

We conclude with a summary of insights gained and an outlook on future work.

2 http://www.w3.org/TR/owl-semantics/

2 Behaviour Modelling

In this section, we describe the representation of behaviour models in a formal ontology.
Our main concern is the specification of aggregate models which can be used to describe
an aircraft turnaround and its constituting activities.

2.1 Aggregate Representation
In a nutshell, an aggregate is a representational structure consisting of

- a specification of aggregate properties,
- a specification of parts, and
- a specification of constraints between parts.

To illustrate the requirements for aggregate specifications, consider the aggregate
Arrival-Preparation as an example. It has the parts GPU-Enters-GPU-Zone, GPU-Stopped-
Inside-GPU-Zone, and Drop-Chocks (Fig. 1).

Arrival-
Preparation
GPU-Enters—-GPU- GPU-Stopped-Inside- Drop-Chocks
Zone GPU-Zone

Fig. 1: Compositional structure of the aggregate Arrival-Preparation within an aircraft
turnaround

The first part, GPU-Enters-GPU-Zone, marks the event when the GPU enters its designated
standing area (GPU denotes Ground Power Unit). GPU-Stopped-Inside-GPU-Zone begins
at the moment, the GPU has come to a stop, and ends when the GPU begins leaving the
area much later in the turnaround. We use predefined zones for locations following the
work of Fusier et al. (2007). The event Drop-Chocks marks the moment an operator has
deposited the chocks where the airplane is expected to stop.

The example shows that behaviour concepts of different kinds play a role: some extend
over a time interval, some mark a time point, some can be derived from tracking data,
some require special image analysis procedures. Furthermore, all components of the
aggregate Arrival-Preparation must obey certain temporal constraints for the model to
be realistic. GPU-Enters-GPU-Zone typically precedes GPU-Stopped-Inside-GPU-Zone by
less than a minute. After the GPU has been positioned, it may take up to 10 minutes until
a person steps out and deposits the chocks. The duration of GPU-Stopped-Inside-GPU-
Zone roughly corresponds to a complete turnaround, but does not matter for the
definition of Arrival-Preparation.

As mentioned in the introduction, we have chosen the web ontology language OWL DL
for defining aggregates and related concepts. OWL DL is a standardised formalism with
clear logical foundations and provides the chance for a smooth integration with large-
scale knowledge representation. Furthermore, the object-centred style of concept
definitions in OWL and its support by mature editors such as Protégé? promise

3 http://protege.stanford.edu/

transparency and scalability. Simple constraints can be represented with SWRL, the
Semantic Web Rule Language, albeit not very elegantly, as will become apparent shortly.

The availability of DL reasoning systems such as Pellet or Racer may be considered an
additional bonus, but - as pointed out in the introduction - incremental scene
interpretation in terms of model-construction or abduction steps is not supported by
current DL systems. Hence, in our application, the use of a commercial DL reasoner is
limited to consistency checks of the conceptual knowledge base. The interpretation
process is realised with our own framework called SCENIOR (SCENe Interpretation with
Ontology-based Rules) which translates the OWL concepts into a search for
instantiations, see Section 3.

In a DL setting, an aggregate has the following generic structure:

Aggregate_Concept £ Parent_Concept n
d-; hasPartRole;.Part_Concepti n ... ¢
d-1 hasPartRolex.Part_Conceptk m
conceptual constraints

Hence an aggregate with the class name Aggregate_Concept is defined by a taxonomical
parent, by the parts to which it is related via hasPartRoles, and by conceptual
constraints relating aggregate and parts to each other. The left-hand side implies the
right-hand side, corresponding to an abductive framework. In our definition, the
aggregate may name only a single taxonomical parent because of the intended mapping
to single-inheritance Java templates. Furthermore, the aggregate must have exactly one
part for each hasPartRole. While the DL syntax would allow number restrictions for
optional or multiple parts, we found it useful to have different aggregate names for
different part configurations and a distinct hasPartRole for each part to simplify the
definition of conceptual constraints.

Within the OWL ontology, conceptual constraints can be expressed using the Semantic
Web Rule Language SWRL* which combines OWL with RuleML> (Rule Markup
Language). It is well-known that SWRL rules may cause undecidability of the conceptual
knowledge base unless they are restricted to be DL-safe, i.e. only applied to facts (to
ABox content in DL terminology). This is the case during scene interpretation where
rules are only applied to instances grounded in scene data. However, there exists no
reasoner which evaluates SWRL rules for a consistency check of the conceptual
knowledge base.

SWRL is supported by the Protégé editor, which guarantees that a certain amount of
consistency is maintained. For example, it is not possible to define a rule with classes
which are not defined in the knowledge base, or to use variables in the consequent
which are not introduced in the antecedent.

For the aggregate Arrival-Preparation, the taxonomical and partonomical sections of
the concept definition in Protégé read as follows:

Arrival-Preparation £ Composite-Event n

4 http://www.w3.0org/Submission/SWRL/

5 http://ruleml.org/

has—-partl exactly 1 GPU-Enters-GPU-Zone n
has—-part2 exactly 1 GPU-Stopped-Inside-GPU-Zone n
has—-part3 exactly 1 Drop-Chocks

The parent concept Composite-Event refers to a concept type defined in the Upper
Model which will be discussed further down. We now discuss the SWRL section of the
definition:

Arrival-Preparation(?arr—prep)
has—partl(?arr-prep, ?GPU-enters)
has—part2(?arr-prep, ?GPU-stopped)
has—part3(?arr-prep, ?drop)
has-start-time(?arr-prep, ?arr—-prep-st)
has-finish-time(?arr-prep, ?arr-prep-ft)
has—time-point(?GPU-enters, ?GPU-enters-tp)
has—-agent(?GPU-enters, ?GPU-enters-ag)
has-start-time(?GPU-stopped, ?GPU-stopped-st)
has—-agent(?GPU-stopped, ?GPU-stopped-ag) 0

has—time—point(?drop, ?drop-tp) 11

PO 00ON OUT A WN -

1l > >> >> >> > > >

equal(?arr-prep-st, ?GPU-enters-tp) 12
equal(?arr—-prep-ft, ?drop-tp) 13
equal(?GPU-enters-ag, ?GPU-stopped-ag) 14
min-before(?GPU-stopped-st, ?arr-prep-st, 100) 15
min-before(?drop-tp, ?GPU-stopped-st, 1000) 16

> > > >

The antecedent part of this rule has the single purpose to establish local variables
(prefixed by a '?') for the constraints in the consequent part. The first two constraints
(12, 13) relate the starting and finish time of the aggregate to specific time points of the
parts. The next constraint (14) requires that the vehicles referred to in GPU-Enters-GPU-
Zone and GPU-Stopped-Inside-GPU-Zone are the same. Finally, min-before checks
whether the difference between the first and the second argument is less than the third
argument. In this case, the gaps between consecutive events are constrained by 100 ms
(14) and 1000 ms (15), respectively. When the ontology is translated into an
interpretation procedure, all constraints of the consequent part are transformed into a
temporal constraint system (TCN) which generates a conflict when a potential
instantiation of the aggregate and its parts violates the constraints.

Note that a concept such as GPU-Stopped-Inside-GPU-Zone could have also been expressed
by the more general concept Vehicle-Stopped-Inside-Zone, constrained by the predicates
GPU(?veh-stopped-ag) and GPU-Zone(?veh-stopped-zn) in the SWRL section. In this case,
?veh-stopped-zn must have been introduced as a variable for the filler of the has-zone
property. We have taken the design decision to provide specific concept names for all
activities in a turnaround in order to establish a transparent correspondence to the
probabilistic aggregate models which will be introduced in Section 4.

The complete ontology comprises a domain-independent Upper Model, shown in Fig. 2,
with concept types which are generally useful for scene interpretation, roughly
corresponding to the Fluent Calculus (Russell & Norvig, 2010). The Domain Model with
the specific concepts for aircraft servicing is shown in Table 1. We first describe the
concepts of the Upper Model.

2.2 Upper Model

The root concept Thing (analogous to the OWL identifier owl:thing) represents every
entity which is needed for scene interpretation (not only physical objects). A

Conceptual-Object is used to represent a behaviour concept and may be either a State
or an Event. A State is a predicate true over an interval and all its subintervals, a
property which is often called "durative". A State may be a Composite-State with
several states as parts, all of which must be true over the interval of the parent state. An
Event is a non-durative Conceptual-Object, for example marking a transition from one
state to another. A Composite Event may have states or events as parts and is used, for
example, to describe a complete aircraft turnaround or the aggregate Arrival-
Preparation presented above. Primitive states and events have no parts and thus
constitute the leaves of the compositional hierarchy. Instances of primitives are typically
determined by lower-level processes which provide the input for scene interpretation.

The ontology also includes some unusual concepts which play a specific part in our work
but are not further addressed in this contribution. With Intention we refer to the
mental state of a person. An Intention is not observable, of course, but intentions can be
made part of event models and may be inferred from observations.

While most primitives can be generated from object trajectories obtained from
stationary wide-angle cameras, there are important events which require a dynamically
controlled pan-tilt-zoom (PTZ) camera and a special image analysis module, for example
to recognise whether a pipe is attached to the airplane for refuelling. An event obtained
this way is addressed as a Special-Vision-Task.

Another unusual conceptis zZone which describes a qualitative location in the horizontal
plane. Predefined zones on the apron play a significant part in event models for service
activities, exemplified by the primitive event GPU-Enters-GPU-Zone and its property has-
zone in the example above.

It may be surprising that the ontology does not include views or similar concepts related
to the appearance of objects. In our work on structure recognition in the facade domain
(Hotz et al., 2008), instances of 2D object views have been provided as input for high-
level interpretation. Hence interpretation included object recognition based on
appearances. In the work described here, however, the primitives entering high-level
interpretation are recognised 3D entities without appearance properties.

yeias Tty
Conceptual- [0..inf] Physical-
Object Object

IR

]
1

I

I

1 ~o e AN

1 ~ ' A
1

I

1

1

|

Mobile | | Static |

[0..inf] il

E Special-

'
1 .~
i
Hston-Task I \\\
1 N Zone
2 L 2 >

Composite— Primitive- Primitive- Composite—
State State Event Event

' — has part

-------- + has specialisation

Fig. 2: Upper Model of the behaviour ontology for the aircraft servicing domain

2.3 Domain Model

The Domain Model comprises more than 50 behaviour concepts which are part of a
compositional hierarchy with Turnaround as the roof concept (see Table 1). Activities
difficult to recognise have been omitted here, such as Catering, Air-Conditioning,
Waste-Removal, Replace-Drinking-Water etc. Note that some concepts occur as a part in
more than one aggregate. For example, Loader-Enters-Right-AFT-LD-Zone is part of
Unload-Right-AFT and Load-Right-AFT. This illustrates the ambiguities which may arise
in bottom-up interpretation and the need for constraints provided by the established
context.

In setting up a domain model, it may be useful to introduce abstract temporal behaviour
patterns as a common parent for more specific models, so that inheritance can be
exploited. For example, Passenger-Activity and Refuelling each consist of two
consecutive parts, the first a vehicle-Enters-Zone, and the second a Vehicle-Stopped-
Inside-Zone. This behaviour pattern could be defined as a visit:

Visit £ Composite-Event n
has-partl exactly 1 Vehicle-Enters-Zone n
has-part2 exactly 1 Vehicle-Stopped-Inside-Zone

The SWRL constraints define the start and finish time of a visit and ensure that (i) the
agents of the two parts are the same, (ii) the zones are the same, and (iii) the first event
happens before the second begins.

Visit(?vis)

has—partl(?vis, ?veh-enters)
has—part2(?vis, ?veh-stopped)
has-start-time(?vis, ?vis-st)
has—-finish-time(?vis, ?vis-ft)
has-time-point(?veh-enters, ?veh-enters-tp)
has—-agent(?veh-enters, ?veh-enters-ag)
has—-zone(?veh-enters, ?veh-enters-zn)
has-start-time(?veh-stopped, ?veh-stopped-st)
has—-agent(?veh-stopped, ?veh-stopped-ag)
has-zone(?veh-stopped, ?veh-stopped-zn)

1l >>> >>> >> > >

equal(?vis-st, ?veh-enters-tp)

equal(?vis-ft, ?veh-stopped-ft)
equal(?veh-enters-ag, ?veh-stopped-ag)
equal(?veh-enters-zn, ?veh-stopped-zn)
min-before(?veh-enters—-tp, ?veh-stopped-st, 10000)

> > > >

The definitions of Passenger-Activity and Refuelling could then simply read

Passenger-Activity £ Visit n
has—-partl exactly 1 Passenger-Stairs—-Enters-PS-Zone n
has—part2 exactly 1 Passenger-Stairs-Stopped-Inside-PS-Zone

Refuelling E Visit m
has—-partl exactly 1 Tanker-Enters-Tanking-Zone n
has-part2 exactly 1 Tanker-Stopped-Inside-Tanking-Zone

with no additional SWRL constraints.

Table 1: Domain model with aggregates of the Turnaround hierarchy

Turnaround
Arrival
Arrival-Preparation
GPU-Enters—-GPU-Zone
GPU-Stopped-Inside-GPU-Zone
GPU-Stopped
GPU-Inside-GPU-Zone
Drop—-Chocks
Airplane-Enters—ERA
Airplane-Stopped-Inside—-ERA
Airplane-Stopped
Airplane-Inside—ERA
Services
Passenger—-Activity
Passenger-Stairs—-Enters—-PS-Zone
Passenger-Stairs-Stopped-Inside-PS-Zone
Passenger-Stairs-Stopped
Passenger-Stairs-Inside-PS-Zone
Unload-Right
Unload-Right-AFT
Loader-Enters—-Right-AFT-LD-Zone
Transporter—-Enters—-Right-AFT-TS-Zone
Unload-Motion-Right-AFT-Belt
Transporter-Leaves—-Right-AFT-TS-Zone
Loader-Leaves—-Right-AFT-LD-Zone
Unload-Right-FWD
Loader-Enters—Right-FWD-LD-Zone
Transporter—-Enters—-Right-FWD-TS-Zone
Unload-Motion-Right-FWD-Belt
Transporter-Leaves—-Right-FWD-TS-Zone
Loader-Leaves—Right-FWD-LD-Zone
Refuelling
Tanker-Enters-Tanking-Zone
Tanker-Stopped-Inside-Tanking-Zone
Tanker-Stopped
Tanker-Inside-Tanking-Zone
Pumping-Operation
Load-Right
Load-Right-AFT
Loader-Enters—-Right-AFT-LD-Zone
Transporter—-Enters—-Right-AFT-TS-Zone
Load-Motion-Right-AFT-Belt
Transporter-Leaves—-Right-AFT-TS-Zone
Loader-Leaves—-Right-AFT-LD-Zone
Load-Right-FWD
Loader-Enters—Right-FWD-LD-Zone
Transporter—-Enters—-Right-FWD-TS-Zone
Load-Motion-Right-FWD-Belt
Transporter-Leaves—-Right-FWD-TS-Zone
Loader-Leaves—Right-FWD-LD-Zone
Departure
Start-Beacon
Pushback

In addition to behaviour concepts, the domain ontology contains definitions of specific
zones, specific mobile objects (Person or Vehicle) and refinements of Vehicle in terms

of GPU, Loader, Tanker etc

The temporal constraints specified for each aggregate provide only a crude model of
temporal relationships in a turnaround. As the data of real turnarounds show, there are
sometimes exceptions and unusual delays, hence tight crisp constraints may exclude

10

valid interpretations, while overly loose constraints may spawn too many false
positives. As pointed out in the introduction, we therefore developed a probabilistic
model for temporal relations. Conceptually, it should be part of the ontology, but
unfortunately there is currently no way to efficiently connect probability distributions
with OWL. Our probabilistic framework, described in Section 4, is therefore represented
outside of OWL and connects to the interpretation system at runtime.

Key terms: Behaviour recognition, monitoring, event ontology, Beam Search,
probabilistic guidance, Bayesian Compositional Hierarchy, prediction, aircraft servicing

11

Generating a Scene Interpretation System from the Ontology

In this section, we describe the scene interpretation system SCENIOR which is
automatically generated from the conceptual knowledge base represented in OWL and
SWRL. We first give an overview and provide some motivation for design decisions. We
then describe the tasks of the conversion process in detail, in particular generating rules
for rule-based scene interpretation and generating a temporal constraint system (TCN)
for the evaluation of SWRL constraints.

2.4 Motivation and System Overview

The design decisions which have led to SCENIOR are based on insights gained from past
scene interpretation projects (Neumann & Weiss, 2003; Hotz & Neumann, 2005) and
shared by many researchers in the field:

(i) The interpretation system must be based on conceptual knowledge represented
in a standardised way. This is a prerequisit for reusability of knowledge and for an
economical development of application systems.

(ii) Interpretation can be viewed as a mixed bottom-up and top-down search for the
best explanation of evidence in compositional and taxonomical hierarchies. Hence
interpretation steps can be modelled with predefined generic patterns.

(iii) For stepwise scene interpretation, it is necessary to entertain several possible
interpretations in parallel. A greedy interpretation strategy would be likely to fail, in
general, and backtracking would cause high system complexity and inefficient
performance.

(iv) In addition to a logic-based framework and crisp constraints, a probabilistic
model is required to provide preferences among interpretation alternatives.

We have therefore chosen an approach where the conceptual knowledge base is
converted into a rule-based system with rules realising both bottom-up and top-down
processing, and parallel threads for processing alternative interpretations. Probabilistic
guidance is provided by a probabilistic model homomorphic with compositional
hierarchies of the conceptual knowledge base.

Concretely, SCENIOR is implemented as a Java application with JESS¢ (Java Expert
System Shell) for rule-based processing. JESS is one of the fastest rule engines available,
it can directly manipulate and reason about Java objects. Fig. 3 shows the main
components of the system.

In the initialisation phase of the system, a converter (which is also part of SCENIOR)
loads the knowledge base and translates it into rules and templates in JESS format (see
Subsection 3.2). The result is called JESS conceptual knowledge base (JCKB). The
temporal constraints defined with SWRL rules are translated into temporal constraint
nets (see Subsection 3.3). Then a JESS thread is created for each submodel of the
compositional hierarchy and provided with a submodel hypothesis composed of
working memory elements (WMEs) for each expected instantiation for this submodel,

6 http://www.jessrules.com/

12

and with a corresponding TCN. Now the system is ready to start the interpretation

process (see Section 2.8).
Interpretations

SCENIOR

JESS
Conceptual
Knowledge
Base JESS
Rule
Conceptual Engi
C t ngine
Knowledge Base ((J;::tro? Submodel
(OWL + SWRL) SCENIOR) Hypotheses
TCN
(Temporal Java.
Constraint Net) Constraint
Templates Solver
Probabilistic BCH
Aggregate Inference
Models Engine

Primitive States/Events

Fig. 3: Main components of the scene interpretation system SCENIOR

SCENIOR expects real-time evidence about an evolving scene in the form of primitive
symbolic activity tokens with attached quantitative temporal information and other
useful properties as input. For aircraft servicing scenes, this evidence is provided in
terms of primitive states or events generated by a tracking component and a simple-
event detector developed by project partners.

The interpretation process, described in detail in Subsection 3.5, employs Beam Search
to generate possible interpretations in parallel threads. In each thread, a JESS rule
engine effects data-driven rule applications, and a Java constraint solver evaluates crisp
temporal constraints and terminates a thread in the case of a conflict. In addition, a
probabilistic inference engine for Bayesian Compositional Hierarchies (BCHs) provides
a rating of each partial interpretation to control the Beam Search.

2.5 Rule Generation from the Ontology

It has been shown by Neumann and Moeller (2006) that scene interpretation can be
viewed as a search in the space of possible interpretations defined by taxonomical and
compositional relations and controlled by constraints. Four kinds of interpretation steps
are required to navigate in interpretation space and to construct interpretations:

e Aggregate instantiation (moving up a compositional hierarchy)
e Aggregate expansion (moving down a compositional hierarchy)

13

e Instance specialisation (moving down a taxonomical hierarchy)

e Instance merging (unifying instances obtained separately)

In our framework, we create rules for the first three steps, with some additional
supporting rules. It will be shown that the step "instance merging“ becomes expendable
with the use of submodel hypotheses and parallel search.

Creating templates and slots. Before creating JESS rules, every concept of the OWL
knowledge base is converted into a JESS template with the same name as the concept.
Templates are the main structuring feature of the JESS rule language, they are analogous
to Java classes. A template is defined by a name and a number of slots, which are
comparable to the member variables of a Java class. Here, slots of a template are defined
corresponding to the properties of the concept and complemented with an additional
slot name, which will hold the name of a particular instance (e.g. vehicle_17). To
preserve the taxonomical hierarchy of the OWL knowledge base, we use the inheritance
mechanism of JESS, where templates can be defined as sub-templates which inherit the
slots of the parent template. Our approach differs from the transformation of OWL and
SWRL to JESS described in (Erikson, 2003), where the properties are modelled as
ordered facts which are simply JESS lists, and the template structure is flat. This would
have the effect that properties are decoupled from the concept template, and the
taxonomy must be emulated by duplicating facts along the taxonomical hierarchy,
destroying the object-centered structure of an aggregate and possibly leading to
scalability problems.

Submodel hypotheses. In the next step, a hypothesis structure is generated for each
submodel identified in the conceptual knowledge base. A submodel hypothesis
represents the compositional structure of the submodel, respecting the equality
constraints described with SWRL rules, and provides placeholders for all expected
instantiations. Each submodel hypothesis defines an independent interpretation goal.
This facilitates evidence assignment and splitting of the search tree into several
alternatives which are tracked in parallel. A submodel hypothesis can also be viewed as
a structure for coherent expectations. During interpretation it can be used to
"hallucinate" missing evidence and thus to continue a promising interpretation thread.
Fig. 4 shows a simplified submodel hypothesis for the submodel Arrival.

Arrival- Airplane- Airplane-Stopped-
Preparation Enters-ERA Inside-ERA

[Airplane—lnside— } [Airplane—stopped }
ERA

— has-part relation

Stop-Beacon

GPU-Enters— GPU-Stopped- Drop-Chocks
GPU-Zone Inside-GPU-Zone

GPU-Inside- GPU-Stopped
GPU-Zone

Fig. 4: Submodel hypothesis for the submodel Arrival

14

Rules. In the next step of the transformation process, the following rules are created
fully automatically from the ontology:

Evidence-assignment rules
Aggregate-instantiation and hallucination rules
Aggregate-expansion rules

Specialisation rules

Time-update rules.

An evidence-assignment rule assigns evidence provided by lower-level processing to a
hypothesis element which is the leaf of a submodel hypothesis. In the premise of the
rule, the template corresponding to the aggregate is addressed (GPU-Enters-GPU-Zone in
the example below), and the temporal constraints are checked with a test function (test
conditional element). The processing of the temporal constraints is described in detail in
the next subsection. In the action part of the rule, the status of the evidence is changed
from evidence to assigned, and the status of the hypothesis element is changed from
hypothesised to instantiated.

The following simplified example illustrates the generic pattern of an evidence-
assignment rule:

(defrule GPU-Enters—-GPU-Zone_ea_rule
?e-id <- (GPU-Enters-GPU-Zone
(name ?gegz_17)
(status evidence))
?h-id <- (GPU-Enters-GPU-Zone
(name ?gegz_h)
(status ?status_1))
(test (or (eq ?status_1 hypothesised)
(eq ?status_1 hallucinated)))
7+ check temporal constraints

(modify ?e-id (status assigned))
(modify ?h-id (status instantiated))
;; update temporal constraint net

)

Fig. 5: Example illustrating the generic pattern of an evidence-assignment rule.

An aggregate-instantiation rule instantiates an aggregate with status hypothesised if all
its parts are instantiated or hallucinated. This is a bottom-up step in the
compositional hierarchy and the backbone for the scene interpretation process. It is not
necessary to check the temporal constraints here, because this has already been done in
the evidence-assignment rules of the parts. A simplified example illustrating the generic
pattern of an aggregate-instantiation rule is given below:

(defrule Arrival-preparation_ai_rule
?h-id <- (Arrival-Preparation
(name ?ap_h)
(status hypothesised)
(has—part-1 p1l)
(has—part-2 p2)
(has-part-3 p3))
(GPU-Enters-GPU-Zone
(name ?p1)
(status ?status_1))
(test (or (eq ?status_1 instantiated)
(eq ?status_1 hallucinated)))
(GPU-Stopped-Inside-GPU-Zone
(name ?p2)

15

(status ?status_2))
(test (or (eq ?status_2 instantiated)
(eq ?status_2 hallucinated)))
(Drop—-Chocks
(name ?p3)
(status ?status_3))
(test (or (eq ?status_3 instantiated)
(eq ?status_3 hallucinated)))

(modify ?h-id (status instantiated)))

Fig. 6: Example illustrating the generic pattern of an aggregate-instantiation rule.

A specialisation rule refines an instance to a more specialised instance. Unfortunately,
the inbuilt JESS template structure only recognises if an instance of a concept satisfies a
more general concept restriction, for example, an instance of GPU-Enters-GPU-Zone is
recognised as a an instance of Vehicle-Enters-Zone. However, it is not recognised that an
instance of Vehicle-Enters-zZone with has-agent GPU and has-location GPU-Zone is an
instance of GPU-Enters-GPU-Zone. This classification could be easily performed by any DL
reasoner, but we preferred a solution within the JESS system, hence the rules for
specialisation. A simplified rule for this example is given below.

(defrule GPU-Enters—-GPU-Zone_s_rule

?e-id <- (Vehicle-Enters-Zone
(name ?vez_14)
(status evidence)
(has-agent ?al)
(has-location ?11))

(GPU (name ?al))

(GPU-Zone (name ?11))

(not (GPU-Enters-GPU-Zone (name ?vez_14)))

(retract ?e-id))

(assert (GPU-Enters—GPU-Zone
(name ?vez_14)
(status evidence)
(has-agent ?al)
(has-location ?11)))

Fig. 7: Example illustrating the generic pattern of a specialisation rule.

An aggregate-expansion rule instantiates part of an aggregate if the aggregate itself is
instantiated or hallucinated. This is a top-down step in the compositional hierarchy. A
separate rule is created for every part of the aggregate. It will be invoked if a fact has not
been asserted bottom-up but by other means, e.g. common-sense reasoning. Such facts
receive the status hallucinated, alluding to a sentence attributed to Max Clowes (1971):
"Vision is controlled hallucination". If an aggregate has the status hallucinated,
aggregate-expansion rules will also hallucinate all its parts. If some of the parts have
already been instantiated by an evidence-assignment rule or an aggregate-instantiation
rule, then the corresponding rules will not fire; a mechanism for instance merging is not
necessary.

In the current state of our interpretation system, an event (or state) will be hallucinated
if (i) it is defined as hallucinatable in the ontology, and (ii) it can be derived from the
temporal constraint net that the event should have happened by now. This check is done
in the Java background. For example, the event Drop-Chocks in an Arrival-Preparation
is difficult to detect by an image processing module, so it could be defined as
hallucinatable.

16

The following simplified example illustrates the generic pattern of an aggregate-
expansion rule:

(defrule Arrival-preparation_ael_rule
(Arrival-Preparation
(name ?ap_h)
(status hypothesised)
(has-part ?p))
?p-id <- (GPU-Enters-GPU-Zone
(name ?p)
(status hypothesised))

(modify ?p-id (status hallucinated)))

Fig. 8: Simplified generic pattern for an aggregate-expansion rule.

The time-update rules set the has-finished property of a primitive state to true and
update the temporal constraint net. These rules are necessary, because a primitive state
has a duration and is added as evidence to the working memory at the moment of its
first occurrence in the input data stream. This is desirable so that other rules, like
evidence-assignment rules and aggregate-instantiation rules, can fire before the
primitive state has finished. For example, a Vehicle-Enters-Zone event can be inferred
even though the primitive state Vehicle-Inside-Zone has not yet finished. If the update
caused by a time-update rule leads to an inconsistency of the TCN, the thread
representing this interpretation alternative will die.

Summarising rule generation, we note that format and flavour of the rules are noticeably
influenced by the expressivity of a classical rule language like JESS, and may raise doubts
regarding the verifiability of the intended behaviour. Generated from an OWL ontology,
however, most of the drawbacks of large rule systems can be avoided, as will be
explained in the following.

First, the ontology provides an unerring inventory of aggregate models organised below
the Upper-Model node Conceptual-0Object. Hence a rule generation process can be set up
which is complete and non-redundant regarding all aggregate-related rules. Second, the
taxonomical structure of the ontology specifies exactly, which specialisation inferences
have to be provided by rules, supplementing the inbuilt inferences.

A commonly experienced drawback of rule systems is the intransparent flow of control,
influenced by conflict resolution between multiple rules applicable to a processing state.
Rule conflicts are not avoided in our framework, but they are resolved by giving every
rule an equal chance in a separate interpretation thread, see Section 3.5. Furthermore,
control decisions regarding termination of a thread are subject to declarative
constraints and an independent rating scheme.

2.6 Temporal Constraints

The temporal constraints in the SWRL section of the ontology use expressions of the
convex time point algebra (Vila, 1994). The Allen temporal operators used in the
SWRLTemporalOntology” are not expressive enough for our purposes, because they
only allow to model qualitative relations, whereas the complexity of our domain
requires quantitative temporal models.

7 http://protege.cim3.net/cgi-bin/wiki.p]?SWRLTemporalOntology

17

As the basic format of a temporal relation in the convex time point algebra, we use
t2-t1=<cn2 (1)

where t; and t; are range-valued variables for time points and ci2 is a constant. A range
is a unary constraint specifying the minimal value tmin and maximal value tmax which a
time variable t may take. An event is described with a single time point, a state with a
start and a finish time point. We use SWRL rules to express arbitrary linear-inequality
relations between time points of different aggregates. This way, it is possible to model
important features of the temporal structure of a scene.

Temporal constraint nets are generated for each aggregate of the ontology and then
merged into a constraint net for each submodel. Fig. 9 shows the temporal constraint net
for the submodel Arrival introduced in Fig. 4. The suffix "st" indicates a start time point
and the suffix "ft" a finish time point of a state. The suffix "tp" indicates the time point of
an event. A directed arc represents an inequality according to Eq. 1, with the arrow
pointing from t; to tz and the number at the arrow representing ci2. A double-ended
arrow with the offset 0 indicates equality of the connected time points.

4 N
Arrival-sp] Arrival-ft
0 0
. J
N\ (N\
Arrival- Arrival- 9.5 | Airplane-Enters- Stop-Beacon-tp
Preparation-st) Preparation-ft L ERA-tp)
0 0)
N\ (N\
GPU-Enters- Drop-Chocks-tp Airplane-Inside-
GPU-Zone-tp [] ERA-st 1
J J
0 1
4 N\ 'd N\ 0 4
GPU-Inside- 5 Airplane- Airplane-Stopped-
GPU-Zone-st) L Stopped-st) Inside-ERA-st J
1 60
4 N\ 0 'd 'd N\ 0 4
GPU-Stopped-st GPU-Stopped- Airplane- Airplane-Stopped-
) Inside-GPU-Zone-st] L Stopped-ft) Inside-ERA-ft J
30 l 1
0 e N\
GPU-Stopped-ft GPU-Stopped-] Airplane-Inside-
Inside-GPU-Zone-ft ERA-ft
A J . J
1
(N\
GPU-Inside-
GPU-Zone-ft)

Fig. 9: Temporal constraint net for the submodel Arrival.

Initially the range of each time variable is open-ended, i.e. [-> +«]. When an evidence-
assignment rule or a time-update rule fires, the corresponding variables will receive
concrete values which are then propagated through the constraint net as follows
(Neumann, 1989):

e Minima are propagated in edge direction: tamin’ = Max(tzmin, timin + €12) (2)

18

e Maxima are propagated against edge direction: timax’ = min(timax, temax - €c12) (3)

A TCN is consistent, if tmax = tmin holds for all time variables. The TCN maintains the
consistency of the crisp temporal constraints, while the scene is evolving. It is
implemented procedurally in Java using shadow facts (Friedmann-Hill, 2003). This way,
changes of the TCN are immediately visible to JESS and may effect rule activations.

2.7 Using Submodels

Usually, several models have to be considered in a scene interpretation task. One reason
is the need to cope with several alternative variants of a scene model. In our domain of
airport activity monitoring, for example, there are turnarounds with or without
refuelling, with or without de-icing etc. One can easily imagine that there are similar
situations in other domains, where alternative models exist that vary in some parts but
are identical otherwise.

One way of coping with alternatives is to create separate complete models. This
approach is illustrated with the abstract models M1 and M: on the left-hand side of Fig.
10. It has the obvious disadvantage of leading to redundancies in the interpretation
process, since identical alternatives have to be maintained in parallel. A better approach
is to decompose the alternative models into several submodels, as depicted on the right-
hand side of Fig. 10. This has the added advantage of allowing subgoals to be defined,
each of which may be interesting for a monitoring task in its own right.

— has-part relation

----» subclass relation

Fig. 10: Decomposition of separate models into submodels

Subgoals lead to intermediate results which will not be discarded and can be used as
"higher-level evidence" for other aggregates. In the OWL ontology, concepts
corresponding to subgoals are marked as context-free, indicating that the conceptual
definition is designed to be valid in several contexts. This is a signal for the
transformation process to generate submodels with these concepts as roots. Alternative
submodels can be defined as variants of a common parent. If a root R of a submodel Mk
is instantiated, this instance is offered as higher-level evidence to every interpretation
thread with R or a superclass of R as a leaf.

On the right-hand side of Fig. 10, the concepts B and C are marked as context-free.
Furthermore, C1 £ C and C; c C. For example, C1 could stand for a Service with De-icing
(F), and C; for a Service without De-icing. If C1 or C; is recognised (instantiated), a
corresponding higher-level evidence is provided for every interpretation thread

19

containing a concept of type C as a leaf. In our example this could be M1 modelling a
Turnaround.

For the transformation process from OWL and SWRL to JESS rules, submodels cause
separate threads to be created, and a separate temporal constraint net is generated for
every submodel. Furthermore, evidence-assignment rules are generated not only for
primitive but also for higher-level evidence.

2.8 Interpretation Process

We can now give an overview of the interpretation process with SCENIOR. In the
initialisation phase the following steps are performed:

e The OWL conceptual knowledge base (including SWRL rules) is automatically
transformed into a JESS conceptual knowledge base. All necessary templates and
rules are generated.

e A separate interpretation thread is created for every submodel, equipped with a
submodel hypothesis structure and a temporal constraint net. Each thread has its
own independent JESS engine.

Now the system is ready to start the interpretation process. It receives primitive states
and events as input, and feeds these as WMEs to every interpretation thread. Then the
rules are applied and may eventually lead to instantiated aggregates, which again may
cause higher-level aggregates to be instantiated. If there is more than one activation for
an evidence-assignment rule within one thread (i.e. if multiple evidence assignments are
possible), then this thread is cloned into several threads, one for each possible
alternative assignment. A newly created thread is an exact copy of the original thread.
Then each of the possible assignments is performed on a separate clone by forcing the
corresponding rule to fire. This way, a search tree is established which examines all
interpretation possibilities in parallel.

So far, we have not yet discussed how to deal with noise, which can either occur in terms
of activities not modelled in the ontology, or as errors of low-level processing. Both
kinds of noise are abundantly present in our aircraft servicing domain. Various kinds of
vehicles not taking part in a service or performing some unknown task enter and leave
the servicing area throughout a turnaround. Also, low-level processing in our
application is difficult and not at all perfect, hence strange events not corresponding to
real activities are delivered as input to SCENIOR.

We have therefore extended our scene model to include a noise model which allows
anything not covered by the turnaround model to happen at any time. Naturally, this
causes an exponential explosion of interpretation threads: For each evidence, the
number of threads increases, reduced only by inconsistent threads.

As it turned out, SCENIOR can process up to ca. 100 threads in parallel and in real-time
on an ordinary PC. Nevertheless, the number of interpretation threads required for all
possibilities will exceed the capacity after a few steps. Clearly, a preference measure is
required which allows to discard less promising threads even if they satisfy the scene
model. To this end, we have developed a probabilistic scene model which will be
presented in the next section.

20

3 A Probabilistic Preference Model

As explained in the preceding section, scene interpretation can be controlled by a crisp
constraint net, in our case the temporal constraint net TCN, such that only consistent
interpretations survive in a parallel search. This approach has the advantage that the
scene model can be completely represented in OWL and SWRL, and that the constraint
solver can be realised efficiently. However, as pointed out before, constraints may not be
tight, else correct interpretations may be missed. Hence the interpretation system may
generate many false positives, depending on the discriminative qualities of the evidence.

We have therefore developed a probabilistic rating system to obtain a preference
measure for consistent interpretations. By computing this rating for intermediate partial
interpretations, the most promising ones can be kept, unlikely ones can be discarded.
Applied to multiple consistent final interpretations, a single most likely interpretation
can be selected.

We first formulate a general probabilistic model for scene interpretation and derive a
rating for partial and final interpretations. We then present Bayesian Compositional
Hierarchies (BCHs) which are special probabilistic models structured in congruence
with the compositional hierarchy of the OWL ontology.

3.1 A General Probabilistic Model for Scene Interpretation
In a general form, probabilistic scene interpretation can be modelled as evidence-based
reasoning with large joint probability distributions (JPDs). In the context of a parallel
search, the task is to determine which of M alternative models applies to a scene. A
generative probabilistic model for a scene can be written as

n (m) (m) vy (m) (m)
Pcene = qm P(1)(X1 ..._N(m) Zl -..YK(m)) })clutler (4‘)

S

We assume that there are M competing models with priors qm, m = 1 .. M. Each model is
described by a JPD consisting of hidden variables X = [X; .. Xn] and observable variables
Y = [Y:1 .. Yx]. The indices suggest distinct conceptual entities (for example aggregates),
each described by a vector of random variables, indicated by the underline.

Values for observable variables are provided by evidence from low-level processing,
values of hidden variables are determined by probabilistic inference. In our temporal
model for the aircraft servicing domain, the observables correspond to time points
marking a primitive event such as Vehicle-Stopped-Inside-Zone, whereas hidden
variables could describe beginning and duration of higher-level activities such as
Arrival-Preparation.

Pelutter is a catch-all distribution for evidence not fitting a model. This could simply be a
JPD modelling the occurrence of "unexplainable" evidence objects during a turnaround
as independent events.

To guide the interpretation process, we are interested in ranking alternative partial
interpretations given evidence e. Alternatives do not only arise from the models 1 .. M
but also from alternative assignments of evidence within a model. For example, a
Vehicle-Enters-ERA event (ERA is the large Entrance Restricted Zone where all
turnaround activities occur) can be part of many service activities of a turnaround, in
particular, if the type of vehicle is uncertain or tracking errors have occurred.

21

Alternative assignments cause additional competing interpretations. Further
alternatives arise from assigning some of the evidence - say en* - to the model and the
rest - say en” - to clutter, possibly different for each model. To simplify the notation, we
enumerate all alternatives - due competing models and alternative assignments - using
the index n.

The ranking R, of a scene model n is given by the probability that the model has
generated e,* as part of the service model and ey as clutter. This is captured by the
following equation:

Rn = qn P(") (gz) Pclutter (€;) (5)

Eq. (2) shows that alternative rankings can be determined from Eq. (1) by marginalising
the observables of each model n which have been chosen for evidence assignment, and
computing the resulting probabilities.

To determine the final interpretation, one has to perform two maximisations. First,
determine the highest-ranking model n*, and then determine the values x,* for hidden
variables of this model which maximise its posterior probability. These steps are
described by the following equations:

n* = argmax(q,P" (e)P, . (€,)) ©

[X =)_C*’Z = €+] = arg max(qn*P("*)()_C, QZ*)) (7)

Note that the probabilistic model given by Eq. (4) does not explicitly account for missing
evidence, for example due to occlusion or tracking limitations. To deal with this, the
range of observables could be extended to include "missing evidence" as a possible
"value", but an assignment and probabilistic appreciation will necessarily depend on the
context. The issue of missing information will not be treated in the sequel.

If interpretation is performed in real-time, probabilistic models may be adapted to the
progressing time. In our application, a scene model as given by Eq. (4) will involve
temporal random variables representing observable events on a quantitative time scale
relative to some common reference event, for example relative to an initial observation.
Real-time processing using such a model implies that we have a current time t. which
progresses as we observe a concrete scene, and that modelled events not observed so
far are bound to happen at times t > t, if at all. This should influence our ranking of
alternatives to the effect that reduced chances for an event cause a reduced ranking.

Let e be evidence assigned up to time t,, and T, € Y be unassigned temporal observables
of a model. Then the rank of model n at time t is given by
Rn (tc) = an(”)(€+ T > tc)I)clutter (g;) (8)

n’—n

Eq. (5) shows that the ranking of an alternative model changes according to its share in
the probability space for the remaining temporal variables. This refines Eq. (5) which
implied that the complete probability space was left for unassigned variables. Note that
real-time updating does not apply to hidden temporal variables for which values t < tc
may be inferred.

22

3.2 Bayesian Compositional Hierarchies

In order to preserve the advantages of ontology-based scene models, it is useful to
achieve a tight integration of the probabilistic model with a logic-based compositional
hierarchy. As an important step towards integration we present an approach for
formulating probabilistic scene models in terms of probabilistic aggregate models
complementing the aggregate definitions in OWL. Rimey (1993) modelled compositional
hierarchies using tree-shaped Bayesian Networks (BNs). To ensure efficient processing,
he had to assume that parts of an aggregate are statistically independent given the
parent aggregate. In (Neumann, 2008) a more powerful hierarchical probabilistic model
has been presented, called Bayesian Compositional Hierarchy (BCH). In the following,
we briefly summarise the definition of a BCH for arbitrary probability distributions.
Thereafter, we describe the structure of a Gaussian BCH which is the kind used for
modelling the temporal structure of aircraft services in our work.

A BCH is a probabilistic model of a compositional hierarchy. It consists of aggregates,
each modelled individually by an unrestricted JPD in an object-centered manner. The
hierarchy is formed by using the aggregate headers as part descriptions in aggregates of
the next hierarchical level, abstracting from details of parts at the lower level.

Figure 11 illustrates the schematic structure of a BCH. Each aggregate is described by a
JPD P(A Bi1..Bk C) where A is the aggregate header providing an external description to
the next higher level, B1..Bk are descriptions of the parts, and C expresses conditions on
the parts. The hierarchy is constructed by taking the aggregate headers at a lower level
as part descriptions at the next higher level, hence B1(1) = A(2) etc.

A(l)
C(l)
s S m
A(Z) A(J)
(2) ()]
© O o0 -
AN ™)
A A
ol oM

(M) = (M) ™ L (N)
B B B

00 00 00 00

Fig. 11: Schematic structure of a BCH. Triangles represent aggregates, circles represent
parts. Aggregate models overlap, their headers represent parts of aggregates at the next
higher level.

In our aircraft servicing domain, for example, a Turnaround aggregate consists of a
header which provides an external description of a turnaround in terms of its duration
(abstracting from details about the parts), and an internal description of the temporal
structure of the three parts Arrival, Services and Departure. The parts are also
described as aggregates themselves, for example Arrival is an aggregate with parts
Arrival-Preparation, Airplane-Enters-ERA and Stop-Beacon, compare with the
hierarchy shown in Table 1.

In general, the JPD of a complete hierarchy is given by

23

P(A".. A™)=PA™)] P(B".. B C1A") 9)
i=1.N
This remarkable formula shows that the JPD of a BCH can be easily constructed from
individual aggregate representations, and belief updates can be performed by
propagation along the tree structure. Let P'(Bi) be an update of P(Bi), by evidence or
propagation from its parts below. Then the updated aggregate JPD is

P((AB,.B,C)=P(AB,..B;C)P\(B,)/P(B,) (10)
A similar equation holds when P(A) is updated by propagation from its parent above.

Storage and updating operations for large hierarchies can be computationally very
expensive. We have therefore developed an implementation for aggregates with
multivariate Gaussian distributions. Roughly symmetric, unimodal distributions can
often be approximated by a Gaussian in a range corresponding to -26 .. +26 , where G is
the standard deviation. Multivariate Gaussian aggregate models can be compactly
represented by means and covariance matrices, and propagation in a BCH can be
performed very efficiently by closed-form solutions, as shown in the following.

Let G = [E F] be a vector of Gaussian random variables representing an aggregate. Let F
be the subset whose distribution is changed by evidence or incoming propagation. F can
be the aggregate header in the case of downward propagation or a part header in the
case of upward propagation. We want to compute the effect of the changed distribution
of F on G. Before propagation, the distribution of G is P(G) = N(ug, Xc) where L is the
mean vector and X the covariance matrix. The partitions corresponding to E and F,
respectively, are denoted as shown:

DYDY u
2 — E EF = —E
G {zzp zF] . L}

For a probability update, we assume that the distribution of F is changed to
P'(F) = N(ur', Zr'). Then the new distribution of G is P'(G) = N(us', X¢') with

DIAD Y , W
22} = T ’ LLG = /E

X X [where
TE' =g - Zpp 2 Zpr + ZpF 2F XF OF ZEF (11)
Ter' = Zpp ZF | 2F' (12)
UE' = pe + Zer Zp (UF -) (13)

It is evident that both upward and downward propagation for an aggregate with random
variables A B ... Bk C can be performed by fairly simple matrix computations.

Multivariate Gaussians are also very convenient for computing the ranking as described
in Eq. (5). The marginalisations required for ranking alternative interpretations are
directly available from the aggregate covariances, and the final maximizing
interpretation according to Eqgs. (6) and (7) can be given in terms of the mean values of
hidden variables.

24

There are, however, clear limitations of the applicability of multivariate Gaussian BCHs,
for example in connection with discrete random variables, range-limited flat
distributions or the truncated distributions arising in real-time updates according to Eq.
(8). In some cases it may be possible though to use Gaussians as approximations. This
will be shown in the following for the temporal structure of aircraft services.

3.3 A probabilistic model for the temporal structure of aircraft services

To perform real-time interpretation of aircraft servicing operations, a BCH for all
aggregates shown in Table 1 has been determined from the statistics of 52 turnaround
records. For each aggregate, the temporal structure of its parts is specified in terms of
correlated random variables for durations and delays. Fig. 12 illustrates the structure of
the aggregate Arrival-Preparation as an example. It is defined by the two random
variables Delayl and Delay2 which denote the delays between the point event GPU-
Enters-GPU-Zone, the beginning of GPU-Stopped-Inside-GPU-Zone and the point event
Drop-Chocks, respectively. The aggregate header is a random variable for the duration of
Arrival-Preparation, its value is defined as the sum of Delayl and Delay2.

Arrival-Preparation

GPU-Stopped-Inside-GPU-Zone
Delayl
Delay2
GPU-Enters- Drop-Chocks time
GPU-Zone

Fig. 12: Temporal structure of the aggregate Arrival-Preparation

Table 2 shows the means and the covariance matrix of the Gaussian JPD. Since the
duration of Arrival-Preparation is determined by the sum of the random variables
describing the parts, the covariance is singular, but this does not jeopardise the updating
procedure. The positive correlation between the delays reflects the observation that
activities in some turnarounds are generally faster than in others.

Table 2: Multivariate Gaussian JPD for Arrival-Preparation (units in minutes)

mean covariance
Arrival-Preparation 6 29,3 2,25 27
Delayl 1 2,25 0,25 25
Delay?2 5 27 2 25

All aggregate models have a similar structure, with activities described by their
durations and related to each other by delays. Gaussians are used with the
understanding that only the range -26.. +2¢ is valid in the model. To ensure that
durations of activities take only positive values, their models are constrained by pu > 26.

25

The reader may wonder how the probabilistic model relates to the crisp temporal
constraints of the ontology. As a matter of fact, the crisp constraints have initially been
the only means to express temporal relationships (Bohlken & Neumann, 2009), and
experiments showed their strengths and weaknesses. A carefully tailored probabilistic
model with zero probabilities outside a specific range would make the crisp model
dispensable, of course. But since we decided to employ a multivariate Gaussian model
with tails which are not quite realistic, a combination of the two models, where the crisp
constraints cut off the distributions outside their -26... +26 ranges, seems to be a good
solution.

26

5. Interpreting Aircraft Turnarounds

In this section, we present results obtained in experiments with real turnaround data.
First, we demonstrate the predictive power of the BCH and changes caused by partial
evidence. To this end, the estimated timeline for turnaround events and the remaining
uncertainty (measured in standard deviations) has been determined for two cases, (i)
after observing the very first event, GPU-Enters-GPU-Zone, and (ii) after observing all
events up to a late Airplane-Enters-ERA, see Table 3.

Table 3: Estimated timeline of a turnaround after an initial observation (Case 1) and
after observations up to Airplane-Enters-ERA (Case 2). Columns show times T and
uncertainties of estimates D (standard deviations) in minutes.

Case 1 Case 2

T D T D
Turnaround-Beg 0 0 0 0
Arrival-Beg 0 0 0 0
Arrival-Preparation-Beg 0 0 0 0
GPU-Enters-GPU-Zone-Eve 0 0 0 0
GPU-Stopped-Inside—-GPU-Zone-Beg 1 0,5 1 0
Drop-Chocks-Eve 6 3 6 0
Arrival-Preparation-End 6 3 6 0
Airplane-Enters—ERA-Eve 9 6 15 0
Airplane-Stopped-Inside-ERA-Beg 9 6 15 0
Stop-Beacon-Eve 17 6 23 1
Arrival-End 17 6 23 2
Services-Beg 19 8 26 3
Passenger—Activity-Beg 19 8 26 3
Passenger-Stairs—-stopped-Inside-PS-Zone-Beg 19 8 26 3
Passenger-Stairs—-stopped-Inside-PS-Zone-End 55 16 62 15
Passenger—Activity-End 58 17 65 15
Unload-Right-Beg 23 9 30 5
Unload-Right-AFT-Beg 23 9 30 5
Loader-Stopped-Inside-Right-AFT-LD-Zone-Beg 23 9 30 5
Transporter-Stopped-Inside-Right-AFT-TS-Zone-Eve 25 9 32 5
Unload-Motion-Right-AFT-Belt-Beg 29 9 36 6
Unload-Motion-Right-AFT-Belt-End 39 10 46 7
Transporter-Stopped-Inside-Right-AFT-TS-Zone-End 41 10 48 7
Loader-Stopped-Inside-Right-AFT-LD-Zone-End 43 10 50 7
Unload-Right-AFT-End 43 10 50 7
Unload-Right-FWD-Beg 24 12 31 10
Loader-Stopped-Inside-Right-FWD-LD-Zone-Beg 24 12 31 10
Transporter-Stopped-Inside-Right-FWD-TS-Zone-Beg 25 12 33 10
Unload-Motion-Right-FWD-Belt-Beg 29 13 36 11
Unload-Motion-Right-FWD-Belt-End 39 13 46 11
Transporter-Stopped-Inside-Right-FWD-TS-Zone-End 41 13 48 11
Loader-Stopped-Inside-Right-FWD-LD-Zone-End 43 14 50 12
Unload-Right-End 43 13 50 11
Refuelling-Beg 33 31 40 30
Tanker-Stopped-Inside-Tanking-Zone-Beg 33 31 40 30
Pumping-Operation-Beg 36 31 43 30
Pumping-Operation-End 43 31 50 30
Tanker-Stopped-Inside-Tanking-Zone-End 47 31 54 30
Services-End 55 23 62 22
Departure-Beg 57 24 69 21
Start-Beacon 57 24 69 21
Pushback-Beg 58 25 70 22
Pushback-End 60 25 72 22
Departure-End 60 25 72 22
Turnaround-End 60 25 72 22

27

Note that extended activities are marked with the suffix -Beg and -End indicating begin
and end, respectively, while point events are marked with the suffix -Eve. It can be seen
that observations in Case 2 significantly change the expectations of future events due to
the correlations within aggregate models. Also, as to be expected, the uncertainty of
estimates decreases with additional evidence.

Fig. 13 illustrates the change of expectation for the Stop-Beacon event in terms of its
probability density before and after the Airplane-Enters-ERA evidence. Note that the
density values scale the rating, hence the evidence will have a significant influence on
controlling the Beam Search.

probability

density
after evidence

before evidence

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 time

Fig. 13: Change of the probability density of Stop-Beacon caused by evidence for a late
arrival.

We now describe the initial phase of a concrete scene interpretation task to demonstrate
the selective effect of the ranking provided by the BCH in a Beam Search. The input data
have been obtained from one of the 80 turnarounds recorded at the Blagnac Airport in
Toulouse by low-level processing of project partners in France and England.

To rate interpretations in this experiment, the probability density of clutter has been set
to 0,01 which is less than the typical probability of a regular piece of evidence for a
turnaround. Note that the probability density is taken to measure the "probability” of an
event. A small constant factor At for a time span, over which a density must be
integrated, is omitted for clarity. Since the ratings are naturally decreasing with each
step and may reach very small numbers, the natural logarithm of a probability is taken,
resulting in negative ratings.

Based on evidence up to the event Airplane-Enters-ERA, SCENIOR generates 8
alternative interpretations (one of which has already been disqualified), performing a
complete search where every event could also be a clutter event. In Figures 14 and 15,
we show two competing interpretations, with boxes at the bottom for the evidence
received so far, dark boxes for expected further events according to hypotheses trees,
and other boxes representing instantiations. The Drop-Chocks event could not be
observed and was inferred from the context as "hallucinated". The figures do not show
any of the several clutter events which did not fit the partially instantiated models.

28

) scENIoR <3>
File Options Run About

ontology: [informatikihomerioopmann/Desktop/CoFriend/ontaloglesiangaparbat2 4bchfor-paper,owl |
Jess knowledge base: [informatikit pmann/Desktop/CoFriend/|ess Files/inangaparbat2 dbchfor-paper.owl |
‘Data file: |finformat kshemerkoopmann/Desktop/CoFriendiArt ficialD azaExample23, xmi3, kml |

Dataset: | |=
Primitives | Log
w ® [] [=] |Ilronnlnq . |Frama: ‘Entrln in queue: 0 H Threads: ‘mln: ‘Flnlshod: D‘Dnd: 1

Models: all Lf_l] Primitive: |mobileinsidezona 19

Jess Recognition

Thread: 4 * Model: |Arival Ranking: |4285.39

Arrival-Preparation e -

start: 17:10:31

finish: [1710:32 17:13:34]
GPU-Enters-GPL-Zone GFU-stopped-lmido-GPI.l-qu Drnp-chndka Airplane-Enters£RA M :
start: 17:10:31 start: 17:10c rk: [17:14:32; 17:13:34] start: 17:13:35 |
finish: 17:10:31 finish: uno:z:,- N1 fInlsh (171032 1713234 finish: 171335 | ﬁ

GPU-Inside-GPU-Zune GPU-Stopped

start: 1710031 start: 17:10:32 Mobil

finish: [17:10:32; INF] finish: [17:10: 92 INF] 5tl:rt:°1‘I ;::I::;iZom
finish: 17:13:35; INF]

GPUHnside-GPU=Z0
start: 17:10:31
finish: [17:10031; I
has-agent: gpu_7 has-agent: mol
has-lncation: gpi It has-lncation: |

GPIJ-Stupped
start; 17:

Fig. 14: Interpretation alternative No. 4 generated by SCENIOR after 3 minutes real-time

& sCEmoR <3>
File Options Run About

°0 & ®

ontology: finfarmatikhemefkoopmanniDesktop/CoFriendiontaleglesinangaparbat2 4bch-for-paper.owl \
Jess knowledge base: [informatikihome/koopmann/Desktop/CoFriendess Files/nangeparbat2 dbchfor-paper.ow l
Data flle: finfermatikthomefkoopmann/Desktop/CoFriend/art ficialDataExample29.kmi3, kml |

Dataset: | |

' Processing — Primitives | Log

Q -] o (=] ‘Promnlnn . ‘Frame: 1224 ‘Enlrlnln queue; 0 H Threads: ‘Ac.tln: ‘Flnlshed: 0 ’Dnad; 1
Models: all |1]| Primitive: [mobileinsidezana 19
[‘Jess | Visualisation | Recognition |
Thread: 5 © Model: [Arrival Ranking: 5143.3
Ar =
5
Arrival-Preparation {—-'—""_F'_'—F fi 51
start: 171031 st
finish: [17:10:32; 17:20:34] fi
GPU-Enters-GPU-Zone GPU- Stopped-lnslde-GPl.l-Zone Drop-Chocks Airplane Enters-ERA A
start: 1/7:10:31 start: 17:10:92 start: [L710:32 17:20:34] start: 1 720:35
finish: 17:10:31 finish: [17:10:32; INF] finish: [17:10:32; 17:20:39] finish: 17:20:35
GPU-Inside-GPU-Zone GPU-Stopped Mohilednside-Zone
start: 1710091 start: 17:10:32 slarl; 17:20:35 sl
finish: [17:10:32; INF] finish: [17:10: 32 INF] finish: [17:20: 3%; INF] f
GPU-Inside-GPU-Zane vehide-Inside-Zong
start: 17:10:91 GPUSUIESSS start: 17:20:9
finish: [17:10:31; INF] finishe [17:10: 12: INF] finish: [17:20:35; INF1
has-agent: gpu_7 hage -a.genl-:' apu’7 has-agent: airplane 26
has-location: gpu-zone 6 i | has-location: eral -

Fig. 15: Interpretation alternative No. 5 generated by SCENIOR after 10 minutes

29

The main difference between the interpretations is an erroneous Airplane-Enters—ERA
event generated by low-level processing for a tanker crossing the ERA shortly before the
arrival of the airplane. Figure 16 shows the corresponding video frames taken by one of
the eight cameras. The crossing tanker is visible in the far background of the image on
the left.

so
&
""'“""---!!i" F B mmme s

Fig. 16: Snapshots of the ERA (Entrance Restricted Area) after completing Arrival-
Preparation. The GPU (Ground Power Unit) and chocks are in place. The tanker crossing
the ERA in the background (left) causes an erroneous interpretation thread (see text).

The ratings for the partial interpretations of both alternatives are shown in Table 4.
Interpretation 4 is the erroneous and Interpretation 5 is the correct one. Initially, the
arrival of the GPU sets a context where a vehicle is expected to enter the ERA, hence the
crossing tanker is a candidate. But as soon as the true airplane enters, an alternative
arises and is favoured because the probabilistic model expects an Airplane-Enters-ERA
event 8 minutes after GPU-Enters-GPU-Zone, and the airplane's arrival is closer to that
estimate than the tanker's. Note that clutter events not assigned to either of the two
interpretations are not shown in the table.

Table 4. Initial ratings of the two alternative interpretations shown in Figures 14 and 15

el = mobile-inside-zone-86

e2 = mobile-stopped-90

e3 = mobile-inside-zone-131
e4 = mobile-inside-zone-155

est = estimated event

Evidence Time Interpretation 4 Ranking4 Interpretation 5 Ranking 6
el 17:10:31 GPU-Enters.. 0 GPU-Enters.. 0

e2 17:10:32 GPU-Stopped.. -2,16 GPU-Stopped.. -2,16

e3 17:13:31 Airplane-Enters—ERA -5, 32 Clutter -2,16

e4 17:20:35 Clutter -5,32 Airplane-Enters-ERA -5,09

est =17:13:35 Airplane-Stopped.. -6,24

est =17:13:35 Stop-Beacon -7,71

est =17:20:35 Airplane-Stopped.. -6,01

est =17:28:35 Stop-Beacon -7,48

The table also includes the estimated times of the next events Airplane-Stopped-Inside-
ERA and Stop-Beacon together with the expected ratings of the competing
interpretations. Note that estimated time windows may begin earlier than the actual

30

time, allowing for hallucinated events in the past. Considering that Stop-Beacon will
occur after the true aircraft arrival and not at the time expected in Interpretation 4, the
rating of this interpretation will surely be much lower than the estimated value, further
increasing the distance between the right and the wrong interpretation.

The performance of SCENIOR was evaluated for 20 annotated turnarounds, with
primitive events provided by low-level image analysis of the project partners. The
ontology and the probabilistic model were derived from 32 other turnarounds. Because
of the noisy input data, it was necessary to interpret each evidence both as belonging to
a turnaround (given that the constraints were satisfied) and as clutter. 17 of the 20
turnarounds resulted in complete interpretations. This was facilitated by Special Vision
Tasks with controlled cameras for three crucial events and by "hallucinations" for
missing evidence in certain contexts. The three problematic sequences were highly
irregular and did not match the conceptual model (e.g. GPU arrival after aircraft arrival).
SCENIOR showed a reliable system performance with up to 100 parallel threads (limited
by a preset beam width) for partial alternative interpretations, as shown in Fig. 17. It
can be seen that altogether more than 1000 partial interpretations have been initialised,
many caused by the context-free submodels which posed interpretation goals
throughout the sequence.

threads cof006

900

E§ 8 &8 8 8§
o

Tk
\

- _'_/_J_,J r_,,r—‘ _
#,;::‘f;/:::j active
N

s ¥ &8 8 8 R

10
190
370
550
730
910
090
270
450
630
810
990
170

2350
2530
27110
2890
3070
3250
3430
3610
3790
3970

2

frames

Fig. 17. Thread statistics for a typical interpretation process

The recognition rate of subactivities is shown in the table below. It was limited to 75%
because of the noisy low-level input data with missing crucial evidence.

Table 5. Correctly recognised subactivities in 20 test sequences.

SEQUENCE| 1 [2 |3 |4 [5]6]| 8|9 [18]25[29]58]59]|62[63]|66
Arrivalf T [1|1 |1 |1 |11 (111|111]1|1f1
Passenger-Boarding-Preparation| 1 [1 [1 | 1T [1 |1 |1 |1 (1|11 |11]1|1]]1
Unloading-Loading-AFT| 1 |1 |1|O0f1]JO0]|1|1]|1]1[0]0]0O]|0O[0]O
Unloading-Loading-FWD 1 1100 1|1 1|1
Refuelling 01010 0 0 0 0
Pushback-Arrival| 1 | 0|0 [0 | O 0{1]0[0]0O]JO|O]|1]0
Passenger-Bridge-Leaves-PBB-Zone| 1 | 1 (1| 1 |1 |1 |1 |1 |1 |11 |1|1]1]1
Departure| 1 | 1 |1 [1|1 |1 |1 |1 |11 1|11 |1]|1]]1

w
—_

6. Conclusions and Outlook

We have presented an approach to high-level scene interpretation with several novel
features. First, the interpretation system is automatically generated from an ontology of
behaviour concepts represented in the standardised language OWL-DL and its extension
SWRL. Second, the interpretation process is organised as a Beam Search allowing
several parallel interpretation threads. Third, a probabilistic model homomorphic to the
compositional concept hierarchy provides a preference measure which rates competing
interpretations and controls the Beam Search.

The approach is a step ahead on the way to a generic framework for scene
interpretation, but it also shows current limitations regarding a standardised
representation of behaviour models. Constraints, which are indispensable for object-
centered aggregate representations, have to be expressed with SWRL rules and cannot
be included in a consistency check of the conceptual knowledge base. Unfortunately, this
drawback prevails in OWL 2 (Riboni & Bettini, 2011b). Probabilistic relationships
between properties, in our application time points marking the beginning and ending of
activities, cannot be efficiently expressed in OWL or SWRL and must be represented
separately. Also, we could not yet demonstrate the benefits of OWL regarding inference
services by a DL reasoning system. As pointed out in the introduction, one reason is the
need for incremental model construction which cannot be answered by the available DL
systems. Another reason is the absence of large-scale knowledge bases to which scene
interpretation might eventually be connected. We still believe that OWL (or its
successors) may provide an attractive basis for such larger knowledge bases, hence
justifying our OWL-based scene interpretation framework.

In the near future, our approach will be extended into several directions. One goal is to
connect the rule system with common sense rules which can evaluate the interpretation
context and determine dynamically whether missing evidence is "hallucinatable".
Another goal is to extend quantitative constraints to also cover spatial information,
refining the current representations based on "zones". To this end, a more powerful
constraint system and an extended implementation of a BCH must be developed.

32

References

Badler, N.I. (1975). Temporal scene analysis: conceptual descriptions of object
movements. Report TR 80, Dep. of Computer Science, University of Toronto, 1975

Binford, T.O., Levitt, T.S., & Mann,W.B. (1989). Bayesian inference in model-based
machine vision. In Levitt et al. (Eds.), Uncertainty in Al(3), 73-96

Bohlken, W., & Neumann, B. (2009). Generation of rules from ontologies for high-level
scene interpretation. In Governatori et al. (Eds.): Rule Interchange and Applications, Proc.
Int. Symp. RuleML 2009, Springer, 93-107

Chen, L., & Nugent, C.D. (2009). Ontology-based activity recognition in intelligent
pervasive environments. Int. J. Web Information Systems 5 (4), 410-430

Cohn, A.G., Magee, D., Galata, A., Hogg, D., & Hazarika, S. (2003). Towards an architecture
for cognitive vision using qualitative spatio-temporal representations and abduction. In
Freksa et al. (Eds.), Spatial Cognition 111, 232-248

Eriksson, H. (2003). Using JessTab to integrate Protégé and Jess. IEEE Intelligent Systems
18(2), 43-50

Friedman-Hill, E. (2003). Jess in Action: Java rule-Based systems. Manning, Greenwich,
2003.

Fusier, F., Valentin, V., Brémond, F., Thonnat, M., Borg, M., Thirde, D., & Ferryman, |.
(2007). Video understanding for complex activity recognition. Machine Vision and
Applications, 18(3), Springer, 167-188

Getoor, L., & Taskar, B. (Eds.). (2007). Introduction to Statistical Relational Learning. The
MIT Press, 129-174

Gries, 0., Moeller, R., Nafissi, A., Rosenfeld, M., Sokolski, K., & Wessel, M. (2010). A
probabilistic abduction engine for media interpretation. Proc. Fourth Int. Conf. on Web
reasoning and rule systems, 182-194

Gyftodimos, E., & Flach, P.A. (2002). Hierarchical Bayesian Networks: A probabilistic
reasoning model for structured domains. In de Jong, E., Oates, T. (Eds.), Proc. Workshop
on Development of Representations, ICML, 23-30

Hotz, L., & Neumann, B. (2005). Scene interpretation as a configuration task. Kuenstliche
Intelligenz, 3/2005, BottcherIT, Bremen, Germany, 59-65

Hotz, L., Neumann, B., & Terzic, K. (2008). High-level expectations for low-level image
processing. Proc. KI-2008, Springer, 87-94

33

Koller, D., & Pfeffer, A. (1997). Object-oriented Bayesian Networks. In The Thirteenth
Annual Conf. on Uncertainty in Artificial Intelligence, 302-313

Mumford, D., & Zhu, S.-C. (2007). A stochastic grammar of images. Now Publishers

Morariu, V.I., & Davis, L.S. (2011). Multi-agent event recognition in structured scenarios.
IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2011

Neumann, B. (1989). Natural language description of time-varying scenes. In Waltz, D.
(Ed.), Semantic structures, Lawrence Erlbaum, 167-206

Neumann, B., & Weiss, T. (2003). Navigating through logic-based scene models for high-
level scene interpretations. In Proc. 3rd Int. Conf. on Computer Vision Systems (ICVS
2003), Springer, 212-222

Neumann. B. (2008). Bayesian Compositional Hierarchies - A probabilistic structure for
scene interpretation. TR FBI-HH-B-282 /08, Dep. of Informatics, Univ. of Hamburg,
Germany

Neumann, B., & Moeller, R. (2006). On scene interpretation with Description Logics. In
Nagel, H.-H. & Christensen, H. (Eds.), Cognitive Vision Systems, , Springer, 247-275

Reiter, R., & Mackworth, A. (1987): The Logic of Depiction. TR 87-23, Dept. Computer
Science, Univ. of British Columbia, Vancouver, Canada

Riboni, D., & Bettini, C. (2011a). COSAR: hybrid reasoning for context-aware activity
recognition. Personal and Ubiquitous Computing 15,271-289

Riboni, D., & Bettini, C. (2011b). OWL 2 modeling and reasoning with complex human
activities. Pervasive and Mobile Computing, doi: 10.1016/j.pmcj.2011.02.001

Rimey, R.D. (1993). Control of selective perception using Bayes Nets and Decision
Theory. Dissertation, TR 468, 1993, Univ. of Rochester, USA

Russell, S., & Norvig, P. (3rd edition) (2010). Artificial Intelligence: A modern approach.
Pearson, 266

Schroeder, C., & Neumann, B. (1996). On the logics of image interpretation: Model-
construction in a formal knowledge-representation framework. In Proc. Int. Conf. Image
Processing (ICIP-96), IEEE Computer Society, Vol. 2/785-788

Shanahan, M. (2005). Perception as abduction: Turning sensor data into meaningful
representation. Cognitive Science, 29, 103-134.

34

Shearer, R, Motik, B., & Horrocks, I. (2008). HermiT: A highly-efficient OWL reasoner.
Proc. 5th OWLED Workshop on OWL: Experiences and Directions, 7, 2008

Tsotsos,].K., Mylopoulos,]., Covvey, H.D., & Zucker, S.W. (1980). A framework for visual
motion understanding. [IEEE PAMI-2, 563-573

Vila, L. (1994). A survey on Temporal Reasoning in Artificial Intelligence. Al
Communications 7 (1), 4-28

35

