

International Workshop on

Software Variability
Management (SVM)

ICSE’03
International Conference on Software Engineering

Portland, Oregon
May 3-11, 2003

3

Table Of Contents

Software Configuration Management Problems and Solutions to Software Variability Management
Lars Bendix, Lund Institute of Technology. 5

Using UML Notation Extensions to Model Variability in Product-line Architectures
Liliana Dobrica, University Politehnica of Bucharest; Eila Niemelä, VTT Electronics. 8

Consolidating Variability Models
Birgit Geppert, Frank Roessler, David M. Weiss, Avaya Labs Research 14

Managing Variability with Configuration Techniques
Andreas Hein, John MacGregor, Robert Bosch Corporation . 19

Supporting the Product Derivation Process with a Knowledge-based Approach
Lothar Hotz, Thorsten Krebs, Universität Hamburg . 24

Variability Analysis for Communications Software
Chung- Horng Lung, Carleton University. 30

Evolving Quality Attribute Variability
Amar Ramdane-Cherif, Samir Benarif, Nicole Levy, PRISM, Université de Versailles St.-
Quentin; F. Losavio, Universidad Central de Venezuela. 33

A Practical Approach To Full-Life Cycle Variability Management
Klaus Schmid, Isabel John, Fraunhofer Institute for Experimental Software Engineering
(IESE) . 41

Capturing Timeline Variability with Transparent Configuration Environments
Eelco Dolstra, Utrecht University; Gert Florijn, SERC; Merijn de Jonge, CWI; Eelco Visser,
Utrecht University . 47

Component Interactions as Variability Management Mechanisms in Product Line Architectures
M. S. Rajasree, D. JanakiRam, Indian Institute of Technology, Madras. 53

Feature Modeling Notations for System Families
Silva Robak, The University of Zielona Gora. 58

Variability in Multiple-View Models of Software Product Lines
Hassan Gomaa, George Mason University; Michael Eonsuk Shin, Texas Tech University . . 63

Managing Knowledge about Variability Mechanism in Software Product Families
Kannan Mohan, Balasubramaniam Ramesh, Georgia State University 69

Towards a component-based, model-driven process supporting variability of real-time software
Vieri Del Bianco, Luigi Lavazza, CEFRIEL - Politecnico di Milano. 74

4

Organizers
Jan Bosch, University of Groningen
Peter Knauber, Mannheim University of Applied Sciences

Program Committee
Gert Florijn, SERC
Danny Greefhorst, IBM Global Services
Henk Obbink, Philips Research
Klaus Pohl, University of Essen
Paul Sorenson, University of Alberta
Kai Koskimies, Tampere University of Technology

 5

Software Configuration Management
Problems and Solutions to

Software Variability Management

Lars Bendix
Department of Computer Science

Lund Institute of Technology
Sweden

bendix@cs.lth.se

Abstract

These days more and more software is produced as
product families. Products that have a lot in common, but
all the same vary slightly in one or more aspects.
Developing and maintaining these product families is a
complex task. Software configuration management (SCM)
can, in general, support the development and evolution of
one single software product and to some degree also
supports the concept of variants. It would be interesting
to explore to what degree SCM already has solutions to
some of the problems of product families and what are the
problems where SCM has to invent new techniques to
support software variability management.

1. Introduction

Software product families are becoming more and
more common. There are many benefits from making and
selling basically the same product in many slightly
different variations. You can amortise your investment on
a greater number of sold products. You can satisfy your
customers’ desire for specialised products at a reasonable
cost. Your product will be able to run on many platforms
and support many languages in a globalised market. You
will be able to reuse parts from existing products allowing
a faster time-to-market time.

However, there is also a down side to software product
families. They are very complex to develop and even
more complex to maintain and further evolve. And
because of the high development costs and popularity of
such products they tend have long lives. In order to
balance the costs of the production with the benefits from
increased sales of software product families, we need to
be able to manage the complexity of software variability.

In my opinion, Software Configuration Management
(SCM) has a major role to play when it comes to handling

the complexities of software variability. SCM already has
a fundamental role in supporting the development and
evolution of single product software. If we were able to
distinguish exactly how product families differ from single
product software, we might discover that SCM can
provide – or develop – techniques to support product
families too.

In the following, I will first briefly outline the most
important concepts and principles of SCM relevant to
product families, after which I describe how I look at
software product families. Then I will detail where I see
previous relations between SCM and SVM – and finally
state my position on what could be some of the discussion
points at the workshop regarding the relationship between
SCM and Software Variability Management (SVM).

2. Software Configuration Management

For the past two decades my main interest has been
SCM. It is a discipline that spans a wide spectrum of
functionality, ranging from computer supported co-
operative work, that supports the developers in their tasks,
to product data management, that enables the company to
document the exact composition of their products.

SCM is the control of the evolution of complex
software systems. Traditionally it is said to cover the life-
cycle phases from coding to retirement. However, you can
apply SCM principles and techniques to everything from
your requirements specifications through design
documents to documentation.

One of the core concepts of SCM is the management of
a repository of components. Everything that the
developers produce goes into this repository where it
remains forever, such that it can be retrieved again at any
time. When changes are made to something in the
repository, they are not made directly to the component,
but rather to a copy and the modified copy is then added

 6

to the repository creating a new version of that
component. This means that we can have many versions
of the same component.

Another core concept is that of a product model. This
product model describes the structure of the product by
relating the components in a dependency graph.
Furthermore, the product model also contains information
about which actions to perform to build the product from
its components. This means that once this product model
has been described it is possible to automatically build the
product.

When we put these two concepts together we get a
slightly more complicated picture. The fact that the
repository might contain more that one version of a given
component means that there is a choice between which
version to use for each component when we build the
product. This gives rise to the concept of a generic
product model that gives only the structure. This generic
model is then bound to particular versions of components
using the repository and a selection profile describing
which version to use for which components.

These are problems where SCM has solutions that are
well understood and mature. A naive and simplistic view
at SVM would be to look at variants the same way as
versions and use these already established solutions.
However, variants do differ from versions so such an
approach has strong limitations.

3. Software Product Families

Unfortunately I am not yet an expert on the subject of
product families. However, in this section I will describe
what I perceive as some of the important aspects of
software product families.

From what I know, variation points have emerged as a
way to describe the parts where a component can or is
allowed to vary. There may be tens of thousands of
variation points in a product line – and that might sound
frightening. However, in my opinion it is not the number
of variation points that should cause most concern with
regard to complexity. It is the number of dimensions in
which a product family is allowed to vary. Usually that
number is in the tens or less, but still this low number
generates far more complexity.

The complexity of managing the amount of variability,
both in number of places and number of dimensions, can
become extremely high. Especially as the product family
evolves in time introducing also versions.

4. SCM relations to SVM

Within the SCM community there was an early interest
in variants and the handling of variability. Variations that
could be confined within a single file and involved only

minor pieces of code was studied in [WS88], and a
mechanism very similar to conditional compilation was
proposed. A later study by [Reichenberger89]
distinguished versions and variants as two separate
dimensions in which a component could differ. In his
approach he put emphasis on a model for the whole
product.

So there are already solutions for managing software
variability provided by SCM. But are they sufficient for
the variability found in today’s product families?

5. Position statement

From my point of view it would be interesting to look
at SCM from a solutions perspective. Can we “discipline”
or stream-line the use of variability in product families
such that it can be managed by present SCM techniques –
and how?

Equally as interesting would it be to look at software
variability management from a problems perspective. To
listen to an analysis of what the problems are to discover
the limitations of SCM support. This could lead to the
development of new SCM techniques to support (part of)
these problems.

It is “common wisdom” that evolution and variability
should be “kept apart” – but how do you implement that?

More specifically such a discussion could investigate
the following five themes:

Top-down vs. bottom-up approach: Is the variation
points a top-down approach, whereas current SCM
techniques are bottom-up? Are these for large and small
variations and which can be supported by SCM and how?

Anticipated vs. unanticipated variability: The latter
cannot be designed into the architecture. They could also
be considered as sort of proactive and reactive
approaches. Can we make a mix – and how should that be
done? Would it be possible – and desirable – to use
techniques like refactoring to bring unanticipated
variability under control?

Life-cycle phases: Is there any difference in the
support you need depending on when in the life-cycle you
bring in variability? Early (analysis/design), middle
(implementation), late (release – or production – and
maintenance). Which phases are variation points, SCM-
and PDM techniques most suited for?

Evolution vs. variability: These two dimensions
should be kept apart. But why – and how?

Traceability: How do we trace and relate a variation
point from the analysis to the design to the code to the
tests to the documentation?

 7

6. References

[Reichenberger89]: Reichenberger, Christoph:
Orthogonal Version Management, in
proceedings of the 2nd International Workshop on
Software Configuration Management, Princeton,
New Jersey, October 24-27, 1989.

[WS88]: Winkler, Jürgen F. H. & Stoffel, Clemens:
Program-Variations-in-the-Small, in
proceedings of the 1st International Workshop on
Software Version and Configuration Control,
Grassau, Germany, January 27-29, 1988.

8

Using UML Notation Extensions to Model Variability in Product-line
Architectures

Liliana Dobrica
University Politehnica of Bucharest

Spl. Independentei, 313, Sect. 6, 77206
Bucharest, Romania,

ldobrica@digi.ro

Eila Niemelä
VTT Electronics

P. O. Box 1100 FIN-90571
Oulu, Finland

Eila.Niemela@vtt.fi

Abstract

The purpose of this paper is to define the extensions of
the UML standard specification for the explicit
representation of variations and their locations in
software product line architectures based on a design
method already established. The method will benefit a
more familiar and widely used notation, facilitating a
broader understanding of the architecture and enabling
more extensive tool support for manipulating it.
The description of the modeling constructs that manage
variability represents a part of a profile of the extended
or applied UML concepts intended primarily for use in
modeling product-line architectures. These new
constructs have to be used in combination with all the
other UML modeling concepts and diagrams to provide a
comprehensive modeling tool set.

1. Introduction
Product line software development requires a

systematic approach from such multiple perspectives as
business, organizational, architecture and process. In the
product line context, the architecture is used to build a
variety of different products. For several years the focus
of our research has been product line architecture (PLA)
design and analysis. One of our goals was to define a
quality-driven architecture design and analysis (QADA)
method [1]. An important issue in our research was to
explicitly represent variation and indicate locations for
which change is allowed. In this way, the diagrammatic
description of the PLA defined by using the QADA
method helps in instantiating PLA for a particular product
or in its evolution for future use. From the PLA
documented diagrammatically, it is easy to detect what
kind of modifications, omissions and extensions are
permitted, expected or required.

The QADA method was described by defining and
using a framework that consisted of the following
ingredients:

• an underlying model, referring to the kinds of
constructs represented, manipulated and analyzed
by the model;

• a language, which is a concrete means of
describing the constructs, considering possible
diagrammatic notations;

• defined steps, and the ordering of these steps;
• guidance for applying the method; and
• tools that help in carrying out the method.

In order to achieve an optimal method for a certain
development effort, these ingredients can be defined or
selected more properly. Some of these ingredients may
already be available (e.g. from the literature, from tool
vendors, etc.), whereas others may have to be specially
developed, configured or extended.

The work in this paper puts in practice this idea of
method improvement with the purpose of defining the
UML extensions for the management of variability in
space in the software architectures of product lines. The
extensions are described through the viewpoints defined
by the QADA method. The method will benefit a more
familiar and widely used notation, therefore facilitating a
broader understanding of the architecture and enabling
more extensive tool support for manipulating it.

One of our goals is to describe modeling constructs
that manage variability and represent a part of a profile of
the extended or applied UML concepts intended primarily
for use in modeling the product line architectures. These
new constructs have to be used in combination with the
other UML modeling concepts and diagrams to provide a
comprehensive modeling tool set.

The beginning of this paper is a brief description of the
viewpoints of the QADA method, with the focus on
modeling elements and relationships with UML extension
mechanisms and notation. The next section examines
some of the structural and behavior constructs that model
variability, trying to interpret them based on UML
concepts. UML extension mechanisms are used if a
refinement of the UML metamodel is necessary. The final

mailto:ldobrica@digi.ro
mailto:Eila.Niemela@vtt.fi

9

result of our research is the definition of a UML profile
for designing software architectures based on the QADA
method. We think that standardization of the UML profile
defined in our study will be of benefit to the software
architecture developer community, especially for software
product lines where a systematic approach is mostly
required.

2. Modeling constructs and notation

The modeling constructs used by the QADA method
for representing software architectures for product line
development are partitioned into four groups: constructs
for modeling a structural view, constructs for modeling a
behavioral view, constructs for modeling a deployment
view and constructs for modeling a development view.
Variation in space is an integral part of the first three
views, contrary to the development view that represents
the categorization and management of domains,
technologies and work allocation. There are also two
levels of abstraction to be considered in PLA descriptions:
the conceptual level and the concrete level.

Entities of each view are defined in detail and
described in [1] and [2] . Figure 1 presents the entities of
three major conceptual views that embody variation in
space. Variation in time is managed through the
conceptual and concrete development views, but that is
outside the scope of this paper.

On a concrete level there are other architectural
elements (i.e. capsules, ports, state diagrams, deployment
diagrams, etc.) and relationships between them in each of
the views.

Conceptual Views

Structural Behavior Deployment

Architectural elements
System component
Subsystem component
Leaf component

Relationships
Passes-data-to - «data»
Passes-control-to - «control»
Uses - «uses»

Architectural
elements

Service component

Relationships

Ordered seqence of
actions

Architectural
elements

Deployment Node
Unit of deplyoment

Relationships

Is-allocated-to

Figure 1. Entities of the Conceptual Views.

To address UML extensions in accordance with the
QADA method we decided to define and apply a
framework, accompanied by a set of activities and
techniques, for identifying differences between the UML
standard [3] and the QADA viewpoint description.

The framework is based on the following activities:
• Mapping: Identifies what information is overlapping

between the existing QADA language and UML;

• Differentiation: Identify differences between the
UML standard model elements and those defined by
QADA;

• Transformation: By using UML extension
mechanisms or other techniques we try to integrate
the UML standard with the new required QADA
elements.

UML supports the refinement of its specifications
through three built-in extension mechanisms [3] :
• Constraints that place semantic restrictions on

particular design elements; UML uses the Object
Constraint Language (OCL) to define constraints.

• Tagged values that allow new attributes to be added
to particular elements of the model.

• Stereotypes that allow groups of constraints and
tagged values to be given descriptive names and
applied to other model elements; the semantic effect
is as if the constraints and tagged values were applied
directly to those elements.

Tabular forms for specifying the new extension
elements have been organized (Figure 2). For stereotypes,
the tables identify stereotype name, the base class of the
stereotype that matches a class or subclass in the UML
metamodel, the direct parent of the stereotype being
defined (NA if none exists), an informal description with
possible explanatory comments and constraints associated
with the stereotype. Finally, the notation of the stereotype
is specified.

Tabular form of a Stereotype
definition
• Stereotype: Leaf
• Base Class: Subsystem
• Parent: Architectural element
• Description: ...
• Constraints: None or

self.isMandatory=true
• Tags: None
Notation: A UML package
stereotyped as «leaf»

Tabular form of a Constraint definition
• Constraint: isMandatory
• Stereotype: Leaf
• Type: UML::Datatypes::Boolean
• Description: Indicates that the

Leaf is Mandatory

Tabular form of a Tag definition
• Tag: isDynamic
• Stereotype: Capsule
• Type: UML::Datatypes::Boolean
• Description: Identifies if the

associated capsule class may be
created and destroyed dynamically.

Figure 2. Examples of stereotypes, constraints
and tag definitions.

For example, based on QADA, the conceptual
structural view is used to record conceptual structural
components, conceptual structural relationships between
components and the responsibilities these elements have
in the system. Specifically in QADA, the constructs for
modeling this view are summarized in Figure 1.

Typically, UML provides class diagrams for capturing
the logical structure of systems. Class diagrams capture
universal relationships among classes – those
relationships that exist in all contexts.

Components of this conceptual structural view are
mapped onto the Subsystem UML concept. We identified

10

a hierarchical description of components that introduces
differences between them and requires transformations
using new stereotypes. The stereotypes add additional
conceptual-specific semantics onto the various aspects
that are associated with the UML-based classes. We
proceeded with mapping elements and identifying the
new required stereotypes.

A graphical equivalent of the stereotype declarations
previously described for tabular form is presented in
Figure 3. The class diagram has been realized in Rose RT
[4] . This shows the relationships among UML
metaclasses and the new stereotypes they represent in
architectural components. Generalization and predefined
«stereotype» dependency are included in this diagram.

G eneralizableElem ent
<<m etaclass>>

Classifier
<<m etaclass>>

Subsystem
<<m etaclass>>

ArchitecturalElem ent
<<stereotype>>

subsystem
<<stereotype>>

system
<<stereotype>>

leaf
<<stereotype>>

<<stereotype>> <<stereotype>>

<<stereotype>>

<<stereotype>>

Figure 3. Graphical equivalent of the stereotype
declarations described in tabular form.

We also indicate whether or not a commercial tool case
supports the UML standard and extended elements.

3. Modeling variability using UML
extensions

An important aspect of product line architectures is
variation among products. A variability mechanism is a
wide range of generalization and specialization
techniques. Jacobson [7] defined the following variability
mechanisms: inheritance, uses, extensions,
parametrization, configuration and generation.
Nevertheless, variation is difficult to model in
architectural descriptions. UML models provide the
means to use specific variation mechanisms [6] [7] to
describe hierarchical systems (ways to decompose
systems into smaller subsystems). However, the UML
standard does not support a description of variation, as
QADA requires.

3.1 Conceptual structural view
We consider variation in the conceptual structural view

to be divided into internal variation (within Leaf
components) and structural variation (between Leaf/
Subsystem components). To enable variation, we separate
components and configurations from each other. Flexible

representations are needed to instantiate components and
bind them into configurations during product derivation.

3.1.1. Structural variation. The structural conceptual
view has to offer the possibility of preventing automatic
selection of all Leaf or Subsystem components included
in a System during product derivation. Variability can be
included in this view by using specific stereotypes for the
architectural elements (Figure 4).

Subsystem 1
<<m andatorySubsystem >>

Leaf1

<<m andatoryLeaf>>

(from Subsystem 1)

Leaf2
<<optionalLeaf>>

(from Subsystem 1)

Leaf4

<<alternativeLeaf>>

(from Subsystem 1)

Leaf5
<<optionalAlternativeLeaf>>

(from Subsystem 1)

Leaf3
<<alternativeLeaf>>

(from Subsystem 1) A
B

A

<<control(opt)>>

<<uses (alt)>>

<<control(alt)>>

<<data (optAlt)>>

Leaf6
<<m andatoryLeaf>>

(from Subsystem 1)

<<control>>

Figure 4. Variation points included in the
conceptual structural view.

Thus we consider that a Leaf or a Subsystem could be
further stereotyped in:

• «mandatoryLeaf» or «mandatorySubsystem»
• «alternativeLeaf» or «alternativeSubsystem»
• «optionalAlternativeLeaf» or

«optionalAlternativeSubsystem»
• «optionalLeaf» or «optionalSubsystem».
In case of «alternative» or «optionalAlternative»

variability of a Leaf or Subsystem, the inclusion of a letter
“A” or “B”, etc., at the bottom of the UML package
symbol indicates the product that requires that specific
architectural element.

Variation points included in the conceptual structural
view are shown in Figure 4. Subsystem1 is a
«mandatorySubsystem» that consists of «mandatoryLeaf»
components (Leaf1 and Leaf6), «optionalLeaf»
component (Leaf2), «alternativeLeaf» (Leaf3 of product
A and Leaf4 of product B) «optionalAlternativeLeaf»
(Leaf5 of product A). In this way, variation points
identify locations at which the variation will occur.

Some of the constraints that govern variability
modeling cannot be expressed by the UML metamodel.
They concern the following:

11

If a «mandatorySubsystem» only consists of
«optionalLeaf» components, at least one of them must be
selected during the derivation process; otherwise, a
«Subsystem» that only consists of «optionalLeaf»
components must be an «optionalSubsystem».

Two «alternativeLeaf» or «alternativeSubsystem»
components of different products are exclusive, meaning
that only one can be selected for a product. The product is
specified at the bottom of the notation.

There should be no relationships between alternative
or optionalAlternative components; they belong to
different products.

The relationships are appropriately stereotyped to the
associated components (Table 1).

Table 1. Stereotypes of relationships for
variability.

Stereotype Description
«control»
«data»
«uses»

Represents a Control/ Data/
Uses association between two
mandatory subsystems (UML).

«control (opt)»
«data (opt)»
«uses (opt)»

Represents a Control/ Data/
Uses association between two
subsystems (UML). At least one
of them is an optional
stereotype.

«control (optAlt)»
«data (optAlt)»
«uses (optAlt)»

Represents a Control/ Data/
Uses association between two
subsystems (UML). At least one
of them is an
optionalAlternative stereotype.

3.1.2. Internal variation. We define internal variation
only for Leaf components. A Leaf component is on the
lowest hierarchical level and may perform functional
requirements variable for different products.

LeafN am e
<<m andatoryLeaf>>

���� vp << m | o > <VariationPointName >>|

<< a | oa > <VariationPointName > <ProductId>>

Figure 5. Internal variation of a mandatoryLeaf
component.

The internal variation of Leaf components is
designated by a ● symbol (Figure 5). Although the
symbol is not included in the UML standard, Jacobson [7]
and later Webber [6] introduced the ● symbol for
variation points. The UML tag syntax

vp <<m|o><VariationName>> |
<<a|oa><VariationName><ProductId>>

shows the reuser the parts of an internal variation so that
the reuser can build a product. Mandatory (m) or optional
(o) functionality (VariationName) of a Leaf component is
specified in the tag syntax. In the case of alternative (a)
or optionalAlternative (oa) the product identifier
(ProductId) is also specified.

3.2 Conceptual behavior view
The conceptual behavior view may be mapped directly

onto a hierarchy of UML collaboration diagrams. The
elements of this view are roles/instances of the Subsystem
stereotypes defined in the conceptual structural view.

Variable parts of a collaboration or interaction diagram
can be represented with dashed lines. Optional messages
between ServiceComponents use dashed lines with solid
arrowheads (Figure 6).

1: mandatoryMessage

:OptionalServiceComponent1

3: optionalMessage2.2: optionalMessage

:MandatoryServiceComponent2

:MandatoryServiceComponent3

2.1: optionalMessage

Figure 6. Optional interactions.

Collaboration diagrams describe each operation that is
part of the specification requirements. Similar to the
conceptual structural view, alternative and
optionalAlternative ServiceComponents may be
represented in this view. An identifier of the specific
product that requires a particular interaction should be
introduced and represented in the diagram. The notation
used in collaboration diagrams for variability
representation is shown in Figure 7.

:OptionalServiceComponent 3: optionalMessage

:MandatoryServiceComponent

4: alternativeMessage (P_Id):AlternativeServiceComponent (P_Id)

:OptionalAlternativeServiceComponent (P_Id) 5: optAltMessage (P_Id)

1: mandatorylMessage

Figure 7. Variability in the conceptual behavior
view.

12

3.3 Conceptual deployment view
In UML a deployment diagram shows the structure of

the nodes on which the components are deployed. The
concepts related to a deployment diagram are Node and
Component. DeploymentNode in QADA is a UML Node
that represents a processing platform for various services.
The notation used for DeploymentNode is a Node
stereotyped as «DeploymentNode». UML notation for
Node (a 3-dimensional view of a cube) is appropriate for
this architectural element.

A DeploymentUnit is composed of one or more
conceptual leaf components. Clustering is done according
to a mutual requirement relationship between leafs. It
cannot be split or deployed on more than one node. The
stereotype, «deploymentUnit» is a specialization of the
ArchitecturalElement stereotype and applies only to
Subsystem, which is a subclass of Classifier in the
metamodel. The other three stereotypes «mandatory»,
«optional» and «alternative» are specializations of the
DeploymentUnit stereotype and also apply to Subsystem.

Figure 8 describes a class diagram that defines
alternative deploymentUnits. DeploymentUnitA is
alternative to DeploymentUnitB; if there are at least two
elements - a LeafA in DeploymentUnitA, and a LeafB in
DeploymentUnitB - those exclude each other. Exclude is
a new stereotype of UML association introduced in this
diagram.

De ploymen tU nit B
<<alternative>>

D eploym entU nitA

<<alternative>>

0..1

*

0..1

*

LeafA LeafB<< exclude>>
1 1

Figure 8. Alternative deploymentUnits.

3.4 Concrete structural view
The notation in this view includes a means to represent

the decomposition of Capsule components. This feature
allows step-by-step understanding of more and more
details of the product line architecture. Decomposition is
also used to show possible variations. A Capsule cannot
only be decomposed into componentCapsules but can also
be decomposed so that new functionality is added.

Figure 9 illustrates how the stereotypes of this view
can have relationships with each other. Between abstract
components we have decomposition relationships, and
concrete components for particular products are obtained
by specialization. The notation of Capsules specifies
particular product (A) or subset of products (B, C) at the
bottom of the symbol.

Capsule1
<<topCapsule>>

CapsuleSN
<<subsystemCapsule>>

.. ...
Capsu leS 1

<<subsystemCapsule>>

Capsule11
<<compone nt1Capsule>>

Capsule21
<<component2Capsule>>

.. ...

.....CapsuleC1
<<concreteComponent>>

Capsu leCM
<<concreteComponent>>

.....

A B ,C

Abstract
Components

Concrete Components
and Products

Composition/
Decomposition

Specialization/Inheritance
 Figure 9. Structural variation in the concrete view.

13

Looking top-down, the AbstractFeatures encapsulated
in the «TopCapsule» are decomposed into
«subsystemCapsule» abstract components: CapsuleS1,..,
CapsuleSN. Decomposition continues on
«component1Capsule» and « component2Capsule» if
necessary. In each component, abstract features of the
corresponding sub-domains are collected, which are
subsets of the parent domain abstract features. For each
product that is a member of the family, each of the
abstract components is specialized in a
«concreteComponent». For example, Capsule21 is
specialized in CapsuleC1,..., CapsuleCM, and so on.

The diagram includes specification of products or
product sets, providing information on the reusability of
each component. CapsuleC1 is modeled for product A
and CapsuleCM is modeled for a subset of products {B,
C}.

3.5 Concrete behavior view
The concrete behavior view of QADA is mostly

modeled using two main important diagrams: a state
diagram and a message sequence diagram. This view
describes how the system reacts in response to external
stimuli.

State machines are used with the concrete structural
view’s entities: capsules, ports and protocols. Standard
UML state charts are applied for modeling the state
machines of capsules. A particular usage of this, in
combination with inheritance, facilitates reuse in
modeling the concrete behavior view.

Variability is included in notation and state
decomposition. As for notation, parts that are not needed
in all products are represented with dashed lines (optional
states) or a different fill pattern and Product_Id
(alternative states). State decomposition is the other
source of variants. The decomposition of a state may be
shown by a small symbol in the top left corner of a state.

3.6 Concrete deployment view
The concrete deployment view of the QADA method

is mapped directly on the deployment diagram of UML.
UML deployment diagrams are much less well explained
in the standard than other elements of UML. However,
nodes - the UML elements which represent processing
elements – are Classifiers in UML, which means that they
can have instances, play roles in collaborations, realize
interfaces, etc. They can also contain instances of
components.

4. Conclusions
This paper describes how UML standard concepts can

be extended to address the challenges of variability
management in space of software product line
architectures. In particular, a new UML profile has been
defined to be integrated in a systematic approach, a

quality-driven architecture design and quality analysis
method. Standard UML extensibility mechanisms can be
used to express diagrammatic notations of each view of
the architecture modeled using the method. The detailed
description of each required extension presented in this
paper would allow a possible standardization of this
profile. Integrated use of a standard profile and a design
method as described here would allow extensive and
systematic use, maintenance and evolution of the software
product line architectures.

By using UML notation extensions, our method
models the variability, and hence explicitly describes,
where in the PLA views software evolution can occur. A
variation point specification is needed in a PLA view to
communicate to reusers where and how to realize a PL-
member-unique variant.

In the area of tool support a feasibility analysis of the
implementation of the new UML extensions was also
performed. A concrete CASE tool for software design
was examined during our study to investigate whether or
not it supports the new UML refinement. With smaller
adaptations the required extensions can be made available
in a CASE tool. In the experiment we evaluated the
Rational Rose RT tool, which strongly supports capsules-
based design [5] . With regard to how the tool can be
configured or what other new components it needs, our
evaluation showed that the conceptual views are mostly
affected by the missing required extension components,
but the concrete structural and behavior views need no
new components supported by the tool.

References

[1] M. Matinlassi, E. Niemelä, L. Dobrica, Quality-driven
architecture design and quality analysis method – A
revolutionary initiation approach to product line
architecture, VTT Publications 456, VTT, Espoo, Finland,
2002.

[2] A. Purhonen, E. Niemelä, M. Matinlassi, Viewpoints of
DSP software and service architectures. To be appeared
in the Journal of Systems and Software in 2003, 11 p.

[3] OMG Unified Modeling Language Specification, version
1.4, September 2001.

[4] Rational Rose RealTime CASE tools
http://www.rational.com/products/rosert.index.jsp.

[5] B. Selic, J. Rumbaugh, Using UML for Modeling
Complex Real-Time Systems, White Paper, 1998.

[6] D. Webber, The variation point model for software
product lines, Ph.D Dissertation, 2001.

[7] I. Jacobson, M. Griss, P. Jonsson, Software Reuse-
Architecture, Process and Organization for Business
Success. ACM Press, New York, NY, 1997.

http://www.rational.com/products/rosert.index.jsp

 14

Consolidating Variability Models

Birgit Geppert

Avaya Labs Research
Basking Ridge, NJ, USA
bgeppert@avaya.com

Frank Roessler

Avaya Labs Research
Westminster, CO, USA
roessler@avaya.com

David M. Weiss

Avaya Labs Research
Basking Ridge, NJ, USA

weiss@avaya.com

Abstract

Variabilities must be managed during many stages of
product-line development including requirements
elicitation and architecture design. We are reporting on
our experience with mapping variabilities between
requirements and architecture models that we have
gathered during three different product line projects
within Avaya. One of them being small-sized and
exploratory in nature, prototyping new ways of IP
telephony feature development, a mid-sized project
currently entering implementation phase, and a third
project that is of substantial size with major
organizational changes involved. In all three projects,
we were following a common approach of developing
two separate variability models: one for capturing
commonalities & variabilities during requirements
elicitation (commonality analysis) and another one for
realizing commonalities & variabilities during
architecture design (module guide). In all three projects
requirements and architecture models decomposed the
system in different ways, which reflects different user and
developer views, but results in many traceability issues.
Further analysis, however, has shown that for the
aforementioned projects, there is no need to express user
and developer views in structurally different
decompositions of the same system. What is actually
needed are different refinements of the very same
decomposition and additional statements that cut across
the modules of that decomposition.

1. Context

Product-line engineering in Avaya follows a variant of
the FAST software product-line engineering process [17]
with project-specific extensions, if needed (such as
strategic product-line engineering [5], domain
assessments [9], or collaboration-based design [6]). A
common aspect of product-line projects is capturing family

requirements in the form of a commonality-analysis
document and using a module guide as a key component
for architecture description [14][15]. Both of these model
variability across the product family.

A commonality-analysis document specifies system
requirements that all family members share (commonalities)
and also specifies how family member requirements differ
(variabilities) [17]. In terms of a set of attributes that can
be used to describe the family domain, a commonality is an
attribute for which all family members yield the same value,
while a variability is an attribute for which different family
members yield different values. We quantify each
variability by specifying its value space (parameters of
variation) and also decide upon its binding time, i.e., the
time when the actual value must be determined (e.g.,
specification time, compile time).

 A module guide is a key structure for describing
software architectures and specifies how a system is
decomposed into an information-hiding hierarchy of the
sort suggested in [15]. Each module describes its secret
and responsibilities. System properties that are likely to
change independently should be hidden in different
modules, while we expect the interfaces between modules
to be stable. While a commonality analysis specifies what
variabilities must be supported by the architecture, a
module guide specifies how to decompose the system in
order to best support these expected changes.

A module guide also represents work assignments
because each module can be designed and maintained
independently. Depending on the size of the product-line
project1 one or more development teams have
responsibility for developing the modules. Each team must
know about the commonalities and variabilities that are
relevant for their work assignment(s). Tracing
commonalities and especially variabilities to the

1 Our largest-scale project currently has more than 200 leaf
modules in the module guide.

 15

corresponding architecture modules is therefore crucial to
the success of a product-line engineering project.

The people who perform the commonality analysis are
not necessarily the same as those who are responsible for
designing the architecture. This makes traceability even
more important. For our large-scale project a team of
about 5 system engineers works on the commonality
analysis and a team of about 10 lead developers and
architects works on the module guide. It is not unusual for
the two to proceed concurrently. It is therefore necessary
to maintain traceability continuously between
commonalities/variabilities and architecture modules while
the two models develop.

In later phases we must continue to maintain
traceability also. If one variability model changes (for
instance, a change in performance requirements may result
in a restructuring of the software architecture) then
traceability is either lost or we must go back and reanalyze
how requirements relate to architecture components. It is a
well-known problem that when the models evolve
independently, we get non-trivial relations between
requirements & architecture and traceability gets more and

more difficult [1] [4] [11]. It is therefore advisable to look
for ways to keep traceability as simple as possible.

2. Differences between Variability Models

Commonality analysis and module guide are variability
models that serve different purposes. As already
mentioned, this may result in traceability issues, i.e., the
two models become difficult to compare. There are two
possible ways to deal with that problem. First, we can
allow the models to evolve independently and try to
bridge the semantic gap by establishing increasingly
complex and possibly imprecise relations. Second, we can
limit the semantic gap and hence preserve traceability in
the first place, i.e., create the simplest possible mapping
between the two.

From our experience, traceability degrades because of
structural mismatch. We believe that a sufficiently precise
variability model (such as a commonality analysis or
module guide) needs to introduce a module structure in
order to manage complexity. If there is no clear one-to-one
correspondence between modules of a commonality

General model for specifications
For our purposes, we only need a few basic notions. In [1] [10] [12] [13], for example, similar notions are used as

a basis for much more elaborate models of requirement and problem specifications.
A system is part of the real world that is considered a unit. In a system, several phenomena are collected and

correlated. Phenomena are, e.g., states (e.g., the water temperature read by a buoy at sea) and events (e.g., a message is
sent via a communication channel). Terms, i.e., words in natural language are used to designate phenomena of the real
world. We use terms to formulate statements about phenomena. Statements specify how phenomena are related to each
other. An example for a statement could be: If an incoming call is not accepted by a call-center agent within 10
seconds, the agent’s work state will change to “absent”. This statement describes a relation between the event
incoming call, the state of a call, and the state of an agent. In addition, other terms are used. There is the value 10
seconds and a temporal relation within <time duration>. Apparently, phenomena can be quite different things. There is,
however, one type of phenomenon that we want to emphasize: phenomena whose value can change over time. These
phenomena could be represented by timed functions or timed predicates. We will simply use variables for their
representation. We call the set of terms and statements that describe a system, the system specification.

Many notations have been proposed in the literature such as function tables [12] or temporal logic [16], [2],
that allow expressing statements formally.

For managing complexity, we structure a specification into several
modules. A module in this context is a collection of terms and corresponding
statements. A module declares those variables among the involved phenomena
that are visible to the environment. All other variables are hidden from the
environment. Variables are a means of interaction among modules. For instance,
a unidirectional data flow between modules can be established, if a variable that
is controlled by one module is visible to the other. Aggregation (submodule-of
relation) is an additional relation among modules that we allow in our model for
specifications.

A commonality analysis is a system specification with parameterized
statements. Statements with a value space greater than one are variabilities.

Figure 1: General model for specifications

…

…

Module 1 Module 2 Module n

System

Module 2.1 Module 2.2

 16

analysis and module guide2, traceability issues become
inevitable. Figure 1 illustrates a simple semantic model for
a commonality analysis and a decomposition into
modules.

If we demand structural equivalence between
commonality analysis and module guide, we avoid most
traceability issues and still allow for sufficient flexibility to
express differences in user and developer view. Our
product-line projects suggest (Section 3) that differences
in user and developer views do not present themselves as
structural differences, but as different refinements of the
very same structure and cross-cutting statements relative
to that structure. Commonality analysis and module guide
describe the same structure, but with emphasis on
different aspects:

Commonality analysis:
• Every module of the commonality analysis has a

counterpart in the module guide, but not vice versa.
• Commonality/variability statements can refer to single

leaf modules.
• Commonality/variability statements can refer to single

intermediate modules or the root module.
• Commonality/variability statements can refer to

several (arbitrary) modules and describe how these
modules cooperate.

• Commonality/variability statements can refer to
several (arbitrary) modules and describe common
characteristics of those modules (such as common
look-and-feel).

Module guide:
• Module structure is complete in the sense that

o there is no module from the commonality
analysis structure that can’t be mapped to a
module of the module guide, and

o it defines a useful subsystem.
• Every statement refers to single modules only.
• A statement describes a variability hidden by a

module (secret), or it describes a commonality
expressed by the module interface.

Apparently, even structural equivalence between
commonality analysis and module guide leaves some
complicated mapping issues, because, e.g., cross-cutting
statements must be broken down into module-specific
statement to become real work assignments. However, it
seems that such mapping issues are inevitable and by far
less complex than structural mismatch. Take for instance a
statement about the common look & feel of the different
user interfaces. This abstract statement cuts across

2 We allow modules from the module guide not to have
counterparts in the commonality analysis, but not vice versa.

several interface modules and must be refined into a
precise specification for each of them. Another example
would be a statement that describes how work items
arriving at a media channel must be accepted and directed
to the corresponding media processing module. Input
medium and media processing vary and can be either for
voice or text -based email. The statement describes a
collaboration that cuts across media channel and media
processing modules and must be refined into module-
specific statements for the involved modules, i.e., modules
for voice media processing & voice channel and modules
for text processing & email channel.

3. Empirical Evidence

We have studied three different product-line projects
within Avaya. One of them is small-sized and exploratory
in nature, prototyping new ways of IP telephony feature
development, a mid-sized project currently entering
implementation phase, and a third project that is of
substantial size with major organizational changes
involved. For all three projects commonality analysis and
module guide were developed independently and
compared later on. In all three cases it turned out that
structural differences were not essential for expressing
different views and that a consolidation was not too
difficult. We consider this important evidence that
structural mismatch between variability models can be
avoided without sacrificing expressibility.
• In cases where we could find one-to-one

correspondence between modules from the
commonality analysis and modules from the module
guide a simple renaming is sufficient for consolidating
the two models .

• In other cases we found subordinate levels in the
commonality analysis that provided a finer
decomposition than the module guide. For instance,
we had a commonality analysis module dealing with
agent activities at the user interface that had a one-to-
one correspondence in the module guide. In the
commonality analysis this module was further
decomposed into submodules dealing with the
different types of activities (e.g., accept work), while
the module guide did not offer this refinement. The
reason for this was that the two models developed in
parallel and the refinement in the module guide is
planned for later phases. Therefore no further action
was necessary.

• In yet another case we had correspondence in lower-
level modules that were aggregated differently to
higher-level modules by the different variability
models. For instance, in the commonality analysis we
grouped domain data model, user UI, knowledgebase
management, and system data model all into a high-

 17

level module “data”. In the module guide, however,
domain data model and user UI both belong to the
domain behavior module, while knowledgebase
management and system data model are aggregated
into the platform services module. This implied a
restructuring (i.e., new aggregation of the lower-level
modules) of one or both decompositions. This
restructuring was usually not difficult to perform
because the structural difference was only minor.

• Another case that implied a minor restructuring was
when higher-level modules corresponded to each
other, but their submodules were not consistent. We
had, for instance, a higher-level module dealing with
external interfaces in both the commonality analysis
and the module guide. The decomposition of this
module, however, differed for both models. The
commonality analysis considered additional aspects
such as communication channels or resource
assignments that were assigned to different higher-
level modules by the module guide. On the other hand
the commonality analysis also assigned some
commonalities and variabilities to other high-level
modules that the module guide would assign to the
external interface module. A new aggregation of
commonalities and variabilities solves this problem.

• And finally we had collaboration statements for which
a commonality or variability specifies a requirement
that does not relate to one single module, but rather
describes a collaboration among several modules.
One example is that all family members shall provide
functionality to upgrade data schemas when data
structures are changed or added. This is a
collaboration that concerns modules dealing with
installation, data management, as well as system data
models. As mentioned earlier these collaboration
statements must be captured by a separate document

To summarize we found that a consolidation was
possible and only minor rework is necessary. Besides
collaboration statements and not considering refinements
all commonalities and variabilities could be mapped onto
the module guide.

4. Conclusion

Based on theoretical considerations and practical
experience, we are planning to adapt our development
practice and always pursue structural consolidation while
developing the variability models. Figure 2 illustrates this
process. Whenever a structural change happens in one of
the models it is necessary to consolidate it with the other
model. The goal is to have corresponding structures in the
end with the exception of cross-cutting statements that
show up only in the commonality analysis and must be
kept separately.

5. References

[1] Abadi, M., Lamport, L., Conjoining Specifications, ACM
Transactions on Programming Languages and Systems,
17(3):507-534, 1995

[2] Alur, R., Henzinger, Th.A., Logics and Models of Real
Time: A Survey, In: J.W. de Bakker, C. Huizing, W.P. de
Roever, G. Rozenberg (Eds.), REX-Workshop, Real-Time:
Theory in Practice, LNCS 600, 1991

[3] Bosch, J., Molin, P., Software Architecture Design:
Evaluation and Transformation, IEEE Conference and
Workshop on Engineering of Computer-Based Systems,
Nashville, Tennessee, March 1999

[4] Clarke, S., Harrison, W., Ossher, H., Tarr, P., Subject-
Oriented Design: Towards Improved Alignment of
Requirements, Design, and Code, OOPSLA 1999

[5] Geppert, B., Roessler, Combining Product-Line
Engineering with Options Thinking, Avaya Software
Symposium 2001, Denver, CO (also published in Proc. Of
the 1st Int. Workshop on Product Line Engineering – The
Early Steps, Erfurt, Germany, Sept. 2001)

[6] Geppert, B., Roessler, F., Collaboration-based Design –
Exemplified by the Internet Session Initiation Protocol
(SIP), Working IEEE/IFIP Conference on Software
Architecture, The Netherlands, 2001

[7] Geppert, B., Roessler, F., Weiss, D.M., Specifying
Requirements for Product Families: The Commonality

…

…

Timeline

Commonality Analysis

Module Guide

Cross-Cutting Statements

Refinement

Figure 2: Developing variability models

 18

Analysis, Avaya Labs Research Report ALR-2003-xxx,
2003

[8] Geppert, B., Roessler, D.M., A Complementary
Modularization for Communication Protocols, Research
Report ALR-2002-022, 2002

[9] Geppert, B., Weiss, D.M., Goal-Oriented Assessment of
Product-Line Domains, Avaya Labs Research Report ALR-
2003-005, 2003

[10] Gunter, C.A., Gunter, E.L., Jackson, M., Zave P., A
Reference Model for Requirements and Specifications, IEEE
Software, May/June 2000

[11] Gruenbacher, P., Egyed, A., Medvidovic, N., Reconciling
Software Requirements and Architectures: The CBSP
Approach, 5th Int. Symposium on Requirements
Engineering, 2001

[12] Janicki, R., Parnas, D.L., Zucker, J., Tabular
Representations in Relational Documents, in: Daniel M.
Hoffman, David M. Weiss (eds.), Software Fundamentals –
Collected Papers by David L. Parnas, Addison Wesley,
2001

[13] Kronenburg, M., Peper, C., Application of the FOREST
Approach to the Light Control Case Study
in: Journal of Universal Computer Science, Special Issue on
Requirements Engineering 6(7), pp. 679-703, Springer,
2000

[14] Parnas, D.L., On the Criteria to be Used in Decomposing
Systems into Modules, Communication of the ACM,
15(12), 1972

[15] Parnas, D., Clements, P., Weiss, D.; The Modular Structure
of Complex Systems, in Software Fundamentals, D.
Hoffman and D. Weiss, Eds., Addison Wesley, 2001

[16] Pnueli, A., The Temporal Logic of Programs, In 19th
Annual Symposium on Foundations of Computer Science,
1977

[17] Weiss, D., Lai, C.T.R.; Software Product-Line Engineering -
A Family-Based Software Development Process, Addison
Wesley, 1999

Managing Variability with Configuration Techniques

Andreas Hein, John MacGregor
Robert Bosch Corporation, FV/SLD

Corporate Research and Development, Software-Technology
P.O. Box 94 03 50

D-60461 Frankfurt, Germany
{Andreas.Hein1/John.MacGregor}@de.bosch.com

Abstract This paper focuses on the latter half of the product line
definition: how product line products are developed using
the assets (product development) and explores how the
variability within and among those assets can be
managed.

Many manufacturers offer a broad range of software-

intensive products. In a product generation, thousands of
product variants may be developed for different price
segments or to account for different technologies.
Variability must therefore be carefully managed to best
meet each customer’s individual needs. Structure-
oriented configuration provides a suitable general
approach to variability management, but it must be
integrated into the existing reuse process to be useable.
This paper motivates the importance of variability
management in product development. It discusses the
chances, tradeoffs, and open issues of managing software
variability with structure-oriented configuration
techniques, and presents our position with respect to
other approaches.

The central task in product development is to select a
set of variable components which fulfills a particular set
of customer requirements while also satisfying certain
business and technical considerations (product
derivation). Note that product line product development
involves far more than reusing components however: “A
core asset may be an architecture, a software component,
a process model, a plan, a document, or any other useful
result of building a system” [1].

Structure-oriented configuration is a generalized
product derivation approach that is well suited to product
line product development. Moreover, its language is
amenable to existing tools.

The ConIPF project [2] is currently investigating how
to combine the product line approach with structure-
oriented configuration to produce a product development
methodology that is practicable in industrial application,
This methodology should address both direct product
derivation as well as hybrid forms of product derivation
and product development.

1. Introduction

Software-based products are rarely only-children.
Over time, sibling products evolve through demand for
variants of the same product or for separate but similar
products. Examined in their entirety, these products
represent a family of related products – a software
product line.

2. Industrial Software Product Lines In recent years, software product lines have become a
topic of intensive research and widespread industrial
interest as they offer seductive benefits. The product line
approach provides a framework for systematic
development of product line assets and their reuse in
product development.

The product line approach is appropriate for various

organizations. It seems especially suitable for the parts of
industry that exhibit the following characteristics:

Systems, with software – The products are integrated
packets of hardware and software. In the case of
embedded systems, the algorithms for controlling the
physics of the system must sometimes also be developed
along with the hardware and software.

According to Clements and Northrop [1], a software
product line is “A set of software-intensive systems
sharing a common, managed set of features that satisfy
the specific needs of a particular market segment or
mission and that are developed from a common set of
core assets in a prescribed way”.

 19

Hardware resource constrained – In a volume
manufacturing context the hardware platform unit cost is
significantly greater than the amortized development
costs. The least expensive feasible hardware is therefore
employed and the software must be adapted to suit.

Technical configuration methods can be used for these
tasks as they employ formal languages that guarantee the
solutions’ correctness and completeness with respect to
the models. To date, the representation language’s
adequacy and maintainability have been the primary
problems in technical configuration. The structure-
oriented approach ameliorates these concerns as follows:

Large number of variants – Companies can develop
hundreds or even thousands of variants in a product
generation, each adapted to meet special customer or
legal requirements, to conform to national preferences or
to international standards. Each variant is based on
common assets which minimizes the effort to develop it.

Adequacy – The formal description language provides
a means to structure variability hierarchically and
therefore reduce complexity. Non-hierarchical constraints
can be added independently to restrict variability.

A stable and well-understood technological basis – A
product line requires an architecture and reusable
components, which cannot be adequately defined without
an intimate knowledge of the subject domain.

Clarity and maintainability – The different types of
knowledge required for describing variability are
explicitly distinguished in the models: knowledge about
the variable entities is separated from solution procedures
and concrete tasks. Also, the representation of the
knowledge is separated from its presentation
(visualization).

The fundamental hypothesis behind the product line
approach is that the investment in analysis, construction
and maintenance of the assets will be justified by the
benefits accrued from reuse. In situations where customer
projects are highly complex, the variability introduced
through product line considerations must be managed
efficiently. The major challenges are:

Applicability – Structure-oriented configuration
provides a general method that can be applied to different
domains and development phase. Tools (so-called
inference engines) are available.

Magnitude – Requirements specifications can number
in the thousands of pages. A solution may consist of
hundreds of modules to be integrated and parameterized.

Configuration techniques have been proven useful for
building complex products in various technical domains
[3]. They are not limited to routine cases where all
variants are anticipated and the variability models are
assumed to be static. Dynamic adaptation and
enhancement of the models has been integrated to support
non-routine configuration [4].

Traceability – It is hard to make suitable selections
from the vast number of components and parameters.
Safety and reliability requirements, e.g., are not trivial to
trace and verify.

Interdependencies – Complex interdependencies may
exist between different options, and consistency of the
overall system must be guaranteed.

4. Incorporating Configuration in Product
Development

Change – It is difficult to estimate the consequences of
a specific change in requirements. In systems
development, hardware and also algorithms may be
developed in parallel with the software. Software
requirements may therefore change repeatedly during
development.

A product development methodology for product lines

must address the following:

y Which system attributes correspond to the customer
requirements

y Which assets correspond to those attributes Product lines of the scale and complexity outlined
above are demanding to use, especially when a holistic
approach to variability management and comprehensive
tool support are missing.

y How can these assets be used to develop the
product as quickly and efficiently as possible while
ensuring the product’s quality

 While assembling product components is clearly a
configuration task, the product line approach has other
dimensions. Firstly, it involves the entire software
development process, not just component configuration.
Moreover, it also involves deciding how to reuse
components when appropriate and, when not, how to
develop a product through reusing other suitable product
line assets. This requires identifying software artifacts
that may be relevant to considerations at the code, design
and architectural levels – that is, a traceability to non-
component assets.

3. Structure-Oriented Configuration
Techniques

In order to get a grip on the product derivation
problem, we first examine the individual variability
management or configuration steps. A simplified process
would contain the following tasks:

y Select appropriate generic components
y Set the attribute values for these components

 20

4.1 End-to-End Traceability Product line methodologies have always recognized
the existence, and separation, of variability at the problem
and solution (or requirements and realization) levels
[5],[6],[7]. Regardless of whether feature modeling is
included, the knowledge about the variability must be
made explicit. Note that this knowledge exists in the
organizations anyway. The danger is that only a few have
it or that it is used sub-optimally.

The product line approach attempts to provide an end-

to-end traceability – from initial requirements elicitation
through product release. Frequently, there is no direct
connection from specific requirements to specific
components, or the components do not exist in the
appropriate form. This brings other issues to the fore,
such as:

4.2 Traceability to Non-Component Assets Feature modeling – Individual customer requirements
must be aggregated to ascertain the desired product
characteristics. In conventional development they can be
aggregated according to many schemas. With product
lines, features are used to express the user-visible
variability between products.

Structure-oriented representations can be used to

describe the required system attributes formally. The
resulting model can be traversed to identify suitable
assets, but these assets need not be components. This
allows the freedom to define intermediate, more abstract
or incomplete representations of the components as well
as to integrate development documents.

Parameter management and product calibration – In
the industrial setting, there can be hundreds, even
thousands, of products, each composed of thousands of
components, each having numerous interrelated
parameters. At the moment, these are managed on a
component-by-component basis.

With a structure-oriented representation of the
variability, it is natural to proceed top-down and to refine
the configuration stepwise. Parts of the configuration
process can be automated – when decisions follow from
other decisions. Other parts must be handled interactively.
A special case is that the models and the product line,
respectively, are insufficient to obtain a satisfactory
solution. This can be resolved either by customer-specific
adaptations or enhancements to the individual system, or
by evolution of the product line. Initial ideas of how to
integrate and support development in the product
configuration process are described by Hotz et al. [8].

From a product line perspective, the guarantee of end-
to-end traceability itself is a variability management
issue. Product lines can legitimately take different forms.
They may differ in the level of parameterization support
depending on the inherent complexity of the inter-
component dependencies. But support for feature
modeling is more an explicit modeling decision.

Basically, feature modeling is best used to support the
transformation of customer requirements to system
attributes: from problem to solution. This transformation
is typically done manually by experts using
undocumented knowledge. Not only can this process be
error-prone, inconsistent and sub-optimal, it leaves
organizations vulnerable to the loss of these experts and
to unrecognized knowledge gaps. Whether or not this is
acceptable or at least tolerable depends on a number of
factors:

4.3 Investment Considerations

Using structure-oriented modeling has the advantage
of a mature approach and existing tools compared to other
product line approaches. Available configuration engines
provide a domain-independent core technology that must,
however, be extended by a domain- and process-specific
modeling and configuration interface. Size of the domain – For smaller domains, the

complexity may remain manageable. The hybrid configuration methodology described
above is especially appropriate for large and complex
variability management problems that cannot be handled
manually (cf. chapter 2). A reasonably stable application
domain and a basically mature domain model strengthens
the case for investment.

Maturity of the domain – In new or fast-changing
domains, the state of the explicit knowledge may lag the
state of the development environment, or the effort to
maintain the knowledge model may be too great.

Maturity of the organization – Knowledge about the
transformation of requirements to system attributes must
be learned and becomes more precise over time. New
organizations may therefore not possess this knowledge
even when they are in mature domains.

Compared with single systems development, the
product line approach requires a considerable additional
modeling effort in order to ensure traceability. Aligning it
with the structure-oriented configuration approach best
assures that this will be recouped. Features can therefore be used to obtain an initial

system configuration. Should the investment in feature
modeling not be justified under consideration of the
above factors, reference configurations of the system
based on similar cases could be used as a starting point.

 21

5. Related Work 6. Conclusions

Clements and Northrop [1] describe software product
line practices and patterns. The practice areas it
introduces focus on building product lines rather than on
using them. Our methodology is meant to complete the
product line approach in this respect. Particularly, it
integrates configuration techniques into product line
product development.

Structure-oriented configuration offers a formal
method for solving configuration problems which lie at
the heart of product line product derivation: the selection
and parameterization of components. It guarantees
consistent and complete component configurations.
Commercial structure-oriented configuration tools exist
already.

Bosch et al. [7] present a collection of variability
issues that the product line community encounters in
practice and theory. These issues are input into the
methodology development.

Product lines, however, tackle a bigger problem: they
aim at a comprehensive approach to systematic reuse,
where variability management plays a significant role.
We therefore examined how structure-based
configuration and allied knowledge management
techniques can be applied to support end-to-end
traceability and traceability to non-component assets.
Moreover, we have emphasized their role in reducing the
complexity of parameter management.

Günter and Kühn [4] give an overview of various
configuration approaches (e.g., rule-based systems and
case-based technologies). The technical problems
encountered in configuration of complex products have
been primarily related to the representation language’s
adequacy and maintainability. The structure-oriented
approach addresses these concerns.

We have outlined techniques to tailor the methodology
to immature organizations or small domains, thus
minimizing the investment needed to instantiate a viable
product line.

Kühn [9] introduces state-based behavior descriptions
into configuration models. This allows the configuration
of system behavior; an aspect which might be especially
important to software-based systems. The importance
depends on the level at which a system is to be configured
and on the configuration goal, respectively. The
organizations that we have studied have all modularized
the variability without crossing the state-machine
boundaries.

The ConIPF project is defining a comprehensive
methodology that uses configuration techniques to
improve product line product development. The main
deliverable of the project will be a book aimed at
practitioners which will outline the issues and challenges
in introducing the methodology and our experiences in
applying it in two industrial-scale experiments.

Felfernig et al. [10] present a way to use UML as a
configuration language. Essentially, they extend UML
with respect to variability representation and define the
semantics of the UML constructs using a formal
description language that is amenable to an inference
engine. This represents an option for integrating software
engineering and configuration knowledge engineering.

7. Acknowledgements

This paper represents the work of the ConIPF project
team. We thank our colleagues from the Robert Bosch
GmbH business units for their contributions to ConIPF,
and our ConIPF project partners Thales Nederland B.V.,
University of Groningen and University of Hamburg for
the technical discussions. ConIPF is partly funded by the
European Commission.

Czarnecki and Eisenecker [6] and Batory et al. [11]
apply domain-specific languages (DSLs) and generators
to produce variants from a generic implementation
platform. The DSL specifies the customized applications
and the generator converts the specifications into source
code. This approach only handles predefined cases,
however. Our methodology also addresses adaptation and
evolution.

8. References

[1] P. Clements, L. Northrop: Software Product Lines: Practices
and Patterns. SEI Series in Software Engineering, Addison-
Wesley, 2001. Other approaches to variability management focus on

specific phases (e.g., Bachmann and Bass [12]) or build
on existing software engineering techniques (e.g., Clauß
[13]). In contrast, we are aiming at a general, well-
founded concept for managing variability from
requirements to code.

[2] Configuration of Industrial Product Families (ConIPF),
Information Society Technologies (IST), Contract No. IST-
2001-34438, http://www.conipf.org
[3] A. Günter (ed.): Wissensbasiertes Konfigurieren –
Ergebnisse aus dem Projekt PROKON. infix-Verlag, St.
Augustin, 1995.

 22

 23

[4] A. Günter, C. Kühn: Knowledge-Based Configuration –
Survey and Future Directions. In: F. Puppe (ed.): Knowledge-
Based Systems, Lecture Notes in Artificial Intelligence, Vol.
1570, Springer-Verlag, 1999.
[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, A. S.
Peterson: Feature-Oriented Domain Analysis (FODA).
Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.
[6] K. Czarnecki, U. W. Eisenecker: Generative Programming.
Methods, Tools, and Applications. Addison-Wesley, 2000.
[7] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink,
K. Pohl: Variability Issues in Software Product Lines. In:
Software Product-Family Engineering, Lecture Notes in
Computer Science, Vol. 2290, pp. 13-21, Springer-Verlag,
2002.
[8] L. Hotz, A. Günter, T. Krebs: A Knowledge-Based Product
Derivation Process and Ideas how to Integrate Product
Development. To Appear In: Proceedings of the Workshop on
Software Variability Management, Groningen, The Netherlands,
February 13-14, 2003.
[9] C. Kühn: Modeling Structure and Behavior for Knowledge-
Based Software Configuration. Workshop on “New Results in
Planning, Scheduling and Design” (PuK 2000), Berlin,
Germany, August 21-22, 2000.
[10] A. Felfernig, G. Friedrich, D. Jannach: UML as Domain
Specific Language for the Construction of Knowledge-Based
Configuration Systems. International Journal of Software
Engineering and Knowledge Engineering, Vol. 10, pp. 449-469,
2000.
[11] D. Batory, G. Chen, E. Robertson, T. Wang: Design
Wizards and Visual Programming Environments for GenVoca
Generators. IEEE Transactions on Software Engineering, Vol.
26, No. 5, May 2000.
[12] F. Bachmann, L. Bass: Managing Variability in Software
Architectures. ACM SIGSOFT Software Engineering Notes,
Vol. 26, Issue 3, pp. 126-132, May 2001.
[13] M. Clauß: Generic Modeling using UML extensions for
variability. Proceedings of the Workshop on Domain Specific
Visual Languages, Jyväskylä University Printing House,
Jyväskylä, Finland, 2001.
[14] A. Hein, J. MacGregor, S. Thiel: Configuring Software
Product Line Features. European Conference on Object-
Oriented Programming (ECOOP 2001), Workshop on Feature
Interaction in Composed Systems, Budapest, Hungary, June 18,
2001.
[15] M. Schlick, A. Hein: Knowledge Engineering in Software
Product Lines. European Conference on Artificial Intelligence
(ECAI 2000), Workshop on Knowledge-Based Systems for
Model-Based Engineering, Berlin, Germany, August 22, 2000.
[16] S. Thiel, A. Hein: Modeling and Using Product Line
Variability in Automotive Systems; IEEE Software, Special
Issue on Initiating Software Product Lines, pp. 66-72,
July/August 2002.
[17] S. Thiel, A. Hein: Systematic Integration of Variability into
Product Line Architecture Design. In: G. J. Chastek (ed.):
Software Product Lines, Lecture Notes in Computer Science,
Vol. 2379, pp. 130-153, Springer-Verlag, 2002.

Supporting the Product Derivation Process with a Knowledge-based Approach

Lothar Hotz
HITeC c/o Fachbereich Informatik

Universität Hamburg
Hamburg, Germany 22527

Email: hotz@informatik.uni-hamburg.de

Thorsten Krebs
LKI, Fachbereich Informatik

Universität Hamburg
Hamburg, Germany 22527

Email: krebs@informatik.uni-hamburg.de

Abstract

In this paper, a product derivation process is described,
which is based on specifying customer requirements, fea-
tures and artifacts in a knowledge base. In such a knowl-
edge base a model about all kinds of variability of a
software-intensive systems is represented by using a logic-
based representation language. Having such a language,
a machinery which interprets the model is defined and
actively supports the product derivation process e.g. by
handling dependencies between features, customer require-
ments, and artifacts. Because the adaptation and new devel-
opment of artifacts is a basic task during the derivation pro-
cess where a product for a specific customer is developed,
this evolution task is integrated in the proposed knowledge-
based derivation process.

1. Introduction

The product line approach makes a distinction between
domain engineering, where a common platform for an ar-
bitrary number of products is designed and realized, and
application engineering, where a customer product is de-
rived based on the common platform (product derivation
process) [3, 5]. In this paper, a product derivation process
which includes both the selection and assembling of config-
urable assets (like requirements, features, artifacts) out of a
platform and their adaptation, modification, and new devel-
opment for customer specific requirements is presented.

The main assumption is based on the existence of a
descriptive model for representing already developed arti-
facts and their relations to features and customer require-
ments as well as the underlying architectural structure with
its variations [2, 14]. All kinds of variability are repre-
sented (described) in such a model. Thus, variability is
made explicit while the realization of the variability in the
source code is still separate. This model is called configu-
ration model. Thus, we speak of a knowledge-based prod-

uct derivation process (kb-pd-process). Furthermore, it is
assumed, that such a model is necessary to manage the in-
creasing amount of variability in software-based products.
Such a configuration model can be used for partially auto-
mated configuration of technical systems, where ”configur-
ing” can be selecting, parameterizing, constraining, decom-
posing, specializing and integrating components of diverse
configurable assets (e.g. features, hardware, software, doc-
uments etc.). With partially automated we mean a process
where user interactions are made for specifying a configu-
ration goal and logical impacts are made automatically by
the system.

A configuration model describes all kinds of variability
in a software system. Thus, it describes all potentially deriv-
able products. But this is done on a descriptive level: when
using a configuration model with an inference engine, only
a description of a product is derived, not the product itself.
But it is intended to use the description for collecting the
necessary source code modules and realizing (implement-
ing, loading, compiling etc.) the product in a straight for-
ward manner. Furthermore, a configuration model is not
a model to be used for implementing a software module,
e.g. it does not necessarily describe classes for an object-
oriented implementation.

Summarizing, a product derivation process which is sup-
ported by a knowledge base, includes the following basic
tasks:

1. Make the software, i.e. design and implement the ar-
tifacts. This is done in domain engineering, but also
when changes according to specific requirements have
to be realized.

2. Model all assets related to the software, i.e. customer
requirements and features, as well as the software it-
self according to their variability facilities. This means
generate the knowledge base.

3. For a specific product, the product derivation process
is performed to realize the product configuration.

24

A major difference of configuring software and config-
uring hardware is that the creation of the software (or mini-
mum parts of it in the evolution case) is closely related to the
configuration process itself (i.e. point one and three have to
be interchanged). This is normally not the case for hard-
ware, where the creation of technical entities like evalua-
tors, PC’s or aircraft cabins are strictly separated from their
descriptive configuration, and later changes are hardly pos-
sible.

In the following, we first describe some distinct levels
which we have to deal with when describing configurable
assets (Section 2). In Section 3, we present the language
entities as well as their interplay in the product derivation
process. Evolution aspects are discussed in Section 4. A
short survey on some related work is given in Section 5.

2. Levels of abstraction

We identify three tasks to be done on distinct levels
of abstraction for exploring a knowledge-based product
derivation process:

1. Language for specifying the knowledge base –
What is used for modeling?

This level describes what can be used for modeling the
general aspects of the process and the domain specific
part. This is done by specifying a language, that can
be used to describe the necessary knowledge. Further-
more, a machinery (inference engine) for interpreting
this description is specified and realized in a tool. Ba-
sic ingredients of the language are concepts, relations
between concepts, procedural knowledge and a spe-
cific goal description (see [8, 10] for an example of
such a language and a suitable tool). Entities of this
language are further described in Section 3.

2. Aspects of the process – What are the general in-
gredients of a product derivation process?

On this level, general aspects that have to be modeled
for engineering and developing products are specified.
This level determines, which entities for the kb-pd-
process have to be described. This is intended to be
a description for a number of kb-pd-processes in dis-
tinct business units or companies, ideally for develop-
ment of combined hardware/software systems in gen-
eral. The description of a specific domain is done on
the next level.

Following aspects of the kb-pd-process are currently
taken into account:

� Customer requirements: A description of
known and anticipated requirements expressed in
terms which can be understood by the customer.

� Features: A description of the facilities of the
system and its artifacts.

� Artifacts: A description of the hardware, soft-
ware components and textual documentations to
be used in products.

� Phases of the process: A description of general
phases of the process, e.g. ”determine customer
requirements”, ”select appropriate features”, ”se-
lect and adapt necessary artifacts”.

� Reference configurations: A description of typ-
ical combinations of artifacts (cases), which can
be enhanced or modified for a specific product.

For each aspect, an upper model with e.g. decompo-
sitions (e.g. sub-features) and relations between these
aspects is expressed. The upper model describes com-
mon parts of domain specific models. Upper models
are used to facilitate domain specific modeling. They
reflect the phases of the product derivation process
as well as their aspects. Furthermore, relations be-
tween those aspects are specified, e.g. require relations
between customer requirements and features. This
means, relations between parts of the upper-model are
specified.

An example of an upper model is given in Figure
1. Two different views on features (i.e. customer-
view (cv-feature) and technical-view (tv-feature))
are shown. Both specialize to a concept which has
sub-features and one which doesn’t (cv-no-subs, cv-
with-subs). The dotted arrows indicate places where
the domain specific models come in. Lines indicate
specialization relations and arrows decomposition re-
lations. This example shows how conceptual work
done in [7, 12, 13, 19] can be used for specifying an
upper model, which in turn can be used for automated
product derivation.

Each aspect of the process is modeled by using the lan-
guage. Thus, it is described how e.g. customer require-
ments and their relations can be represented by using
concepts and concept relations. In this paper, we do
not further elaborate on this topic.

Artifacts

CPS

CPS-system

Customer-Requirements Features

has-subrequirements has-subfeatures

has-parts

has-component

Figure 1. Example of an upper model

25

3. Domain specific level – What is modeled for a spe-
cific domain?

On this level, a domain specific model is created by
using the language and the upper model. By interpret-
ing the model with a machinery (given by a tool), this
model is used for performing the process. For devel-
oping software modules (i.e. on a file, source code, de-
veloper model level), development tools and software
management tools are integrated. In this paper, we do
not further elaborate on this topic.

3. Entities of the knowledge based model

Basic entities of the model and the process are listed in
the following:

1. A concept model for describing concepts by using
names, parameters and relations between parameters
and concepts. Main relations are decomposition rela-
tions, specialization relations and restrictions between
parameters of arbitrary concepts expressed by con-
straints. Such concept models can be used to describe
properties and entities of products like features, cus-
tomer requirements, hardware components, and soft-
ware modules.

2. Procedural knowledge mainly consists of a descrip-
tion of strategies. A strategy focuses on a specific
part of the concept model. E.g. a strategy focuses on
features, another one on customer requirements and a
next one on software components or on the system as
a whole. Furthermore, conflict resolution knowledge
is used for resolving a conflict (e.g. by introducing ex-
plicit backtracking points).

3. A goal specification describes a priori known facts, a
specific product has to fulfill.

Strategies are performed in phases which focus on a spe-
cific part of the model. After selecting this part, in a phase
all necessary decisions (i.e. configuration steps) are deter-
mined by looking at the model. Each configuration step
represents one decision, e.g. the setting of a parameter
value or processing a decomposition relation. Possible con-
figuration steps are collected in an agenda, which can be
sorted in a specific order, e.g. first decomposing the archi-
tecture in parts, then selecting appropriate components and
then parameterizing them. Decisions can be made by us-
ing distinct kinds of methods including automatic or manual
ones. Each decision is computed by a value determination
method, which yields to a specific value representing the de-
cision. Examples for value determination methods are: “ask
the user”1 , “take a value of the concept model” or “invoke a

1By the means of this value determination method the partially auto-
mated process is realized, i.e. user interactions come in here.

given function”. Thus, in a configuration step the decisions
to be made are described and after applying some kind of
value determination method the resulting value is stored in
the current partial configuration. A partial configuration
represents all decisions made so far and their implications,
which are drawn by the mechanisms described in the fol-
lowing. The resulting configuration, or final configuration
describes the product with all configurable assets (features
that are included, artifacts that have to be used etc.). Some-
times this is called product model (do not confound that
with the previously mentioned configuration model, which
describes not one but all products in a generic way).

In a cyclic practice, after each configuration step more
global (i.e. systemwide) mechanisms are (optionally) exe-
cuted. Examples are:

� Constraint propagation: For computing inferences
followed by a decision and for validating the made de-
cisions, constraints defined in the knowledge model
(constraints represent relations between concepts and
their properties) are propagated, based on some kind
of constraint propagation mechanism.

� External mechanisms: For performing an external
method, which does not use the concept model but
only the currently configured partial configuration, ex-
ternal techniques can be applied. Examples are:

– Simulation Techniques: a simulation model is de-
rived from the partial configuration and a sep-
arated module (like matlab) is called for this
task. Some specific kind of simulation in the area
of software product derivation is ”compiling the
source files”.

– Optimization techniques: the current partial con-
figuration is used to compute optimal values for
some parameters of the configuration.

– Calibration: the current partial configuration
might only give ranges for some parameters,
which can be further specified by calibrating the
real system. This calibration process can be
started as a global mechanism. Its results can be
stored in the partial configuration for further con-
sidering their impacts on other parameters in the
model.

� Further logical inferences: Methods, which perform
logical inferences that are not performed using the de-
cision process but use the concept model, can be in-
voked (e.g. taxonomic inferencing, description logic
etc.).

The objective of global mechanisms is to compute values
for not yet fixed decisions or to validate the already made

26

decisions. Those mechanisms (if more than one is present)
are processed in an arbitrary order but repeated until no
new values are computed by those mechanisms, i.e. until
a fixed point is reached. If this validation is not success-
ful or the computed value for a parameter is the empty set,
a conflict is detected (e.g. if the compilation of the source
files fails). A conflict means that the goal description, the
subsequent decisions made by the user and their logical im-
pacts are not consistent with the model. For resolving a
conflict, diverse kinds of conflict resolution methods (e.g.
backtracking) can be applied to make other user-based deci-
sions (see [8]). Those conflict resolution methods all try to
change the goal description or subsequent decisions made
by the user, because they are not consistent with the cur-
rent model. On the other side, one could also try to change
the model, because if a conflict is detected, with the given
model it is not possible to fulfill the given goal descriptions
and user needs. This gives a starting-point for evolution, i.e.
to modify or newly develop artifacts and include them in the
model to fulfill the needs (see Section 4).

Summarizing as a general skeleton the kb-pd-process
performs the following (slightly simplified) cycle:

Until no more strategy is found:

1. Select a strategy

2. Compute the agenda according to the focus

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry

� Perform a value determination method

� (Optionally) execute the global mechanisms

� If a conflict occurs, evaluate conflict resolution knowledge.

4. Including evolution aspects in the process

Above, a well-known configuration process is described
(see [6, 9]). The changing of artifacts and further develop-
ment of new components (i.e. evolution) can be included
in this process as described in the following subsections.
The aspect of evolution can be seen as a kind of innova-
tive configuration. We see innovative configuration not as
an absolute term but as a relative one – relative to a model.
A model describes a set of admissible configurations. In-
novation related to this model is given if the configuration
process computes a configuration which does not belong to
the predefined set. For supplying a product derivation pro-
cess where evolution of artifacts is a basic task, we expect
to apply methods known in innovative configuration to be
used.2

2A survey on innovative configuration is given in [8, 15].

4.1. Points of evolution

Following situations which come up in the process de-
scribed in Section 3 indicate the necessity for evolution:

1. Anticipated evolution can partially be realized with
more general models: Instead of narrowing the model,
broader value ranges for parameters and relations can
be modeled a priori. For example, the sub-models de-
scribing customer requirements or features can repre-
sent more facilities than the underlying artifacts can
realize. If during the derivation process such a feature
is selected by the goal description or inferred by the
machinery, it gives raise to evolution of an artifact.

2. Conflicts which cannot be resolved by backtracking,
i.e. by using the current model, indicate places where
evolution can take place. For example, if two arti-
facts are chosen which are incompatible, a resolution
of such a conflict would be to develop a new compati-
ble artifact and include it into the model.

3. Points set by the user: Instead of selecting a value at a
given point, the evolution of the model can be started
by the developer for integrating a new or modified ar-
tifact in the partial configuration. Another example is
given when the user does not accept system decisions.
Thus, an evolution process is explicitly started by the
user to change the model for making another decision
than the model indicates. Thus, evolution as a kind of
value determination method is introduced.

4.2. Evolve the configuration model

All dependencies of new concepts (features, artifacts,
customer requirements) to existing ones must be specified.
Having a model, the context where a new concept will be
included, can be computed on the basis of this model. For
instance, the related constraints of a depending aggregate
or a part-of decomposition hierarchy can be presented to
the developer for consideration during the evolution of the
model.

4.3. Supporting the evolution of features, customer
requirements and artifacts by a knowledge-
base approach

By analyzing the knowledge base, following information
used for development, can be presented to the developer.
The underlying idea is to present those parts of the model,
which can be used in special development situations, to the
developer.

� Present already defined concepts with their parameters
and relations.

27

� Present the specialization relations of all, of some se-
lected or of some depending concepts. In the last case
subgraphs, which describe a specialization context of
a given concept are computed, e.g. the path to the root
concept with direct successors of each node.

� Present the decomposition details of a given relation of
all, of some selected or of some depending concepts.
In the last case subgraphs which describe the decom-
position context of a given concept are computed, e.g.
all aggregates, which the concept are part-of and all
transitive parts which the concept has.

� Given a concept, present all concepts which are in re-
lation to it by analyzing the constraints, i.e. also a sub-
graph is computed. Because constraints relate param-
eters of concepts the subgraph presents not only con-
cepts but also relations between parameters.

� Given a concept, present all strategies where a param-
eter or relation of the concept is configured.

� Given a new concept description (with parameters and
relations), compute a place in the specialization hierar-
chy for putting the concept into.

Knowledge modeling can be seen as a specific kind of
evolution. If no given model exists, knowledge modeling
is an evolution of the always given upper model. The men-
tioned services can be used for bringing up the first model of
the existing artifacts, features and customer requirements.
Thus, by supporting the evolution task, the task of knowl-
edge modeling is also be supported.

4.4. Conflict resolution with an evolved model

When the model is changed, e.g. because new artifacts
are included, the changes must be consistent with the model
and already carried out inferences stored in the partial con-
figuration. What kind of resolution techniques are useful,
still has to be developed. One trivial approach is to start the
total process again with the new model and the old tasks,
and make all decisions of the user automatically. Thus,
test the new model with the user needs if they are consis-
tent. This can be done automatically, because the user in-
put is stored in the partial configuration, only the impacts
of the inference machine (e.g. constraint propagation) have
to be computed again, based on the new model. Another
approach is to start some kind of reconfiguration or repair
technique, which changes the partial configuration accord-
ing to the new model.

4.5. Evolve the real components

Last but not least the new components have to be build.
The new source code can be implemented by using existing

tools for developing and changing software systems.

4.6. The kb-pd-process with the evolution task in-
cluded

Summarizing, the kb-pd-process where evolution is
included looks like the following:

Until no more strategy is found:

1. Select a strategy.

2. Compute the agenda according to the focus.

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry.
� Perform a value determination method or evolution is started

by the user.
� (Optionally) execute the global mechanisms.
� If a conflict occurs, evaluate conflict resolution knowledge or

start evolution for changing the model.

5. Related Work

There are some approaches which try to automate soft-
ware processes [17, 18]. The main distinction to the ap-
proach proposed in this paper is the different kind of
knowledge representation. Instead of using rule-based sys-
tems, which have deficiencies when used for large domains
[9, 11, 20], a basic concern of the language we propose
is to separate distinct types of knowledge (like conceptual
knowledge for describing components and their variabil-
ity and procedural knowledge for describing the process
of derivation). A product derivation process with distinct
knowledge types is implemented in the tools EngCon [1]
and KONWERK [8, 10]. A requirement which is e.g. not
followed in [4], where information about components is
mixed with information about binding times in UML dia-
grams. One has to distinguish the knowledge representation
and the presentation of the knowledge to the user. For pre-
senting it might be useful to mix some knowledge types at
certain situations (as described in 4.3). But for maintain-
ability and adequacy reasons it is of specific importance to
separate them.

In [16] a support for human developers, which is not
based on automated software processes, is proposed. E.g.
representations are mainly designed for human readability
instead of machine interpretation. As a promising approach,
structured plain text based on XML notations are consid-
ered. Thus, the combination of formal structured knowl-
edge and unstructured knowledge should be achieved. On
the one hand XML is a mark-up language, where the main
problem is to create a document type definition that de-
scribes the documents to be used for representing software.
One could see the language described in Section 3 as a spec-
ification for such a DTD. Thus, in our opinion for formally

28

describing configuration knowledge in a structured way the
necessary type definitions are already known. On the other
hand, if unstructured knowledge should be incorporated,
one should also define tools which can handle them in more
than a syntactic way (e.g. similarity-based methods or data-
mining techniques) to get a real benefit of those kinds of
representations.

6. Conclusion

Modeling knowledge about features, customer require-
ments, and artifacts and a tool-based usage of such a model
yields to a partially automated product derivation process.
Partially means that goal descriptions and user interactions
are still possible, but logical impacts are drawn by the infer-
ence engine. It was shown, how such a product derivation
process can be defined. Furthermore, the evolution of arti-
facts is introduced in the process and can be supported by
using the knowledge which is explicit in the model.

7. Acknowledgments

This research has been supported by the European Com-
munity under the grant IST-2001-34438, ConIPF - Config-
uration in Industrial Product Families.

References

[1] V. Arlt, A. Günter, O. Hollmann, T. Wagner, and L. Hotz.
EngCon - Engineering & Configuration. In Proc. of AAAI-
99 Workshop on Configuration, Orlando, Florida, July 19
1999.

[2] T. Asikainen, T. Soininen, and Männistö. Towards Manag-
ing Variability using Software Product Family Architecture
Models and Product Configurators. In Proc. of Software
Variability Management Workshop, pages 84–93, Gronin-
gen, The Netherlands, February 13-14 2003.

[3] J. Bosch. Design & Use of Software Architectures: Adopting
and Evolving a Product Line Approach. Addison-Wesley,
May 2000.

[4] M. Clauss. Generic Modeling using UML Extensions for
Variability. In DSVL 2001. Jyvaskylae University Printing
House, Jyvaskylae, Finland, 2001.

[5] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[6] R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode.
PLAKON - an Approach to Domain-independent Construc-
tion. In Proc. of Second Int. Conf. on Industrial and Engi-
neering Applications of AI and Expert Systems IEA/AIE-89,
pages 866–874, June 6-9 1989.

[7] A. Ferber, J. Haag, and J. Savolainen. Feature Interaction
and Dependencies: Modeling Features for Re-engineering
a Legascy Product Line. In Proc. of 2nd Software Product
Line Conference (SPLC-2), Lecture Notes in Computer Sci-
ence, pages 235–256, San Diego, CA, USA, August 19-23
2002. Springer Verlag.

[8] A. Günter. Wissensbasiertes Konfigurieren. Infix, St. Au-
gustin, 1995.

[9] A. Günter and R. Cunis. Flexible Control in Expert Sys-
tems for Construction Tasks. Journal Applied Intelligence,
2(4):369–385, 1992.

[10] A. Günter and L. Hotz. KONWERK - A Domain Inde-
pendent Configuration Tool. Configuration Papers from the
AAAI Workshop, pages 10–19, July 19 1999.

[11] A. Günter and C. Kühn. Knowledge-based Configuration
- Survey and Future Directions. In F. Puppe, editor, XPS-
99: Knowledge Based Systems, Proceedings 5th Biannual
German Conference on Knowledge Based Systems, Springer
Lecture Notes in Artificial Intelligence 1570, Würzburg,
March 3-5 1999.

[12] A. Hein, J. MacGregor, and S. Thiel. Configuring Soft-
ware Product Line Features. In Proc. of ECOOP 2001 -
Workshop on Feature Interaction in Composed systems, Bu-
dapest, Hungary, June, 18 2001.

[13] A. Hein, M. Schlick, and R. Vinga-Martins. Applying Fea-
ture Models in Industrial Settings. In Proc. of First Software
Product Line Conference - Workshop on Generative Tech-
niques in Product Lines, Denver, USA, August, 29th 2000.

[14] L. Hotz and A. Günter. Using Knowledge-based Configura-
tion for Configuring Software? In Proc. of the Configuration
Workshop on 15th European Conference on Artificial Intelli-
gence (ECAI-2002), pages 63–65, Lyon, France, July 21-26
2002.

[15] L. Hotz and T. Vietze. Innovatives Konfigurieren in tech-
nischen Domänen. In Proceedings: S. Biundo und W.
Tank (Hrsg.): PuK-95 - Beiträge zum 9. Workshop Planen
und Konfigurieren, Kaiserslautern, Germany, February 28 -
March 1 1995. DFKI Saarbrücken.

[16] R. Kneuper. Supporting Software Processes Using Knowl-
edge Management. In Handbook of Software Engineering
and Knowledge Engineering, volume 2, Singapore, 2002.
World Scientific.

[17] L. Osterweil. Software Processes are Software too. In Pro-
ceedings of the 9th International Conference on Software
Engineering (ICSE9), 1987.

[18] H. D. Rombach and M. Verlage. Directions in Software Pro-
cess Research. In Advances in Computers, volume 41, 1995.

[19] M. Schlick and A. Hein. Knowledge Engineering in Soft-
ware Product Lines. In Proc. of ECAI 2000 - Workshop
on Knowledge-Based Systems for Model-Based Engineer-
ing, Berlin, Germany, August, 22nd 2000.

[20] E. Soloway and al. Assessing the Maintainabiliy of XCON-
in-RIME: Coping with the Problem of very large Rule-
bases. In Proc. of AAAI-87, pages 824–829, Seattle, Wash-
ington, USA, July 13-17 1987.

29

Variability Analysis for
Communications Software

Chung-Horng Lung

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, Canada
chlung@sce.carelton.ca

Introduction

Most software systems contain areas where
behavior can be configured or tailored based on
user objectives. These areas are referred to as
variation points. Management of variability
becomes mo re and more important, because it is
closely related to software reuse, object-oriented
design frameworks, domain analysis, and software
product lines. Software variability is the ability of
a software system that can be changed, tailored, or
configured for specific use in a particular
environment. Variability management is
recognized as a critical concept in software
engineering. Successful management of variability
can shorten development time and lead to more
flexible and better customizable software products.

Generally, the main reason for software variability
management is to support reuse in a product
families. Variability management could range
from more formal approach based on mathematical
models [Lung94], systematic methods like domain
analysis, to simple programming support, e.g.,
inheritance in object-oriented programming
languages or the #ifdef compiler directive. This
paper, however, studies variation points and
software variability from the performance point of
view. Specifically, this paper deals with analyzing
and building a framework for communications
software for routing applications with an aim to
support detailed software performance evaluations.

There are many possible alternatives for
concurrent and networked software. Schmidt et. al,
[Schmidt00] captured and documented a set of
design patterns for this area. The book discussed
alternatives in details. However, it is often still
difficult to make concrete evaluation or objective
tradeoff analysis based on patterns from the
performance point of view due to the details we
need in performance evaluation.

This paper studies various variation points for
communications area. The study will be used to
build a generative framework. The framework will
be studied together with software performance
engineering techniques , layered queuing networks
(LQNs) [Woodside95], to characterize
performance aspects for various approaches . The
approach will provide useful guidelines for the
users to choose an appropriate model or design to
meet their performance requirements.

Problem Description and Approach

In distributed applications, there exist many
variations. For example , there are client-server
model and peer-to-peer model. For each model,
there are further variations depending on specific
applications and requirements, typically
scalability, performance, and portability. For
instance, for a server design, we may adopt a
straightforward Reactive design pattern. However,
the approach often leads to scalability concern.
This can be improved using either Half-Sync/Half-
Async or Leader/Follwers pattern. For a design
pattern like Half-Sync/Half-Async, there still exist
further variants, as discussed in [Schmidt00].

The design patterns document general guidelines
and principles for building software systems.
However, for some applications, we need deeper
understanding and more detailed analysis. A
simple example is demonstrated here. Figure 1
illustrates the structure of the Half-Sync/Half-
Async pattern. It is easy to identify a simple
variation point, which is number of worker threads
in the thread pool. The number can be easily
configurable. Yet, from the performance
perspective, it is difficult to determine the number
of threads that will provide the best result. The
most commonly adopted approach in industry is
measurement, because there are many
implementation and platform specific details
involved.

Another variation point that is more difficult to
deal with is the number of request queues .
Multiple queues provide more flexibility to
support QoS (Quality of Service), but we need a
scheduling policy to retrieve data from those
queues . Moreover, we need to consider if it is
better to have a dedicated thread for each request
queue than a tread pool.

An even more difficult tradeoff analysis is to
determine an appropriate design pattern or
structure. The Leader/Followers pattern can als o
be used as an alternative for concurrent and
networked software. There are advantages and
disadvantages for each approach. Schmidt et al,
[Schmidt00] discussed those issues. However,
there are many questions need to be answered in
order to derive an objective tradeoff analysis. On
the other hand, it is almost impossible in practice
to develop several alternative designs and perform
thorough evaluations for each of the alternative
due to resource constraints and competitions.

The main idea of this paper is to actually develop
some typical alternative designs and conduct
thorough performance analysis and
characterization for each design. Hands-on
experience is critical in building a useful
framework. The process will help identify concrete
variation points and the results will be useful in
predicting performance and building a generative
framework to support future system development.

The focus of this project is on network router
software. One of the main functions of a router is
to route and forward data packets. However, many

features or requirements are related to data routing
and forwarding. For example, there may be
different levels of QoS requirements. Each level
may need a separate queue associated with a
queuing mechanism. Each level of traffic may also
need to be policed differently based on pre-defined
policy. Even for the same level of QoS, there exist
different approaches.

We did not build a system from scratch; instead,
we obtained a router software system from
industry. The original design of the software was
similar to the Reactive pattern as shown in Figure
2. The software process contains a main thread.
When a router receives a packet from the network,
the packet is stored in a kernel buffer. The main
thread will then read packets from the buffer and
process them and put them in a destination queue.
There is a dedicated thread for each destination
queue to forward the packet to an adjacent router.
The select () function is used to demultiplex a set
of socket handles.

Figure 3 illustrates our initially modified design
based on the Half-Sync/Half-Async pattern. The
software process now contains several threads.
Multiple threads cannot use the select function
concurrently to demultiplex a set of socket handles
because the operating system will erroneously
notify more than one thread calling the select
function when I/O events are pending on the same
set of socket handles [Steven98]. Therefore, there
is only one thread for this layer to properly read
data from the network. The asynchronous layer
reads data packets from the network and stores
them into an appropriate queue, depending on the
data type. There are several worker threads in the
synchronous layer. The number of worker thread is
configurable. Currently, the number of input queue
is static, because there are two types of data packet.
The number of input queues , however, can be
changed. Moreover, a scheduling algorithm is

Figure 1. Structure of the Half-Sync/Half-
Async Pattern

network

worker
thread pool …Synchronous

Service Layer

Asynchronous

Service Layer

Queuing Layer request
queue

select()

… destination
queue & thread
to network

input from
network

Figure 2. The Structure of a
Router Software Process

needed among multiple queues. The scheduling
policy is another point of variation.

Work in Progress

Currently, we are in the process of building
another alternative design based on the Leader/
Followers pattern as diagrammed in Figure 4.

Figure 4. An Alternative Design Based on the
Leader/Followers Pattern

In this design, multiple threads coordinate
themselves. Only one thread at a time – the
leader – waits for an event to occur. Other
threads – the followers – can queue up waiting for
their turn to become the leader. After the leader
detects an event, it promotes one follower to be the
leader. It then becomes a processing thread
[Schmidt00].

The main reason that we choose to convert the
original router system to the Leader/Followers
pattern is that the model adopts a different design
principle that is closely related to performance. By
doing it, we will identify more variation points,
which will provide valuable lessons in building the
framework. Moreover, this design will help us
better understand related performance issues.

We are also considering other alternatives. Figure
5 illustrate some examples.

We are also investigating issues associated with
notation and evolution. Evolution is more complex
and may be problematic for a generic system that
is not well represented and designed.

Figure 5. Other Alternatives: an Example

References:

[Lung95] C.-H. Lung, J. Cochran, G. Mackulak, and J.

Urban, "Computer Simulation Software Reuse by the
Generic/Specific Domain Modeling Approach," Int’l
J. of Software Eng. and Knowledge Eng., vol. 4, no. 1,
pp. 81-102, 1994.

[Schmidt00] D. Schmidt, M. Stal, H. Rohnet, and F.
Buschmann, Pattern-Oriented Software Architecture,
vol. 2, John Wiley & Sons, 2000.

[Stevens98] W.R.Stevens, Unix Network Programming,
Volume I: Networking APIs: Sockets and XTI, 2nd
Edition, Prentice Hall, 1998.

[Woodside95] C.M. Woodside, "A Three-View Model
for Performance Engineering of Concurrent
Software", IEEE Trans. On Software Eng., vol. 21,
no. 9, pp. 754-767, Sept. 1995.

 …

Figure 3. An Alternative Design based on
the Half-Sync/Half-Async Pattern

…

select() input from
network

destination
queue & thread

to network

scheduling

… select()

…

input form
network

destination
queue & thread
to network

…

…

select()

… …
select()

…

… select()

…

 33

Evolving Quality Attribute Variability

S. Benarif, A. Ramdane-Cherif and N. Levy
Lab. PRISM

Université de Versailles St.-Quentin
45 Av. des Etats-Unis, 78035 Versailles Cedex

France
{sab,rca,nlevy}@prism.uvsq.fr

F. Losavio
Centro ISYS

Universidad Central de Venezuela
Ap. 47567, Los Chaguaramos, 1041-A, Caracas,

Venezuela
flosavio@isys.ciens.ucv.ve

ABSTRACT
System architectures embody the same kinds of structuring and
decomposition decisions that drive software architectures.
Moreover, they include hardware/software tradeoffs as well as the
selection of computing and communication equipments, all of
which are completely beyond the realm of software architecture.
The foundation of any software system is its architecture, that is,
the way the software is constructed from separately components
and the ways in which those components interact and relate to
each other. If the requirements include goal for variability
management, then the architecture is the design artifact that first
expresses how the system will be built to achieves this goal. Some
architectures go on to become generic and adopted by the
development community at large: three-tier client server, layered,
and pipe-and-filter architectures are well known beyond the scope
of any single system. In this paper, we use a platform based on
multi-agents system in order to test, evaluate component, detect
fault and error recovery by dynamical reconfigurations of the
architecture. This platform is implemented on pipe-and-filter
architecture which is applied for controlling a mobile robot to
follow a trajectory towards the desired objective in the presence
of obstacles. The hardware/software of this architecture system is
completely monitored by the platform in order to evolve quality
attribute variability. Some scenarios addressing the variability at
architectural level is outlined by both with and without using our
platform-based-agents. In this paper, we discuss how our
approach supports the variability management of complex
software / hardware systems.

Keywords
Platform-Based-Agents, Fault-Tolerance, Monitoring, Variability.

1. INTRODUCTION
A critical aspect of any complex software system is its
architecture. The architecture deals with the structure of the
components of a system, their interrelationships and guidelines
governing their design and evolution over time [13][3].

The architectural model of a system provides a high level
description that enables compositional design and analysis of
components-based systems. The architecture then becomes the
basis of systematic development and evolution of software
systems. It is clear that a new architecture that permits the
dynamism reconfiguration, adaptation and evolution while
ensuring the variability management of an application is needed.
The variability is defined as the ability of a software system or
artifact to be changed, customized or configured for use in a
particular context [9][11][15]. The architectural level reasoning
about the variability quality attribute is only just emerging as an
important theme in software engineering. This is due to the fact
that the variability concerns are usually left until too late in the
process of development. In addition, the complexity of emerging
applications and trend of building trustworthy systems from
existing, untrustworthy components are urging variability
concerns be considered at the architectural level. In [1] the
researches focus on the realization of an idealized fault-tolerance
architecture component. In this approach the internal structure of
an idealized component has two distinct parts: one that
implements it’s normal behavior, when no exceptions occur, and
another that implements it’s abnormal behavior, which deals with
the exceptional conditions. Software architectural choices have
profound influence on the quality attributes supported by system.
Therefore, architecture analysis can be used to evaluate the
influence of the design decisions on important quality attributes
such as variability management [6]. Another axe of research is the
study of fault descriptions [4] and the role of event description in
architecting dependable system [5]. Software monitoring is a
well-know technique for observing and understanding the
dynamic behavior of programs when executed, and can provide
for many different purposes [14][16]. Besides variability, other
purposes for applying monitoring are: testing, debugging,
correctness checking, performance evaluation and enhancement,
security, control, program understanding and visualization,
ubiquitous user interaction and dynamic documentation. Another
strategy is used, like a redundant array of independent component
(RAIC) which is a technology that uses groups of similar or
identical distributed components to provide dependable services
[7].

The RAIC allows components in redundant array to be added or
removed dynamically during run-time, effectively making
software components “hot-swappable” and thus achieves greater
overall variability. The RAIC controllers use the just-in-time
component testing technique to detect component failures and the
component state recovery technique to bring replacement

 34

components up-to-date. To achieve high variability management
of software/hardware, the architectures must have the capacity to
react to the events (fault) and to carry out architectural changes in
an autonomous way. That makes it possible to improve the
properties of quality of the software application [2]. The idea is to
use the architectural concept of agent to carry out the
functionality of reconfiguration, to evaluate and to maintain the
quality attributes like variability management of the architecture
[10]. Intelligent agents are new paradigm for developing
software/hardware applications. More than this, agent-based
computing has been hailed as “the next significant break-through
in software development” [12], and “the new revolution software”
[8]. In this paper, we propose a new approach which provide a
platform based agents. This platform will monitor the global
architecture of a system and improve variability quality attribute.
It will achieve its functional and non functional requirements and
evaluate and manage changes in such architecture dynamically at
the execution time.

This paper is organized as follows. In the next section, we will
introduce the platform based multi-agents. Then a strategy to
achieve fault tolerance by our platform will be presented. In
section four, we describe an example showing the application of
our platform on Pipe-and-Filter architecture and its benefits are
outlined through some scenarios about the variability
management. Finally, the paper concludes with a discussion of
future directions for this work.

2. THE PLATFORM MULTI-AGENTS
In recent years, agents and Multi-Agent Systems (MAS) have
become a highly active area of Artificial Intelligence (AI)
research. Agents have been developed and applied successfully in
many domains. MAS can offer several advantages in solving
complex problems compared to conventional computation
techniques. The purpose of traditional Artificial Intelligence is to
perform complex tasks, thanks to human expertise. This often
assumes assimilation of many competencies to be subject of
centralized programming. Moreover, in such monolithic system,
the consensus between various expertises is difficult to model;
indeed, the structure of communication between the experts is
fixed whereas it should depend on the considered problem. Thus,
a formalization close to reality where several people work
together on a same problem is needed. Such formalism should
describe the participants and interactions between them. This
approach is the paradigm of the Distributed Artificial Intelligence
(DAI). The DAI leads to the realization of systems known as
"multi-agent" systems allowing modeling the behavior of all the
entities according to some laws of social type. These entities or
agents have certain autonomy and are immersed in an
environment in which and with which they interact. Their
structure is based on three main functions: perceiving, deciding
and acting.

The cooperative view point of agent can be based on four
dimensions which are: Agent (A), Environment (E), Interaction
(I), and Organization (O). Facet A indicates the whole of the
functionalities of internal reasoning of the agent. The facet E
gathers the functionalities related to the capacities of perception
and actions of the agent on the environment. Facet I gathers the
functionalities of interaction of the agent with the other agents
(interpretation of the primitives of the communication language,

management of the interaction and the conversation protocols).
The facet O east can be most difficult to obtain, it relates to the
functions and the representations related to the capacities of
structuring and management of the relations of the agents between
them.

While following a logical reasoning, we thus manage to perceive
two layers in our platform, but it is noticed well that we need a
link between the two various layers, since the reactive layer
answers only to stimulus, and the higher layer is dedicated to
management and reasoning. Thus, we need a layer which interacts
with the two layers, it must act on the reactive layer by
stimulating and coordinating the actions of these agents, but also
interact with the higher layer by informing it of the state of the
architecture and the agents. This layer acts as links between the
decisional and the reactive parts of the platform. This offers to us
a division of the tasks and a specialization of the layers. Thus we
obtain the speed, flexibility and a weaker cost of communication
as well as a greater stability of the all platform, resulting from the
cooperation and the coordination of the layers.

The other aspect of our problem is the dynamic nature of our
architecture, indeed architecture does not cease to evolve, to
reconfigure and to extend. It is inconceivable to create a rigid and
static platform which can follow the evolution of this
architecture!. We must thus already think of such a dynamic and
evolutionary platform so that it can constantly reach and follow
the evolution of this architecture. We will consider that our
software architecture is a such board cut out in small pieces. We
consider that we can extend this board as parts are added. We
have also the freedom to modify the parts and to make them move
on the board. While considering this example, we will establish
specific rules to the platform based multi-agents which we will
build. We will consider that the available software architecture is
divided into localities, grouped, it forms one or several zones.
This strategy will enable us to better control the characteristics of
modifiability and extensibility of the available architecture. The
architecture of our platform consists of three distinct layers. A
layer known as higher equipped with evolved agents able to
communicate with the external environment or other agents in
order to establish the plans and the adequate strategies to achieve
the desired goals. A second layer comes in continuation, which is
the intermediary layer, located between two layers, communicates
with the higher layer and the lower layer known as a reactive
layer. The agents in the intermediary layer are less evolved than
the agents of the higher layer (equipped with a less advanced
social nature). The last layer is the reactive layer having purely
reactive agents to a stimulus, their roles are limited exclusively to
the perception/action (see Figure 1).

 35

Figure 1. Topology of the layers of the platform.

Superior agent

Intermediate agent

Reactive agent

2.1. The Higher Layer
The higher layer is the highest layer of the platform, it is thus,
more evolved than the others. This layer has the capacity to
analyze information coming from architecture, thanks to the facet
E of its agents. Thus, it can evaluate qualities of architecture
constantly and intervene in a targeted way, since the agents have a
facet A, implying the reasoning. The facet O and I, of the agents
enter in action when the agents of the intermediary layer do not
manage to find only a solution to a problem. The agents of the
higher layer have the capacity to organize a group of agents in the
intermediary layer (implies a cooperation) or to utilize another
agent of the higher layer (implies a negotiation) in order to
achieve the goal to seek. The agents of this layer can constantly
exchange information relating to the zone which it controls so that
they always have a global and complete architecture vision. Each
agent of this layer controls a zone of architecture, it is responsible
for a group of agents of the intermediary layer. The planning by
analysis of environment is specific to the higher layer. The
capacities of perception of the environment and of organization of
the agents offer a greater coordination in the platform. Thus, we
facilitate the division of the work by directing the agents toward
common goals. The agents of the higher layer act according to the
received messages from their environments and other agents. By
coordinating this information, they establish a work plan, which
targets the objective to be reached and which defines the
coordinating agents for achieving the goal. In other words, by
dividing work according to the agents aptitudes. The agent of the
higher layer can perceive signals coming from architecture
(system) or from the agents (agent of the higher layer or
intermediary layer). The perceived information (by using facets
I,E) is sorted, classified and decoded according to the protocol
used for each type of message. Thereafter, the agent define the
objective to be reached by identifying the place and the type of
the desired reconfiguration. Thus, it adopts one of the strategies
implemented in its knowledge base, it is the facet reasoning of the
agent. Then, the agent establishes a plan according to the
information collected by its sensors and the available information
on the architecture in its knowledge base. By adopting a specific
plan, the agent can act in three manners: A) Negotiation: It can
start a negotiation with an agent of the higher layer so that it can
complete work, if the desired reconfiguration is apart from its
own zone. B) Cooperation: the agent established a plan of
cooperation between the agents of the intermediary layer, if the
reconfiguration is in its own zone. C) Action: the agent can act of
itself, for example the creation of a new agent in the intermediary
layer, carrying out a simple test or making a reconfiguration on
architecture (this action is very limited). The strong points of this

layer are: 1 - Knowledge bases distributed and exchanged
constantly between the agents of the higher layer, which avoids
the losses of information in the event of breakdown. 2 - A very
high social character, thanks to facet O,I of the agent: thus being
able to organize agents or to negotiate with agents an application
of a task. 3 - A low number of agents: imply a better coordination
of the actions and a weak cost of communication.

2.2. The Intermediary Layer
As its name indicates it is a layer which is placed between the
higher layer and the reactive layer. Each agent of this layer takes
care of several agents of the reactive layer, it is responsible for a
quite precise locality. The agent itself is connected to only one
agent of the higher layer. A set of agents of the intermediary layer
forms what is called a zone. The principal role of this layer is to
take care of the good progress of the reconfigurations imposed by
the higher layer. It is a question of controlling and coordinating
the agents of the reactive layer in order to carry out and to achieve
a goal. Another role of this layer is the collection of information
coming from the reactive layer in order to forward them to the
agent of the higher layer. The agents of the intermediary layer can
be confronted with two kinds of problems: queries of
reconfiguration in their locality, but also outside. From where the
name of planning according to task. The agent establishes two
kinds of plans so that it can answer to the requests which they are:
a planning centralized with the agents of the reactive layer or a
planning distributed in certain case, toward the supervisory agent
of the higher layer: A) Distributed planning: In the intermediary
layer, the agents use a distributed planning. In the case where they
are in the incapacity to solve only the posed problem. They refer
to the agents of the higher layer. The agents of this layer break up
the problem into sub-problems and elaborate the sub-plans so that
they can be carried out by the agents of the intermediary layer. B)
Centralized planning: In certain case, the agents are unable to
solve only the posed problem. For example, if we ask an agent to
reconfigure a locality which it does not control, in this precise
case, the plans are generated by the higher layer. This layer has a
total sight of architecture and platform. Thus the higher layer put
in cooperation mode agents of intermediary layer in order to carry
out work requested, by dividing and managing the work of each
one. Contrary to the agents of the higher layer, the agents of the
intermediary layer do not have advanced social character. The
communications between the agents of this layer are simple and
indirect, i.e. that they are conveyed by the agents of the higher
layer. The agents are thus limited to an interaction with the agents
of the higher layer described above, and a communication by
passage of asynchronous message with the reactive agents by
directing acts primarily.

2.3. The Reactive Layer
This layer is the body of perception and of action of the platform.
It is equipped with purely reactive agents which act with simple
stimulus coming from the intermediary layer. The reactive agents
belong to a locality depending on only one agent of the
intermediary layer whose they receive the plans. These agents
answer to a centralized planning and work in cooperation. The
exchange between the reactive agents and the agent of
intermediary layer is simple. The perception induces sending
simple information toward the central agent, the action is the
consequence of a stimulus or a simple command.

 36

3. THE PLATFORM AND FAULT
TOLERANCE
3.1. Fault at Architectural Level
The basic strategy to achieve fault tolerance in a system can be
divided into two steps. The first step called error processing is
concerned with the system internal state, aiming to detect errors
that are caused by activation of faults, the diagnostic of the
erroneous states, and recovery to error free states. The second
step, called fault treatment, is concerned with the sources of faults
that may affect the system and includes: fault Planning and fault
removal. The communication between components is only
through request/response messages. Upon receiving a request for
a service, the components will react with a normal response if
request is successfully processed or an external exception,
otherwise. This external exception may be due to the invalid
service request, in which case it is called an interface exception,
or due to a failure in processing a valid request, in which it is
called a failure exception. The error can propagate through
connector of software architecture by using the different
interactions between the components. Internal exceptions are
associated with errors detected within a component that may be
corrected, allowing the operation to be completed successfully;
otherwise, they are propagated as external exceptions.

3.2. Monitoring System
Software monitoring is a well-know technique for observing and
understanding the dynamic behavior of programs when executed
and can provide for many different purposes. Besides variability,
other purposes for applying monitoring are testing debugging,
correctness checking, performance evaluation and enhancement,
security, control, program understanding and visualization,
ubiquitous user interaction and dynamic documentation. System
monitoring consists in collecting information from the system
execution, detecting particular events or states using the collected
data, analyzing and presenting relevant information to the user,
and possibly taking some (preventive or corrective) actions. As
the information is collected from the execution of the program
implementation, there is inherent gap between the levels of
abstraction of the collected events, states of the software
architecture. For event monitoring, there are basically two types
of monitoring systems based on the information collection:
sampling (time-driven) and tracing (event-driven). By sampling,
information about the execution state is synchronously (in a
specific time rate), or asynchronously (through direct request of
the monitoring system). By tracing, on the other hand,
information is collected when an event of interest occurs in the
system. Tracing allows a better understanding and reasoning of
the system behavior than sampling.

3.3. Detection of Faults With the Platform
We will use a monitoring system based on the agents, by
implementing our platform, described above, on the top of the
architecture. Each component will be supervised by a reactive
agent, by sampling or tracing. The reactive agents will use
sampling on architecture and collect information on the state of
the components with each interval of time predefined or limited
by the user. Another type of detection in reactive agent is the
tracing, in this case, the component generates an external
exception in the form of an event, this event will be collected and

will be transmitted towards the intermediate agent, this event will
be thereafter analyzed, identified and then sent by this agent
towards the agent of the superior layer in order to establish plans
to correct the errors. In other words, the signals are collected by
the agents of the reactive layer, which transmit them immediately
to the intermediate agent of its locality. This agent analyzes this
information using its knowledge base containing the description
of the errors. Thus, it will sort information coming from the
reactive agents and send only the error messages towards the
agent of the superior layer of its zone. According to the detected
errors the superior agent establishes the plans in order to solve the
errors coming from architectural level (see Figure 2).

New
component C B

Superior Layer

Locality A

Zone 1

C A
Failing

Component

Locality B Locality C

C C

Intermediate Layer

Reactive Layer

Distribution of plans

Distribution of tasks

Action

transmission of plans

Transmission of tasks by
stimulus

Delete/create

Multi-Agents Platform

C A

C B

C C

Message

Informations

User message

Connector

Component C

Component A

Component B

Create component or connector Flow information

Superior Agent

Intermediate Agent

Reactive Agent

Sampling State Delete component or connector

Figure 2. Multi-agents platform treatment process.

3.4. Treatment Process
After the phase of detection, the platform identifies the type of
error and establishes the plans in order to achieve at architectural
level the necessary reconfigurations to correct the faults. This
treatment process uses tow types of plans, the first plans consist to
reconfigure architecture connections for finding temporary
solution of fault (disabled component or connector), the second
plans recover errors by addition or changing disabled component
or connector.

In the detection phase, the information travel up through the
layers of the platform in order to arrive to the superior agent, in
this decisional layer the treatment process begins by establishing
plans. The superior agent chooses the best solution to support
evolution and changing requirements of the architecture. The
platform can reconfigure connections of architecture to isolate the
disabled components (if the platform can’t create new
components), the superior agent distributes the plans to the
intermediate agent on the locality of fault. When the intermediate
agent receives the plans, it distributes directives to the reactive
agents. The reactive agents delete the connection of disabled
component and create new connection to isolate it, all of this steps
descript of the first strategy of treatment process, one speaks
about reconfiguration of the connection.

 37

The second treatment process is creation of new component, it
operate when the platform has the possibility to create new
component in order to recover errors at architectural level, the
superior agent distributes plans to the intermediate agent. This
agent distributes directives to reactive agents, and the reactive
agents work together in order to delete the disabled component
and it’s connection and create new component and it’s new
connection.

4. IMPLEMENTATION OF THE PLAT-
FORM ON PIPE-FILTER ARCHITECTURE
4.1. The Navigation of the Mobile Robot in an
Environment Without Obstacle
We dispose of a mobile robot in a flat environment, it must go
from a point initially to parameterize towards a finale point in a
plan (environment represented here by a plan), the robot can
move in a horizontal way or vertical way, when it is immobile, it
can do rotation on itself. The mobile robot moves on a plan (see
Figure 3) which we divide into six parts by taking the finale
position of robot the origin point of Cartesian coordinates (0,0).
Thus, we distinguish six possibility approaches, if the robot is on
parts 1, 2, 3 or 4, then it manages to reach the finale desired point
by deploying a very simple navigation plan which is: an approach
on the X axis, then a final approach on the Y axis. In both
remaining cases (part 5 and 6), if the robot is on part 6, then it
uses an approach on the X axis, or if it is on the part 5, then it
starts an approach on the Y axis.

Part 3

Part 1

Part 2

Part 1

Initiale
position Initiale

position

Initiale
position

Initiale
position

Finale
position

X Approach

X Approach

X Approach

Part 5

Part 6

Y

Figure 3. Strategy of navigation of the mobile robot.

4.2. Pipe-and-Filter Architecture for the
Navigation of the Mobile Robot in an
Environment Without Obstacle
In an environment without obstacles, we will choose a Pipe-and-
Filter architecture which corresponds as well as possible to our
navigation strategy. The first component (see Figure 4),
“Parameter ” is used to enter the Cartesian coordinates (X,Y) of
the initial and finale position of the mobile robot. The component
“Planning” defines the position of the robot in the plan in order to
establish the ideal planning to reach the finale point. The
component “X approach” increments X position of the mobile
robot and the component “Y approach” increments position Y.
The component “Simulation” is charged for displaying the robot
displacement on the screen.

 Parameter Planning X Approach Planning

Planning

Simulation

Objectif

Simulation

Figure 4. Pipe-and-Filter architecture for the navigation of
mobile robot.

4.3. The Navigation of the Mobile Robot in an
Environment With Obstacle
The mobile robot moves in a flat environment (the plan) with
obstacles which are positioned randomly (see Figure 5). We will
install a sensor on the robot which will help the mobile robot to
detect the obstacles, when it tries to reach the final position. In
order to avoid the obstacle we will use the same basic
displacement of the robot, i.e. rotation on itself of 90° and the
vertical or horizontal way. If the obstacle is out of the mobile
robot trajectory then its origin navigation planning will not be
affected. In other case the obstacle is on the trajectory of the
mobile robot during its X or Y approach. When the obstacle is
detected (the distance from detection of the mobile robot depends
on the range of the used sensor). The mobile robot decreases its
speed, then stops in order to make a rotation of 90° on itself and
starts to avoid the obstacle. When this one is out of the trajectory,
the robot carries out a new planning with new X or Y approaches
to reach its finale position.

 Part 4 Part 1

Finale
position

X Approach

Part 5

Part 6

Escape

X Approach

Y Approach

Figure 5. The navigation of the mobile robot in an

environment with obstacle.

4.4. Pipe-and-Filter Architecture for the
Navigation of the Mobile Robot in an
Environment With Obstacle
The mobile robot moves in an environment with obstacle, the
software architecture proposed previously is retained, but a new
hardware component installed on the robot is taking into account,
it represents, in our architecture, by a software component called
the "Scan" (see Figure 6). The mobile robot will use the new
architecture which takes into account the possibility of founding
obstacles on its trajectory with each incrementing on the Y or X
axis.

 38

 Parameter Planning X Approach

Scan

Y Approach

Simulation

Objectif

Simulation

Planning

Scan

Figure 6. Pipe-and-Filter architecture for the navigation of
mobile robot.

4.5. The Role of the Platform to Manage the
Variability in the Mobile Robot Navigation
The multi-agents platform will be placed on the top of our Pipe-
and-Filter architecture, and exerts on it a permanent monitoring in
order to avoid all processing possible errors. Generally, the multi-
agents platform reacts to the events emitted by the architecture
using two distinct strategies: the reconfiguration of the
component’s connections or the creation of the new components
able to solve the arise problem. The sensor is installed on the
robot and it sweeps sequentially its environment, in the case the
sensor detects an obstacle on its trajectory, it sends a signal
towards the component “Scan” of the software architecture, which
emits an event towards the platform. On the level of the
architecture, the error is collected by the reactive agent which
supervises the component “Scan”. The error is then transmitted
towards its intermediate agent, this error is then identified and
sent towards the superior agent. The superior agent establishes the
plans in order to correct the errors, in this case, the multi-agents
platform will create new components so that the robot avoids the
detected obstacle.

When the obstacle is finally out of the trajectory of the mobile
robot, the component “Planning” establishes new plans. If these
plans require a reconfiguration of the connections, the component
“Planning” emits an event towards the platform, which is
collected by the reactive agent of the platform related to the
component “Planning”. The event is transmitted towards the
intermediate agent which identifies the event thanks to its
knowledge base describing the event which is emitted by the
software architecture. The agent of the intermediate layer sends
information towards the superior agent, which establishes the
plans so that the error is corrected on the level of the architecture,
and distributes them to the agent of the intermediate layer. The
agent of the intermediate layer orders the reactive agents to create
the new connectors necessary to the new navigation plan of the
mobile robot.

5. SCENARIO OF NAVIGATION OF THE
MOBILE ROBOT ON AN ENVIRONMENT
WITH OBSTACLE
In this scenario the mobile robot is in part 1 of the plan (Figure 5),
the final position is entered by the user. The obstacle will be
placed on the first trajectory of the X axis. The mobile robot starts
with an approach according to the X axis. After the detection of
the obstacle by the sensor, the robot slows down for stopping, it
makes a rotation of 90° on itself. Then the obstacle is avoided by

choosing a vertical trajectory as soon as the obstacle is not located
on the X axis trajectory, the mobile robot begins a new approach
on the X axis, then finishes by an approach on the Y axis to
achieve its finale goal.
This scenario is produced on the level of the architecture by
applying the following steps:

• The mobile robot will use the starting configuration of the
architecture, and starts its approach X.

• The detection of obstacle and creation of components: when
the sensor detects the obstacle on its trajectory it emits one
signal towards the “Scan” component, which will send an
event towards multi-agents platform (see Figure 7-a). The
event will be detected by its reactive agent which transmits
it towards its intermediate agent. The agent of the
intermediate layer identifies the event and transmits the
information to its superior agent. The superior agent
establishes a plan which will be sent towards the
intermediate agent. The intermediate agent orders to its
reactive agents to create and activate new components and
their connections (see Figure 7-b). The information on the
reconfiguration goes up towards the agent of the superior
layer so that it will have a precise sight of the architecture
state.

• The destruction of the useless components for new planning
of the navigation: the component “Analysis” collects
information relating to the position of the robot as well as
information coming from the “Scan” component. Then, this
“Analysis” component activates both the “Escape”
component which starts its plan to avoid the obstacle and
the “Simulation” component for displaying the movement.
If the obstacle is out of the trajectory of the mobile robot,
the component “Escape” sends an event towards the
platform to restore the original configuration of the
architecture (see Figure 7-c). This event is detected by the
agent of the reactive layer and transmitted to its agent of the
intermediate layer so that it can be identified. After the
identification, the intermediate agent sends information
towards its superior agent. The superior agent will establish
again so that the component “Escape” and “Simulation” and
all their connections are destroyed. This plan will be sent to
the intermediate agent which orders to its reactive agents
related to these components and connections to begin the
destruction. These agents will be themselves destroyed
thereafter (see Figure 7-d). The components “Scan” and
“planning” will be connected by the reactive agent (see
Figure 7-e). All of these modifications are transmitted to the
superior agent.

• The creation of new connectors for new planning of
navigation: the “Planning” component defines new plan to
reach the finale point. The component “Planning” emits an
event towards the platform (see Figure 7-f) so that new
connector will be created to connect component “X
Approach” to component “Planning” (see Figure 7-g) with
the aim to reactivate the approach on X axis. The event is
collected by the reactive agent and is sent towards its
intermediate agent which will identify the new event, and
send it towards the superior agent. This agent will establish
a new plan. In this way the mobile robot will start its

 39

movement according to the X approach, then it will reach
the finale point by an Y approach.

Parameter Planning X Approach

Simulation

Scan Planning Y Approach Scan

Multi-agents platform

Figure 7-a
Simulation

E
ve

nt

Parameter Planning X Approach

Simulation

Scan Analysis

Y Approach Scan

Multi-agents platform

Figure 7-b Simulation

Simulation

Escape Planning

Planning

Creation of
component

Creation
of
component

Parameter Planning X Approach

Simulation

Scan Analysis

Y Approach Scan

Multi-agents platform

Figure 7-c Simulation

Simulation

Escape Planning

Planning

Event

Planning X Approach

Simulation

Scan

Scan

Multi-agents platform

Figure 7-f Simulation

Planning

Planning

Event

Y Approach

Parameter

Planning X Approach

Simulation

Scan

Y Approach Scan

Multi-agents platform

Figure7-g Simulation

Planning

Start

Parameter

Figure 7. Scenarios of navigation of the mobile robot on an

environment with obstacle.

6. A REAL APPLICATION
After we have established a Pipe-and-Filter architecture for the
navigation of a mobile robot in an environment with obstacle, we
have programmed an application which shows well how the
mobile robot move on the our simulator. The user has a user-
friendly and intuitive interface for various simulations. Thus, it
can parameter the initial and final position of the robot as well as
the position of the obstacle on the screen of our simulator and also
the range of the sensor.
During simulation, the user can choose different architectures
(with or without multi-agents platform). The importance of our
platform in the maintenance of the dependability and performance
in any circumstance, is well illustrated in the Figure 8.
Without the intervention of our platform the robot crash on the
obstacle. In Figure 9, we can see that the initial Pipe-and-Filter
architecture is modified by our platform. During the simulation
the robot detects the obstacle, and the architecture is dynamically
reconfigured, so that the mobile robot avoids the obstacle and
reaches the finale point. The user can parameter in the “Scan”
component the range of the sensor via the platform. If the user
raises the range of the sensor then during the simulation the robot
detects earlier the obstacle on its trajectory.

7. CONCLUSION
The right architecture is the first step to success. The wrong
architecture will lead to calamity. We can identify causal
connections between design decisions made in the architecture
and the qualities and properties that result downstream in the
system or systems that follow from it. This means that it is
possible to evaluate an architecture, to analyze architectural
decisions, in the context of the goals and requirements like
variability management that is levied on systems that will be built
from it. The architecture then becomes the basis of systematic
development and evolution of software/hardware systems. It is
clear that a new architecture that permits the dynamism
reconfiguration while ensuring the use of software in multiple
contexts and the ability of software to support evolution and
changing requirements in various contexts are needed. This paper
presents a new platform based multi-agents which monitors the
global architecture of a system and manages the provided
variability. It will achieve its functional and non functional
requirements and evaluate and manage changes in such
architecture dynamically at the execution time. In this paper we

 40

have developed our generic platform and we have applied and
implemented it on the Pipe-and-Filter architecture. This
software/hardware architecture is used for controlling a mobile
robot to follow a trajectory towards the desired position in the
presence of obstacles. We have showed by some scenarios the
dynamic reconfigurations related to the improvement of the
variability management through the structuring investigation of
fault-tolerant component-based systems at architectural level of
Pipe-and-Filter style. Our approach can be extended to deal with
other architectural “non-functional” quality attributes in the
context of developing complex and reliable systems.

Figure 8. The crash of the robot on the obstacle without using
our platform.

Figure 9. The mobile robot avoids dynamically the obstacle by
using our platform.

8. REFERENCES
[1] Asterio, P., de Guerra, C. et al. An Idealized Fault-Tolerant

Architectural Component, In proceeding of WADS:
Workshop on Architecting Dependable Systems. Orlando,
USA 25 May 2002.

[2] Bass, L., Clements, P., and Kazman, R., “Software
architecture in practice” SEI Series, Addison-Wesley.
January 1998.

[3] Bosch, J., Design and use of software architectures,
Addison-Wesley, 2000.

[4] De Lemos, R., and al. Tolerating Architecture Mismatches,
In proceeding of WADS: Workshop on Architecting
Dependable Systems. Orlando, USA 25 May 2002.

[5] Dias, M.S., and Richardson, D.J., The role of Event
Description in Description in Architecting Dependable
Systems. In proceeding of WADS: Workshop on
Architecting Dependable Systems. Orlando, USA 25 May
2002.

[6] Gokhale, S.S., and al. Integration of Architecture
Specification, Testing and Dependability Analysis, In
proceeding of WADS: Workshop on Architecting
Dependable Systems. Orlando, USA 25 May 2002.

[7] Liu, C., and Richardson, D. J., “Architecting dependable
systems through redundancy and just-in-time testing. In
proceeding of WADS: Workshop on Architecting
Dependable Systems. Orlando, USA 25 May 2002

[8] Ovum Report. Intelligent agents : the new revolution
software, 1994.

[9] Perry, D.E, Wolf, A.L., Foundations for the Study of
Software Architecture, Software Engineering Notes,
17(4):40, Oct. 1992.

[10] Ramdane-Cherif, A., Levy, N., and Losavio, F., Dynamic
Reconfigurable Software Architecture: Analysis and
Evaluation.. In WICSA’02: The Third Working IEEE/IFIP
Conference on Software Architecture. Montreal, Canada,
August 25-31, 2002.

[11] Randell, B., and Xu, J., The evolution of the recovery block
concept, In software fault tolerance, chapter 1. John Wiley
sons ltd. 1995.

[12] Sargent, P., Back to school for a brand new ABC. In: the
guardian, 12 March 1992, p28.

[13] Shaw, M., Garlan, D., Software Architecture. Perspectives
on Emerging Discipline, Prentice-Hall, Inc. Upper Saddle
River, New Jersey, 1996.

[14] Shroeder, B., On-line monitoring, IEEE Computer, vol. 28,
n. 6, June 1995. pp. 72-77.

[15] Sloman, M., and Kramer, J., Distributed systems and
computer networks. Prentice hall. 1987.

[16] Snodgrass, R., “A Relation approach to monitoring complex
systems”, ACM Trans. Computer Systems, vol. 6, n. 2, May
1988, pp. 156-196.

A Practical Approach To Full-Life Cycle Variability Management

Fraunhofer Institute for Experimental Software Engineering (IESE)
Sauerwiesen 6, D-67661 Kaiserslautern, Germany
{Klaus.Schmid, Isabel.John}@iese.fraunhofer.de

Klaus Schmid and Isabel John
Abstract1

In order to enable a smooth transition to product develop-
ment for an organization that so far did only perform single
system development, it is necessary to keep as much of the
existing notations and approaches in place as possible.
In this position paper we propose a specific approach to the
comprehensive management of variability that enables to
leave as much of the existing notations and approaches in
place as possible. This approach has so far been applied in
several cases where PuLSETM2 has been introduced into a
software development organization.

1. Introduction

Variability Management is a concern that arises in Product
Line development throughout all lifecycle phases [6]. It can
actually be seen as the key feature that distinguishes product
line development from other approaches to software devel-
opment.
While the basic concerns are similar throughout the differ-
ent stages of a software lifecycle, the means for addressing
them are typically different in the various stages: in the
analysis phase mechanisms related to the specific analysis
technique are used, typically text-based [26] or UML-based
techniques are proposed [11, 15, 24, 4, 17], specific design-
based approaches have been proposed [5 ,9], and of course,
implementation mechanisms have been studied [19, 10, 25].
Already for some time proposals have been made for full-
life-cycle management of variability using decision models
[1, 18, 12]. However, these approaches are always related to
a specific notation. The only exception we found so far is
the Synthesis approach[13, 22].
In the context of industrial projects using the PuLSE-
approach [2, 3] we needed an approach that enables us to
homogenously manage variability across the different life-
cycle stages, independent of the specific notation. In this
paper, we will discuss this approach to variability manage-
ment and the fundamental assumptions and concepts on
which it relies.

2. Requirements on the Approach

We are focussing here at the situation of introducing a prod-
uct line approach in an organization that so far performed
only single system development. This is a quite common
situation in the context of Fraunhofer IESE where we do
technology transfer to different contexts. In order to facili-
tate the introduction of the variability concepts in such a sit-
uation we like to keep the existing notations and processes
as far as possible. So for example, if an organization per-
forms a text-based requirements process, we may often
keep the text-based process and augment it with variability
concepts. Later on, after the variability issues have been
widely understood and accepted we then move to a more
formal notation like the UML. In another case we devel-
oped an extension of a graphical notation, to which we
added variability concepts by adding notational elements
along with a decision model [20].
On the other hand we must support variability throughout
the lifecycle. Thus, we must map the same variability in a
consistent manner to the various artifacts like requirements
or code, in order to widely apply it in industrial practice:
In total, we came up with the following list of requirements
for our variability management approach:
• The approach needs to be notation-independent
• The approach must be applicable to all kind of life-cycle

artifacts
• The approach must support traceability of variabilities

both horizontally and vertically:
- horizontally means that we must be able to trace a

variability to the various places within a life-cycle arti-
fact, where it has an impact

- vertically means that we want to be able to trace a
variability in one life-cycle stage to corresponding
variabilities in artifacts of other life-cycle stages.

• The approach must support the instantiation of variabil-
ity in order to support product derivation

• It must be possible to hierarchically structure the
approach in order to keep the approach scalable.

We developed an approach that satisfies these requirements.
This approach draws on earlier work like [8, 20].1. This work was supported in part by Eureka Σ! 2023 Pro-

gramme, ITEA project ip00004, Café.
2. PuLSE is a registered trademark of Fraunhofer IESE.
 41

3. Comprehensive Variability Management

The specific approach to variability management we pro-
pose consists of the following components:
1. A decision model as a basis for characterizing the

effects of variability
2. An approach to describe interactions among different

decisions
3. An approach to describe the relation between variation

points and the specific decisions (or group of deci-
sions) on which the resolution of the variability
depends.

4. A common (maximal) set of variation types.
5. An accompanying mapping of the variability types to

the specific notation to express the variation points.
Only the last point, the mapping, has to be adapted to the
specific representation technique. The other parts as well
as the semantic interrelation among them are independent
of the specific representation approach. We will now
briefly describe how these components are implemented
in this approach.

3.1 The Decision Model
The decision model was initially devised in the context of
the Synthesis approach for variability management [13].
In the meantime, this technique has been widely applied
both in research and in industry [15, 16, 1, 14, 18, 20, 12].
The specific kind of decision model we propose is differ-
ent from other approaches in two ways:
• It is more comprehensive in terms of the information it

contains.
• It does not explicitly relate to the variation points, but

rather it defines decision variables which are then ref-
erenced at the specific variation poins using the deci-
sion evaluation primitives.

The second characteristic makes this approach particularly
notation-independent.
Each of the decision variables that is defined in the deci-
sion model is in turn described by the following informa-
tion:
• Name: The name of the defined decision variable; the

name must be unique in the decision model
• Relevancy: The relevancy of a decision variable for an

instantiation may depend on other decision variables.,
e.g. the decision variable describing the memory size
is only valid if the decision variable describing the
existence of memory is true. This can be made explicit
by the relevancy information.

• Description: A textual description of the decision cap-
tured by the decision variable

• Range: The range of values that the decision variable
can take on. This can be basically any of the typical
data types used in programming languages. However,
instead of a real or integer often only a range is
important. Moreover, probably the most common type
is the enumeration, as the relevant values are often
domain-dependent. Further, Boolean variables are

quite common.
• Cardinality: As opposed to other approaches, we do

not emphasize the difference between variables which
can only assume a single value and variables that can
assume sets of values during application engineering.
Rather, we define a selection criterion, defining how
many of the values of a decision variable can be
assumed by it. This is due to the fact that in practice we
found cases where sets are required, but their cardinal-
ity is restricted.
This is represented by m–n, where m and n are integers
and give the upper- and lower-bounds for the cardinal-
ity of the set representing the value of the decision
variable in the context of a specific application. Thus,
basically, all decision variables get a set of values dur-
ing application engineering. However, we use 1 as a
short-hand notation for 1–1 and in this case we also
write the value of the decision variable as a single
value (without curley brackets) and treat it for the pur-
pose of decision evaluation like a non-set value.

• Constraints: Constraints are used to describe interre-
lations among different decision variables. This is used
to describe value restrictions imposed by the value of
one variable onto another variable. We use this
approach also to describe the requires relationship, as
this can be treated as a special case in our framework.
This constraint can of course also contain domain
knowledge. Consider for example the following con-
straint: the value of the decision variable describing
the memory size has to be > 16384 if the decision vari-
able describing the existence of memory is true. This
constraint at the same time represents the domain
knowledge that in the product line the minimum mem-
ory size is 16KB.1

• Binding times: A list of possible binding times when
the decision can be bound. This can be sourcetime,
compiletime, installation time, etc. [12]. Additional
binding times may exist, and can be product line spe-
cific. As opposed to the FODA work and many related
approaches, we allow several binding times, meaning
depending on the specific product the variability may
be bound at any of these times. This technique was
first introduced in ODM [23] as “binding sites”. In par-
ticular, this implies that a development decision for
one system may be a runtime decision for another — a
case we found quite frequently in practice.

Depending on the specific context of our industrial
projects, we sometimes used slight variations of this
approach to decision modeling. However, regarding the
information content, it was always a subset of this infor-
mation [20]. In case, we want to use the decision model
also as a basis for tracking implementation and evolution,
it is useful to define an additional facet, describing the
binding times already supported by the implementation.
This may of course include “not yet supported” and in
general the supported binding times should be later or
equal than the current binding times.

1. Of course, this would usually be represented with a con-
stant like Min_Mem_Size := 16384.
42

Using this description of a decision variable, we can
define a decision model simply as a set of decision vari-
able definitions. For practical reasons this will usually be
represented by a table. However, especially for particu-
larly large decision tables this may be impractical. To han-
dle this case hierarchical decision models have been
proposed [7].
There is another reason that may lead to splitting the deci-
sion model, which is that certain decision may be relevant
only for certain binding times. In this case it is useful to
define subsets of the decision model based on the binding
times. In this case the decision model should be decom-
posed into parts that can be directly implemented, e.g.,
using makefiles, or preprocessor directives. However, as
these notations do not support the full range of informa-
tion that we require, it will always be necessary to keep
additional information in the form of comments in these
representations.
The decision model provides the basis for describing the
concrete products, as a specific product can be defined by
assigning values to the decisions in the decision model,
where the constraints among the decisions determine the
possible values. With these assigned decisions the varia-
tion points related to the decisions can be instantiated.

3.2 Decision Evaluation Primitives
As a basis for describing the relationship both among dif-
ferent decisions (in the decision model relevancy and con-
straints) as well as the relationship of a variation model to
a concrete decision, we need to be able to describe more
complex evaluations of the decisions. The basic constructs
for describing these evaluations are called the decision
evaluation primitives. These primitives support three
tasks:
• The description of the relevancy dependencies
• The description of the contraints dependencies
• The description of the relation between variation

points and and the specific decisions
Thus, they support the components two and three of our
approach. It would also be possible to use three different
approaches to satisfy these needs, however, it is of course
more practical to use an unified approach.
The following list provides some relations we use for deci-
sion evaluation:

sub real subset ⊂
subeq subset or equal ⊆
cardinality of a set
in is element of a set
-> logical implication
<-> mutual implication (iff)

In addition logical relations (AND, OR, NOT) are used.
Regarding the different contexts in which we use these
evaluation primitives we do further differentiate:
• For describing the relevancy dependency we need to

derive a boolean value, i.e., a logical expression. If for
specific values for a product this value is evaluated as
true, we need to determine a value for the correspond-

ing decision variable for this product.
• For describing the constraints we need to built rela-

tional expressions, involving the specific decision vari-
able. Thus, the constraint MEM_PRESENCE=TRUE -
> MEM_VALUE > 100 as part of the description of
MEM_VALUE would restrict the possible values of
MEM_VALUE if MEM_PRESENCE would be true.

• Finally, for describing the relation between variation
points and decision values, we need both logical
expression and value expressions (e.g., integer, enu-
meration), depending on the specific variability type.

Thus, depending on the specific context, slight variations
of the underlying language might be used, we always use
the same basic set of operators.
A key task of the decision evaluation primitives is to relate
a decision to a variation point. We usually do not directly
relate the impact of a decision variable to the variation
points as the same decision may easily have many differ-
ent forms of impact on the variation points. This allows us
to decouple the decision itself from its impact on the prod-
uct line model.
The approach to decision evaluation proposed here is very
similar to expression evaluation in existing program lan-
guages or constraint languages, the main extension being
that we may need to deal with set values.

3.3 Supported Variability Types
Many different variability types have been proposed in lit-
erature: optionalities, alternatives, set-optionalities (a set
of options may be selected), etc. Based on our practical
experience we deem the following types of variability to
be the most relevant. They are neither minimal nor do they
cover all proposed concepts, but they have been sufficient
from a practical point of view:
• optionality: a property either exists in a product or not
• alternative: two possible resolutions for the variabil-

ity exist and for a specific product only one of them
can be chosen

• set alternative: only a single instance may be selected
out of a range of possible alternatives

• set selection: several variabilities may be simulta-
neously selected for inclusion in a product

• value reference: the value of the decision variable can
be directly included in the product line model. (This,
of course, only makes sense with decision variables
that only assume a single variable in application engi-
neering.)

All these variability types are mapped to concrete repre-
sentations in the context of a specific notation. Optionality
and alternative use logical expressions to determine the
specific instantiation that shall be made. Set alternative,
set selection, and value take a value expression as basis. In
addition set alternative and set selection take values as
labels in order to describe the variabilities that should be
part of the instantiation.

3.4 Representation-Specific Mapping of
 The Variation Points
The concepts we discussed so far are representation-inde-
 43

pendent. However, we need to represent the variation
points in the various life-cycle artifacts (domain model,
code, etc.), which employ a specific specification tech-
nique. Therefore we need to map the different types of
variabilities to the target notation.
As we discussed in a companion paper [21], the specific
notation for the variation point may be graphical, textual
based, or on any other basis. The different variability types
should be mapped in a homogenous manner to the specifi-
cation language. For each variability type a unique map-
ping must be found. This mapping has to take a form so
that confusion with other legal expressions in the target
specification language can be minimized. Only this map-
ping from the variability types to the target specification
mechanism must be adapted for the different formalism.
We will discuss below a textual mapping, which can be
used as a basis for domain modeling and a mapping to an
implementation in C. Both approaches are used in indus-
trial transfer projects.

3.5 Discussion of the Approach
The approach outlined above is sufficient to describe all
common forms of variabilities and dependencies among
them that we encountered so far in industrial practice.
Dependencies like “requires” can also be modelled, and
they are modelled on the level we believe to be the most
adequate: they are made explicit on the level of the deci-
sion model in the form of constraints on the possible val-
ues of the variable.

4. Examples for using the approach

The approach to variability management in product line
modeling described above has already been applied in sev-
eral cases, most notably two industrial applications, where
one used a graphics-based approach, while the other uses
as a text-based approach. We will now briefly discuss the
implementation of our approach in these two vastly differ-
ent contexts, as this nicely illustrates the different forms of
mappings that are made.

4.1 Experiences with a Text Based Representation
Our variability management approach has been applied in
practice with text-based requirements in an embedded sys-
tems company. A textual representation was chosen
because the stakeholders in the domain were very familiar
with textual representations and not with other forms of

requiremetns documents. They had also invested consider-
able effort into the improvement of their approach to tex-
tual requirements documentation.
In order to be able to model and manage variability, the
existing mechanisms for writing textual requirements had
to be extended into a product line modelling approach.
According to our approach, only the mapping of the vari-
ability types onto the target representation formalism had
to be adapted. However, to be complete, we will now
briefly describe the specific realization of all four compo-
nents of our approach.
• The decision model as described in section 3.1 was

introduced. This was realized using an Excel-table. A
sanitized version of such a table excerpt is shown in
Figure 1.

• We used the decision evaluation primitives shown in
Section 3.3.

• We did decide to not support the single selection, as it
is a special case of the multiple selection. Moreover, so
far most instances we found during our work in this
domain were instances of the multiple selection any-
way.

This shows that, as expected, we could transfer our con-
cepts in a straight-forward manner to this domain. This
leads to the most interesting part of the case studies: how
was the mapping of the variation point types performed.
For the mapping of the variability types onto the textual
specification we decided to use textual constructs framed
with “<<“ “>>”, as these are text fragments which did so
far never occur in this domain.
Thus, we wrote optional variability in the following way:

<<opt expr1 / text >>.

Here expr1 is a logical expression. If it evaluates to true
for a specific product (i.e., for the decision variable
assignments for a specific product), then text is included
in the instantiated product description.
Similarly, for set alternative variability, we use the term:

<<alt expr1 / value-1 / text1
 / value-2 / text2
 >>.

Again, expr1 is a value expression, while value-1..-n are
values that are in the possible range of expr1.

Figure 1. Example of a decision model
 44

For set selection variability we used the same schema.
However, we found that it is usually sufficient to use a
decision variable as a basis. In order to express this case
we introduced the keyword mult:

<<mult expr1 / value-1 / text1
/ value-2 / text2

.....>>

Finally, for value references the term <<value decision-
variable>> was used.
Using this approach we described the product line model.
Figure 2 shows a sanitized excerpt of such a product line
model document which includes optional, alternative, and
value variability.
In this company, we identified so far during modeling
about 50 decision variables and about 100 variation points
had to be introduced into the documentation. We expect
that once the product line model is complete, it will con-
tain more than 100 decision variables and several hundred
variation points. The resulting domain models went
through inspection by the company and were well
accepted by the development team. In particular the nota-
tion was considered to be well readable and the resulting
models to be well understandable.

4.2 Implementation Representation
Similarly we can describe the mapping to an implementa-
tion. As an example, we use the mapping to a compile-
time binding, based on the C-language. The obvious
approach for this is to use the C-Preprocessor. The prepro-
cessor provides macro capabilities that can be used to
select the code that is compiled. This language is very
restricted. It allows to use #define to define a macro
(which may contain parameters). It also allows to test for
complex expressions using #if and whether a variable is
defined (#ifdef). In addition an #include directive allows
to include a large part of C code at the corresponding posi-
tion.
Using our approach we can represent individual decision
variables as precompiler variables. This technique allows
to some degree to map also the decision model itself to
preprocessor directives. The relevancy-section of a deci-
sion variable can in this case be mapped by defining the
preprocessor variable only in case the corresponding deci-
sion variable is relevant. The constraints will usually only
be mapped, if they lead to a unique value for a decision

variable, as in this case it can be automatically be defined.
The description of dependencies on the decision variable
values for a specific product is then described using the #if
directive. So we can map in a straightforward manner
optionality and alternative. In order to map a set alterna-
tive we can use the #elif construct as shown in Figure 3.
The set selection can not be directly translated. Rather, we
actually need to break it down into the different specific
cases. Finally, the value reference can be used in a
straightforward manner, as this is automatically resolved
by the preprocessor.
In addition, it is of course pretty common to use the #ifdef
directive as a shorthand notation in the context of boolean
decisions.
In Figure 3, we illustrate the translation of an optionality
(Time_Measurement) and of a set alternative
(Memory_Size). Both examples are based on the decision
model given in Figure 1. As the example illustrates while
the translation into the C preprocessor language is possible
in order to implement the different variability types, it can
be cumbersome and the expressiveness of the C prepro-
cessor poses some restrictions. This can be improved
using more powerful preprocessors. To some extent also
constraints from the decision model can be implemented
using the preprocessor, however, in our example, we do
simply assume that permissable values are initially pro-
vided to the preprocessor.

5. Conclusion

In this paper we described an approach to variability mod-
elling in a product line context. The development of this
approach was driven from the need for an approach that
can be easily applied in a wide range of practical contexts
and in combination with many different specification tech-
niques. Based on our experiences in applying this
approach, we found that

Our approach to variability management can be
applied systematically throughout the software lifecy-
cle with a large range of artifact types.

Figure 2. An example using the textual notation

#if (Time_Measurement = Software)
start_software_clock();
#else
start_hardware_clock();
#endif

#if Memory_Size == 0
get_no_memory();
#elif Memory_Size == 10
get_small_memory();
#elif Memory_Size = 100
get_medium_memory();
#else /* Memory_Size = 1000 */
get_large_memory();
#endif

Figure 3. Example using the C preprocessor
 45

Moreover, we could already apply this approach as part of
the PuLSE approach in different industrial contexts, dem-
onstrating that it provides sufficient expressiveness for
these situations. Based on these encouraging results, our
next steps will be to further define the formal basis upon
which this approach relies.

6. References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties,
O. Laitenberger, R. Laqua, D. Muthig, B. Paech,
J. Wüst, and J. Zettel. Component-based Product
Line Engineering with UML. Component Software
Series. Addison-Wesley, 2001.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig,
K. Schmid, T. Widen, and J.-M. DeBaud. PuLSE: A
Methodology to Develop Software Product Lines. In
Proceedings of the Fifth ACM SIGSOFT Symposium
on Software Reusability (SSR’99), Los Angeles, CA,
USA, May 1999. ACM.

[3] J. Bayer, D. Muthig, and T. Widen. Customizable
Domain Analysis. In Proceedings of the First Inter-
national Symposium on Generative and Component-
Based Software Engineering (GCSE ’99), Erfurt,
Germany, Sept. 1999.

[4] A. Bertolino, A. Fantechi, S. Gnesi, G. Lami, and
A. Maccari. Use Case Description of Requirements
for Product Lines. In Proceedings of the Interna-
tional Workshop on Requirements Engineering for
Product Lines (REPL’02), Sept. 2002.

[5] J. Bosch. Design and Use of Software Architectures.
Addison-Wesley, 2000.

[6] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela,
H. Obbink, and K. Pohl. Variability Issues in Soft-
ware Product Lines. In E. S. Institute, editor, Pro-
ceedings of the Fourth International Workshop on
Product Family Engineering (PFE-4), Bilbao, Spain,
Oct. 2001.

[7] M. Coriat, J. Jourdan, and F. Boisbourdin. The
SPLIT Method. In P. Donohoe, editor, Proceedings
of the First Software Product Line Conference, pp.
147-166, Kluwer Academic Publishers, 2000.

[8] J.-M. DeBaud and K. Schmid. A Practical Compari-
son of Major Domain Analysis Approaches -
Towards a Customizable Domain Analysis Frame-
work. In Proceedings of the Tenth Conference on
Software Engineering and Knowledge Engineering
(SEKE’98), June 1998.

[9] O. Flege. System family architecture description
using the uml. Technical Report IESE Report No.
092.00/E, Fraunhofer IESE, 2000.

[10] C. Fritsch, A. Lehn, and T. Strohm. Evaluating Vari-
ability Implementation Mechanisms. In Proceedings
of the Second International Workshop on Product
Line Engineering - The Early Steps: Planning, Mod-
eling, and Managing (PLEES’02), Nov. 2002.

[11] I. John and D. Muthig. Tailoring Use Cases for Prod-
uct Line Modeling. In Proceedings of the Interna-
tional Workshop on Requirements Engineering for
Product Lines (REPL’02), Sept. 2002.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peter-
son. Feature-Oriented Domain Analysis (FODA)

Feasibility Study. Technical Report CMU/SEI-90-
TR-21, Software Engineering Institute, 1990.

[13] M. Kasunic. Synthesis: A Reuse-Based Software
Development Methodology, Process Guide, Version
1.0. Technical report, Software Productivity Consor-
tium Services Corporation, Oct. 1992.

[14] C. Krueger. Variation Management for Software
Product Lines. In G. Chastek, editor, Proceedings of
the Second Software Product Line Conference,
LNCS 2379, San Diego, CA, Aug. 2002. Springer.

[15] M. Mannion, B. Keepence, H. Kaindl, and
J. Wheadon. Reusing Single System Requirements
for Application Family Requirements. In Proceed-
ings of the 21st International Conference on Soft-
ware Engineering (ICSE’99), May 1999.

[16] A. Mili and S. M. Yacoub. A Comparative Analysis
of Domain Engineering Methods: A Controlled Case
Study. In P. Knauber and G. Succi, editors, Proceed-
ings of the International Workshop on Software
Product Lines: Economics, Architectures, and Impli-
cations, Limerick, Ireland, June 2000.

[17] M. Morisio, G. Travassos, and M. Stark. Extending
UML to Support Domain Analysis. ASE'00, Greno-
ble, France, 11-15 September 2000.

[18] D. Muthig. A Light-weight Approach Facilitating an
Evolutionary Transition Towards Software Product
Lines. PhD Theses in Experimental Software Engi-
neering; Fraunhofer IRB Verlag, 2002.

[19] D. Muthig and T. Patzke. Generic Implementation of
Product Line Components. In Proceedings of the
Net.ObjectDays (NODE’02), Erfurt, Germany, Oct.
2002.

[20] K. Schmid, U. Becker-Kornstaedt, P. Knauber, and
F. Bernauer. Introducing a software modeling con-
cept in a medium-sized company. In Proceedings of
the 22nd International Conference on Software Engi-
neering (ICSE 2000), Limerick, Ireland, 2000.

[21] Klaus Schmid and Isabel John. Generic variability
management and its application to product line mod-
elling. In Proceedings of the Variability Management
Workshop in Groningen, 2003.

[22] Software Productivity Consortium Services Corpora-
tion, Technical Report SPC-92019-CMC. Reuse-
Driven Software Processes Guidebook, Version
02.00.03, November 1993.

[23] Software Technology for Adaptable, Reliable Sys-
tems (STARS). Organization Domain Modeling
(ODM) Guidebook, Version 2.0, June 1996.

[24] T. van der Maßen and H. Lichter. Modeling Variabil-
ity by UML Use Case Diagrams. In Proceedings of
the International Workshop on Requirements Engi-
neering for Product Lines (REPL’02), Sept. 2002.

[25] J. van Gurp, J. Bosch, and M. Svahnberg. On the
Notion of Variability in Software Product Lines. In
Proceedings of the Working IEEE/IFIP Conference
on Software Architecture (WICSA’01), 2001.

[26] D. M. Weiss and C. T. R. Lai. Software Product-Line
Engineering: A Family-Based Software Development
Process. Addison-Wesley, 1999.
 46

Capturing Timeline Variability with Transparent Configuration Environments

Eelco Dolstra
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

eelco@cs.uu.nl

Gert Florijn
SERC, P.O. Box 424,

3500 AK Utrecht, The Netherlands
florijn@serc.nl

Merijn de Jonge
Technische Universiteit Eindhoven, P.O. Box 513,

5600 MB Eindhoven, The Netherlands
M.de.Jonge@tue.nl

Eelco Visser
Utrecht University, P.O. Box 80089,
3508 TB Utrecht, The Netherlands

visser@cs.uu.nl

Abstract

Virtually every non-trivial software system exhibitsvari-
ability: the property that the set offeatures—characteristics
of the system that are relevant to some stakeholder— can be
changed at certain points in the system’s deployment life-
cycle. Some features can be bound only at specific moments
in the life-cycle, while some can be bound atseveraldistinct
moments (timeline variability). This leads to inconsistent
configuration interfaces; variability decisions are generally
made through different interfaces depending on the moment
in the life-cycle. In this paper we propose to formalize vari-
ability into a feature model that takes timeline issues into
account and to derive from such feature models configura-
tion interfaces that abstract over the life-cycle.

1. Introduction

Managing the variability in software systems is rapidly
becoming an important factor in software development. In-
stead of developing and deploying a “fixed” one-of-kind
system, it is now common to develop a family of systems
whose members differ with respect to functionality or tech-
nical facilities offered [4]. As a simple example, consider
a software development environment that is delivered in a
light, professional, and enterprise version, each providing
increasing amounts of functionality. As another source for
variability, modern systems need to run on different com-
puting platforms and provide a user interface in different
natural languages and possibly interaction styles. Finally,
systems typically offer extensive means for configuration
and customization during installation, startup, and run-time.
Again, this extends the space of actual systems of the fam-
ily.

An important reason for explicitly introducing variabil-
ity into a system is to obtain reuse of software. Building
a separate system for each variant means that the overall
development effort and time will increase, and that time to
market will be seriously affected. In addition, having multi-
ple systems with significant overlap among them seriously
affects the programming and management effort needed in
maintenance.

Variability is studied, among others, in the field of sys-
tem families or software product lines [2]. A common ap-
proach found there is to explicitly identify features that are
common to a family of products, or specific for some of
its members, and to organize them in a feature model. A
feature then represents a variation point in the system for
which multiple choices or variants can be made available.
For each variation point, a particular variant may have to be
selected to actually use the system.

A feature model specifies the variability in a system on
a conceptual level. It is typically used as a basis for the de-
sign and implementation of family-common and product-
specific assets. However, since feature models are not first-
class citizens in development environments, the link from
variability on a conceptual level to the actual implementa-
tion typically has to be maintained manually and frequently
is not available at all [5].

Timeline variability To create an implementation, the
feature model itself is not enough, because the timing char-
acteristics of variation points [7] play a prominent role in
the design process. For each variation point, we have to ask
ourselves when (in the development, deployment and usage
timeline) it should be possible to extend or reduce the set
of variants and when the variation point should be bound to
a particular choice. Typical examples of such decision mo-
ments are compilation-time, distribution-time, build-time,

installation-time, start-time, and run-time. To identify such
moments, it is necessary to consider the needs of various
parties or stakeholders that might be involved in the deci-
sion process — e.g., designer, coder, product manager, sys-
tem administrator, end-user.

From such an analysis it may follow that it should be pos-
sible to make a decision atseveralmoments on the timeline.
For instance, if we consider an operating system it may be
desirable to statically link a driver into the kernel, but also
to have the opportunity to load it at startup-time. Thistime-
line variability is an extra dimension to variability that is
often ignored. In current practice, the issues of the timeline,
decision moments, stakeholders and timeline variability are
not considered, nor modeled explicitly. As a result, variabil-
ity is often not orthogonal to the timeline and the variabil-
ity of a system appears to have been designed in an ad-hoc
fashion. Some features can be configured at install-time,
others at startup-time, and still others at run-time. More-
over, thebinding time[7] of variability is usually fixed and
cannot be altered, e.g., binding a run-time variation point at
installation-time.

A typical scenario is a system that supports bundling of
a selection of packages from a package repository. Config-
uration of the packages with file system layout information
is done after package selection and distribution. However,
it might be desirable to configure packagesbeforebundling,
for example, for mass deployment on machines with a stan-
dardized file system layout. Such alternative orders for
making variability decisions typically require a completely
different set-up.

Configuration mechanisms The realization of variability
decisions can be achieved using a wide variety ofconfigu-
ration mechanisms. For example, conditional compilation
allows us to choose a particular variant during compila-
tion by identifying whether or not a piece of code should
be compiled. Likewise, we can transform existing code
to introduce particular behavior. Source tree composition
on the other hand, allows us to include or exclude partic-
ular (source) components [9]. For more late-time variabil-
ity we can use object-oriented techniques like inheritance
and abstract-coupling combined with a factory object and
a parameter file that defines the correct variant to use. Al-
ternatively, we can use run-time discovery and binding of
(distributed) objects in platforms such as Corba. In prac-
tice, there is a significant distance between variability on a
conceptual level (features, variation points) and the config-
uration mechanisms actually used.

Configuration interface A software system with vari-
ability provides aconfiguration interface, through which
variability decisions are made. Ideally this interface pro-
vides a view to the system that corresponds to variability at

the conceptual level (i.e., the feature model). However, the
underlying mechanisms are usually reflected in the inter-
face to such an extent that the high-level view is obscured
by low-level mechanisms. Since variability decisions are
realized through many different configuration mechanisms,
which are closely tied to moments in the timeline, variabil-
ity appears to be treated in an ad-hoc fashion. A particular
mechanism is chosen arbitrarily, or for technical reasons,
rather than for support of an appropriate configuration in-
terface. As a result configuration is not transparent, but de-
termined by the time of configuration.

Implementation of timeline variability Another issue
of current practice and mechanisms is that changing the
timing-characteristics of a variation point involves a lot of
work, typically because the implementation of the varia-
tion point is scattered across many different artifacts (source
code files, build files, et cetera). For example, allowing
“pre-binding” of run-time variation points during installa-
tion (e.g. making a partially parameterized version of an
X Window System server configuration) may involve a lot
of work in different parts of the system. Finally, the con-
sequences of a particular choice, e.g., in terms of perfor-
mance, resource overhead, or maintainability, are often un-
clear or not considered. As a consequence, potential tech-
niques to optimize the software at a particular binding time
may not be fully used.

Contribution In this paper we demonstrate the problem
of timeline variability and the configuration issues related to
variability in general. The central idea is to provide a gen-
eral formal model of variability that can cope with timeline
aspects. Such a model can be annotated withactionsto per-
form configuration transitions depending on the configura-
tion state of the system (i.e., the “moment” on the timeline).
From such a model we can generically derive configuration
interfaces that close the current gap between variability at
the conceptual and implementation levels.

Outline In section 2 we provide some concrete examples
of timeline variability and their impact on the developers
and users of a system. In section 3 we describe a general
model of feature models. We describe in section 4 how
configuration interfaces can be obtained generically from
the feature models by annotating the models with actions.
We discuss related work in section 5. Concluding remarks
and directions for future work are given in section 6.

2. Motivating Examples

In this section we show some examples of variability in
real systems. In particular we are interested in the impact of

variability on configuration of the system, and in the pres-
ence and implementation oftimeline variability—the phe-
nomenon that certain features may be selected atseveral
different moments on the timeline.

The Linux kernel The Linux kernel provides the basis
for several variants of the GNU/Linux operating system.
The Linux kernel was originally implemented as a tradi-
tional monolithic kernel. In this situation all device drivers
are statically linked into the kernel image file. Conditional
defines and makefile manipulation are used to selectively
include or exclude drivers and other features.

The disadvantage of this approach is that it closes a large
number of variation points at build-time. Hence, the ker-
nel was retro-fitted with amodulesystem. A set of source
files constituting a module can be compiled into an object
file and linked statically into the kernel image, or compiled
into an object file that is stored separately and may be dy-
namically loaded into a running kernel. Modules may refer
to symbols exported by other modules. A tool exists to au-
tomatically determine the resulting dependencies to ensure
that modules are loaded in the right order.

The implementation of the variation points realized
through the module system is for the most part straight-
forward. For example, operations on files are implemented
through dispatch through a function pointer; this is a fea-
ture of standard C. However, these function pointers must
at some point beregistered. That is, they must be made
known to the system, and this presents difficulties. Slightly
simplified, every module exports an initialization function
f which must be called during kernel initialization, in the
case of statically linked modules, or at module load-time, in
the case of dynamically loaded modules.

For dynamically loaded modules, obtaining the address
of f is a matter of looking it up in the module’s symbol ta-
ble at load-time. For statically linked modules, the problem
is harder, since the C language does not provide a mech-
anism to iterate over a set of function names that are not
statically known. For example, we have no way of calling
every function calledinit_module() that is linked into
the executable image. This problem is solved by emitting
these addresses in a specially designatedsectionof the exe-
cutable image, which can then be iterated over at run-time.
The point here is not to show the details of the implementa-
tion of timeline variability in the Linux, but rather to show
that it is non-obvious and quite different at each point on
the timeline. In this case, we achieve timeline variability
of module activation at build-time and run-time, through a
combination of preprocessor, compiler, and linker magic.

Another issue is how variability appears to the user. A
problem with systems that allow configurability at different
moments on the timeline is that the configuration interface
tends to be different at each conceptual moment. For exam-

ple in the case of the Linux kernel, modules are added at
build-time through an interactive tool that allows variation
points to be bound through a textual or graphical user inter-
face based on a feature model of the kernel. On the other
hand, at run-time the interface is more primitive: adding
a module happens through commands such asmodprobe
which simply takes the name of a module to be loaded.

The Apache web server The Apachehttpd server is
a freely available web server. In order to support various
kinds of dynamic content generation, authentication, etc.,
the server provides a module system. Modules can be linked
statically at build-time, or dynamically at startup-time. Dy-
namically loaded modules can be compiled inside or outside
the Apache source tree.

Apache faces the same problem as the Linux kernel: how
to register a variable set of modules (that is, how to make
statically included modules known to the core system)? The
solution used by the Apache developers is to have the con-
figuration script generate a C source file containing a list of
pointers to the module definition structures. Note that this
solution is again, in a sense, outside of the C language; we
need togenerateC code (a process external to the language
proper) in order to deal with these open variation points.
Registering a module at startup-time happens by loading the
module and lookup up a fixed name in its symbol table.

Configuration is quite different at build-time and startup-
time. At build-time, modules are selected by specifying the
list of desired modules to an Autoconf configuration script
(which constructs the build files). If modules are added
later, at startup-time, they must be added to a configuration
file (httpd.conf).

Issues The aforementioned examples demonstrate the two
main issues in implementing timeline variability. First, we
tend to havea different configuration interface per config-
uration moment, even when some features can be bound at
several moments during the life-cycle (thus presenting an
inconsistent interface to the user).

Second,implementations techniques aread hoc. This is
almost necessarily so, because the underlying languages do
not offer the required support. Providing a variation point
either at build-timeor at run-time is not hard, but provid-
ing it at both tends to require some hackery. Consider, for
example, a binary variation point that is bound at run-time,
implemented in C. This might be implemented as follows:

if (feature) f() else g();

Moving this variation point to build-time is not hard ei-
ther using conditional compilation:

#if FEATURE
f()

#else

g()
#endif

But to allow for this feature to be bound both at build-
time and run-time, we would need, e.g.,:

#if FEATURE_BOUND_AT_BUILD_TIME
#if FEATURE

f()
#else

g()
#endif
#else

if (feature) f() else g()
#endif

which is inelegant: not only do we need two different im-
plementation mechanisms, but binding the feature will tend
to happen through different configuration interfaces, and the
corresponding implementation is difficult to understand.

3. Feature models and time

The main problem in timeline variability is that every
stage in the life-cycle tends to present a different configura-
tion interface to the user. This is particularly annoying for
variation points that have several binding times. In order to
generalize system configuration, we propose that a generic
configuration interface is parameterized with a formalized
feature model.

In approaches such as FODA [10] or FDL [6] feature
models are described as graph-like structures, where the
edges between features denote certain relationships (such
as alternatives, exclusion, and so on). The model therefore
describes a set ofvalid configurations that satisfy all con-
straints on the feature space. Apart from being used dur-
ing analysis and design, such models can also be used to
drive the configuration process directly. For example, the
CML2 [14] language was designed to drive the configura-
tion process of the Linux kernel (and other systems) on the
basis of a formal feature model of the system.

However, these models provides astaticview of the con-
figuration space: a configuration is either valid or it is not;
no timeline aspects are taken into account. In order to model
timeline aspects, it is necessary to take into account that
some feature selections, i.e., bindings of variation points,
are valid only on certain points on the configuration time-
line. That is, we should not place constraints on configura-
tions but on transitions between configurations.

Formally, a feature model for a system with a statically
fixed set1 of variation points has the following elements:

1It is possible for the set of variation points to be dynamic, e.g., load-
able modules may add their own variability. For simplicity we do not take
this possibility into account here.

• A set of named variation pointsP and, for each varia-
tion pointp ∈ P , the set of named statesSp.

• A configurationC is an assignment of states to varia-
tion points, that is, a functionP → ∪p∈P Sp.

• An initial configurationc0 ∈ C.

• A relationT ⊆ C × C expressing valid configuration
transitions; i.e., it constrains configurations. As noted
above, it is not sufficient merely to describe valid con-
figurations, since not every valid configuration can be
transformed into any other valid configuration. How-
ever, the set of valid configurations is the transitive clo-
sure of{c0} under theT relation.

Note that static feature models such as FODA, FDL, and
CML can be transcoded into this model; they are just differ-
ent ways of expressing the valid-transition relationT . In-
deed, the main problem in making this approach useful is
to find a suitable way to specifyT . Note that this is just an
usability issue; the model is as described above.

It may be argued that implementation restrictions should
not appear in the feature model. However, they are required
to generate configuration systems. In addition, we can iden-
tify several types of constraints. First, there are constraints
that are inherent to the problem domain; these arise from the
domain analysis. Second, some constraints result from im-
plementation restrictions. This may well be the largest set in
typical systems. Finally, some constraints are not forced by
the domain or implementation, but rather are added by some
stakeholder. An example would be a system administrator
who restricts some end-user configurability. The specifi-
cation language for the feature model should allow these
constraints to be specified separately.

Example An example may be useful. We shall encode a
very small subset of the variant space of the Apache web
server using the formalism given above.

What is the set of variation pointsP and the associated
sets of states for each variation point? An example of a
simple variation point in this model isdebug to enable or
disable emission of debug information (with stateson and
off , respectively). This variation point can only be bound
at build-time. More relevant to timeline variability is
Apache’s module support. For example, we have variation
points such asmod_cgi (also with stateson andoff) to
enable or disable support for CGI scripts, respectively. Re-
calling the discussing of modules in Apache in section 2,
such features can always be bound at build-time, but they
can only be changed at startup-time when support for dy-
namic loading of modules is enabled. This is also a vari-
ation point, of course, which we denote asmod_dso (for
dynamic shared objects).

In order for our approach to work we need to encode in
the valid-transition relationT that the state ofmod_cgi
can be changed up to build-time, but up to startup-time only
if mod_dso is set toon . Hence, we need to be able to
distinguish the point on the timeline that we are at. To
do this we introduce apseudo variation pointtime with
statesinitial , built , andrunning , denoting the de-
ployment points at which the source has been obtained, the
system has been built, and the system has been started.

Note that there is nothing particularly special about
time , except that it does not denote a real (i.e., concep-
tual) variation point; i.e., this is quite general: any aspect
of the deployment state (such as an installation path) can be
stored in the configuration.

Using time we can fill inT , which describes the set of
valid transitions. Hence, we have to deal withtwo config-
urations: the configurationc1 we are coming from, and the
configurationc2 that we are going to. For anyc1 andc2,
(c1, c2) ∈ T if and only if the following hold:

(1) c1.time ≤ c2.time
(2) c1.time ≥ built → c1.debug = c2.debug
(3) c1.time ≥ built → c1.mod dso = c2.mod dso
(4) c1.time ≥ built ∧ c1.mod dso = off

→ c1.mod cgi = c2.mod cgi
(5) c1.time ≥ running

→ c1.mod cgi = c2.mod cgi

(The ordering ontime is initial ≤ built ≤
running). Condition(1) encodes that time is monoton-
ically non-decreasing. Conditions(2) and(3) specify that
thedebug andmod_dso variation point can never change
after the system has been built. On the other hand, condi-
tion (4) says thatmod_cgi cannot change if, additionally,
support for dynamic loading is disabled. Hence,mod_cgi
canchange after build-time if DSO support is enabled. Fi-
nally, condition(5) restricts this a bit: CGI support cannot
be changed after the system has been started.

4. From models to configuration interfaces

The construction of a formal feature model as discussed
in the previous section is valuable in itself because it enables
analysis of both conceptualand implementation-defined
variability in a system. The real strength of a formal model,
however, is that it allows the automatic generation of config-
uration interfaces. The intent is that using the feature model
we can drive a generic configuration tool calledTraCE(for
Transparent Configuration Environment). The idea is out-
lined in figure 1. At each point in time we maintain the
configuration state corresponding to the state of the sys-
tem. Starting with an initial system (e.g., the source code
distribution of Apache), the user can make modification to
the configuration through the TraCE user interface, which

Initial Built Running

model

time

TraCE

configuration
interface configure httpd.conf

actions ./configure;
make

generate httpd.conf;
apachectl start

Figure 1. Sketch of the TraCE system operat-
ing on a feature model for Apache.

presents a visualization of the feature model. Such modi-
fications are actualized upon the system by TraCE. For ex-
ample, in the Apache example, the transition from initial
to built stage is performed by configuring the source with
the right parameters (depending on the selected variation
points) and building it.

More precisely, given acurrent configurationc ∈ C,
the user can modifyc by changing the states of variation
points, yielding atargetconfigurationc′ ∈ C. We associate
with each valid transitiont ∈ T some imperative action
that should be performed torealize the configuration tran-
sition. Hence, if(c, c′) ∈ T , the configurationc′ can be
realized by executing the associated action. Note that ac-
tions are associated with transitions, and so configurations
may be realized in different ways depending on the configu-
ration we are coming from. This is necessary for supporting
timeline variability, since the binding of variation points can
proceed through different implementation points depending
on the time, or on the state of other variation points.

A problem here is that while(c, c′) may not be a
valid transition, there may be a sequence of transitions
(c, c1), (c1, c2), . . . , (cn, c′) ∈ T that realizes the desired
transition. Finding a path in the transition space is com-
putationally prohibitive. We can side-step this problem by
requiring that the user always specifies transitions that are
in T . This is not unreasonable if the developer of the fea-
ture model ensures thatT is (more or less) transitive, that
is, (c1, c2) ∈ T ∧ (c2, c3) ∈ T → (c1, c3) ∈ T .

5. Related work

Variability is an emerging area of research. The first
attempts to handle variability in a disciplined way are the
feature-modeling formalisms originally developed in [10].
These models are directed at domain analysis, however, and
are not directly used for implementation. Rather, such mod-

els suggest where in the system the implementor should
construct variation points to deal with anticipated or unan-
ticipated variants. In [16] another feature modeling is ad-
dressed, which uses feature logic to reason about collec-
tions of components and their properties. Basic support for
timeline variability is addressed in [13]. They use partial
evaluation techniques of components parameters to choose
between compile-time and run-time variability. Variability
mechanisms are described in [7]. They introduce the notion
of variability binding time (i.e., the moment in time where a
variability point is bound) but binding time is not explicitly
modeled nor transparently handled. Feature binding cannot
be rolled back in product instances to change parts of its
functionality. Variation management in software product
lines is discussed in [12]. They discuss variation during the
life-time of a product line rather than during the deployment
time of a product instance.

Several techniques have been developed to realize vari-
ability at compile-time, such as Frame Technology [8],
Mixin layers [15], and aspect-oriented programming [11].
None of these explicitly model variability. GenVoca is
another compile-time variability mechanism [1]. Feature
modeling in combination with GenVoca is briefly addressed
in [3] but timeline variability is not considered.

6. Conclusion

We have discussed some of the issues in timeline vari-
ability. We suggest that the problem of inconsistent con-
figuration interfaces can be solved through formal feature
models that encode timeline aspects and that these can be
used to generically drive the configuration process.

We are currently implementing a prototype of TraCE.
There are several important issues that must be addressed.
First, we need a language (or interface) that allows the ef-
ficient formulation of feature models, as well as the asso-
ciation of actions to transitions. Second, there are user in-
terface issues. For instance, how do we present the feature
space to the user? In formalisms such as CML2 or FDL the
presentation structure is more-or-less obvious (due to the
use of an essentially tree-like model structure). In TraCE
we need to automatically derive an appropriate presentation
structure from the feature model.

The other main problem in timeline variability—
implementation techniques—deserves study; e.g., language
mechanisms and programming techniques that allow easier
binding at several moments must be investigated.

References

[1] D. Batory, C. Johnson, B. MacDonald, and D. von Heeder.
Achieving extensibility through product-lines and domain-

specific languages: A case study.ACM Transactions on Soft-
ware Engineering and Methodology, 11(2):191–214, 2002.

[2] J. Bosch.Design and Use of Software Architectures: Adopt-
ing and Evolving a Product-Line Approach. Addison-
Wesley, 2000.

[3] K. Czarnecki and U. W. Eisenecker. Components and gen-
erative programming. InESEC/FSE ’99, volume 1687 of
LNCS, pages 2–19. Springer-Verlag, 1999.

[4] K. Czarnecki and U. W. Eisenecker.Generative Program-
ming — Methods, Tools, and Applications. Addison-Wesley,
June 2000.

[5] A. van Deursen, M. de Jonge, and T. Kuipers. Feature-
based product line instantiation using source-level packages.
In Proceedings: Second Software Product Line Conference,
number 2379 in LNCS, pages 217–234. Springer-Verlag,
Aug. 2002.

[6] A. van Deursen and P. Klint. Domain-specific language de-
sign requires feature descriptions.Journal of Computing and
Information Technology, 10(1):1–17, 2002.

[7] J. van Gurp, J. Bosch, and M. Svahnberg. On the notion
of variability in software product lines. InProceedings of
the Working IEEE/IFIP Conference on Software Architec-
ture, pages 45–54. IEEE Computer Society Press, 2001.

[8] S. Jarzabek and R. Seviora. Engineering components for
ease of customization and evolution.IEE Proceedings –
Software Engineering, 147(6):237–248, Dec. 2000. A spe-
cial issue on Component-based Software Engineering.

[9] M. de Jonge. Source tree composition. InProceedings: Sev-
enth International Conference on Software Reuse, volume
2319 ofLNCS, pages 17–32. Springer-Verlag, Apr. 2002.

[10] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson. Feature-oriented domain analysis (FODA)
feasibility study. Technical Report CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, 1990.

[11] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. InECOOP ’97 — Object-Oriented Program-
ming 11th European Conference, volume 1241 ofLNCS,
pages 220–242. Springer-Verlag, June 1997.

[12] C. Krueger. Variation management for software production
lines. InProceedings of the Second Software Product Line
Conference (SPLC2), volume 2379 ofLNCS, August 2002.

[13] R. van Ommering. Configuration management in com-
ponent based product populations. InTenth International
Workshop on Software Configuration Management (SCM-
10). University of California, Irvine, 2001.

[14] E. S. Raymond. The CML2 language: Python implemen-
tation of a constraint-based interactive configurator. In9th
International Python Conference, March 2001.

[15] Y. Smaragdakis and D. Batory. Mixin layers: an object-
oriented implementation technique for refinements and
collaboration-based designs.ACM Transactions on Software
Engineering and Methodology, 11(2):215–255, 2002.

[16] A. Zeller and G. Snelting. Unified versioning through fea-
ture logic.ACM Transactions on Software Engineering and
Methodology, 6(4):398–441, Oct. 1997.

Component Interactions as Variability Management Mechanisms in Product
Line Architectures

M SRajasree,D JanakiRam
Distributed& ObjectSystemsLab

Departmentof ComputerScienceandEngineering
IndianInstituteof Technology, Madras

Chennai,India
rajasree@cs.iitm.ernet.in,djram@lotus.iitm.ernet.in

Abstract

Software product line is a collection of productsthat
share a commonsetof featuresand allows for controlled
variations. Thecommonassetsacrossall theproductscan
be captured as a referencearchitecture referred to as the
ProductLineArchitecture(PLA).PLA is a configurablear-
chitecture. It can accommodatevariabilities in the hot-
spotsprovided in the design. The interactionsamongthe
assetsplay the key role in designingthe architectural in-
stancesfor productswith specificrequirements.In this pa-
per wediscusshowcomponentinteractionsandtheresult-
ing patternsof interactionscanserveaspowerfulvariabil-
ity managementmechanismsin PLA design.

Keywords: ProductLine Architecture, Patterns,Com-
ponents,Connectors

1. Introduction

ProductLine Architecture(PLA) is a designfor a fam-
ily of applications.PLAs attemptto capitalizethe domain
expertiseof companiesandfacilitatelarge-scalereusein a
systematicway. Theintentof aPLA is to amortizetheeffort
of developmentfor similar products.So, it is very impor-
tant to plan the designstagesof PLAs. Also, the up-front
investmentin thedevelopmentof PLA is high comparedto
singleproductdevelopment.Hence,enoughcareshouldbe
takento seethatthearchitectureis capableof addressingthe
developmentof a largenumberof productswith lessdevel-
opmenteffort. PLAs shouldalsobe capableof addressing
easyevolutionof assets.

Whena PLA is built for thefirst time, intensive domain
engineeringis neededto capturetherequirements,reusable
assetsandvariations. After this, the reusableassetscould
be identifiedandsubsequentgenerationof thearchitecture

canfollow abottom-upapproachin composingtheseassets
to give theproductinstances.

It is advisableto have a generic,configurablearchitec-
tural model for a PLA, that is capableof generatingindi-
vidual architecturalinstances,providedwith requiredspec-
ifications.This architecturalmodelshouldbecomposedof
abstractionsin theform of patterns.Thevariabilitiesin the
individualarchitecturesandtheir interactionsshouldalsobe
capturedin theform of patterns.

In this paperwe discusshow the interactionsbetween
the reusablecomponentscanserve aspowerful vehicle in
handlingvariability in productlines. We believe thatsince
theinteractionscandictatethesemanticsof customizingthe
participatingcomponents,they canserve asmorepowerful
variabilityhandlingmechanisms.Also, thepatternsof these
interactionscanbecapturedasreusableartifactsin variabil-
ity design.

The paperis organizedasfollows. Section2 discusses
importanceof abstractionsandinteractionsin PLA design.
Section3 explains connectorsas variability management
mechanismsin PLAs. Section4 detailsinteractionpatterns
in PLA design.Section5 discussessomerelatedwork. Sec-
tion 6 concludesthepaperandgivessomepointersto future
work.

2. Importance of abstractions and their inter-
actions in PLA design

Derivation of genericarchitectureis always basedon
successfulabstractionsand their interactions. Theseab-
stractionsenableus to have a conceptualmodelof the en-
tire architecture.Interactionscandictatethecustomization
of theseabstractions.A first-classexplicit representationof
the PLA and its assetsenableus to placethe entire soft-
warein aconceptualcontext [2]. Sucharepresentationalso
enablesthedesignandredesignof thereusableassetseasy

sincethe unwieldy interfacesof the componentsaremini-
mizedin abstractions.Abstractionsmake thesystemmore
comprehensibleandinteractionsbetweentwo abstractions
can dictate the behavioral semanticsbetweenthe two of
them.

2.1. Abstractions in the form of components and
connectors

It may not be possibleto arrive at a uniform architec-
ture,which containstheminutedetailsof all thecandidate
architectures.So, an abstractionwhich doesnot show up
the differencesamongthe individual architecturesis to be
consideredasthegenericabstraction.This formstherefer-
encearchitecturefor thePLA. At ahighlevel, theseabstrac-
tionscanbeviewedascomponentswhich arethecomputa-
tionalelementsandconnectorwhich governtheinteraction
betweentwo components[16].

Alternativesandoptionscanbebuilt into thegenericar-
chitecturebasedon variability analysis.Optionsandalter-
nativesrefinethis genericabstractionby meansof thecon-
nectorsemanticsthat is usedto connectthe variablepart
with the fixed part of the design. Connectorscanmediate
betweenthe two participatingcomponentsin dictatingthe
variability in thedesign.Soweseethemaspowerful mech-
anismsin handlingvariability in productlines.

Initial stepin arriving at theabstractionsis to definethe
productcontext in which this abstractionoperates.For ex-
ample,if thereis a productline for designingcontrol pro-
gramfor variousembeddedsystems,thehardwarein which
the embeddedsystemoperatesforms the context abstrac-
tion. Next stepis to find theabstractionsthemselves.These
will facilitate the componentsas instancesof the abstrac-
tions. Theseinstancesin turn will have provision for vari-
abilities. Thesestepscan be performediteratively by as-
sessingthe suitability of the abstractionsin realizing the
genericarchitecture,allowing for controlledvariationsin
it. Boundingthescopeof theproductline, thatis, therange
of productscoveredby theproductline, is alsoanimportant
activity in theinitial phases.

On carefullyexaminingtheproductlines,it canbeseen
that variance,optionality andconflictsarethe threetrans-
formationaspectsin their design.This basicideashouldbe
guiding the identificationof the componentsand their in-
teractions.While analyzingvariabilities,we shouldnot be
concentratingonabstractionswhichareveryprimitive,that
is, thosewhich have direct implementationmechanismsin
thelanguage.For theseabstractions,varianceis thekey de-
sign force. So, future evolution of assetsmaynot beeasy.
Thebestapproachwould be to startfrom the domaincon-
ceptsandthencomeup with domainabstractions.This en-
ablesthe managementof abstractionseasyin termsof the
domainevolution.

For easiermanagementandevolution, componentscan
be groupedinto variouslogical layers,eachlayer address-
ing onespecificfunctionality. Thecorefunctionalityof the
genericarchitecturewill beavailable,whichdifferentprod-
uctscanrefinein orderto have their designatedfunctional-
ity.

2.2. Features aspects and concerns

A featureis somethingespeciallynoticeable,a promi-
nentpartof detail [18]. In the context of software,feature
will beany partor aspectof a specificationwhich theuser
perceivesashaving a self containedfunctionalrole [8]. For
the userof a softwareit couldmeanonething, for the de-
veloper, it could meana different thing. For example,in
order to have a problemdomainfeatureimplemented,the
developerwill beusingmorethanonefeaturein thesolution
domain.Featureswill bemanifestedin programsasprovid-
ing certainservicesor attainingsomequality attributes. If
a featureis implementedacrossseveral componentsin the
system,it is calleda cross-cuttingfeature.Aspect-Oriented
Programming(AOP)[10] communitycallssuchfeaturesas
aspects.

Thedomainabstractionswill beaddressingthebasicfea-
turesin the product line architecture. It is very rare that
the featuresstandin isolation. Oncethe abstractionsare
identifiedasarchitecturalentities,globalpropertiesthatare
desirablefor the systemcan emerge from the individual
functionalitiesandthe interactionsthat exist amongthem.
It is equally important to ensurethat undesirableinterac-
tionsdonot resultfrom thefeatureswhichareusedto com-
posethe system. We believe that the interconnectedfea-
tureshave to be identifiedin the early architecturaldesign
stagesitself andthensubsequentlybe refinedto program-
ming level aspects.UseCaseMaps(UCM)[3] seemto be
a goodchoiceat the architecturallevel for modelingcross
cuttingfeatures[11].

Adequatedocumentationmechanismfor definingmap-
ping from featurespaceto solution spaceis very critical
for PLAs. This will help in the traceability of require-
ments.FeatureSolution(FS)Graphis usedin [11] to con-
nectquality requirementswith solutionsat anarchitectural
level. Featuresmay sometimesbe non-functionalrequire-
mentsof software. Useof designpatterns[7] assolutions
for attainingcertainquality attributeslike flexibility , exten-
sibility etc. is anexample.

3. Connectors as variability management
mechanisms

Connectorscanbe viewed asmorepowerful variability
handlingmechanisms.They have thecapabilityto achieve
variouscompositionpatternsfor componentsthatgenerate

a specific architecturalinstance. We view connectorsto
be more powerful than componentsin modelingvariabil-
ity becausethey have thepotentialto dictatechangesin all
participatingcomponentswhereasacomponentcanbecus-
tomizedonly in its context. Achievingvariabilityusingcon-
nectorsis not merelythroughthe syntacticcompositionof
theparticipatingcomponents,but alsodictatedby thecon-
nectorsemantics.

Therearetwo levels of modelingvariability usingcon-
nectors.At first level, connectorsemanticscandecideupon
thevariableassetsin theform of components,thatarecho-
sento composetheproductarchitecture.At thenext level,
within a componentit canaddressthesecondlevel of vari-
ability. It is to benotedthatthis is possibleonly for awhite
box component,whosecodeis availablefor anoutsideen-
tity to modify.

On carefullyexaminingtheproductlines it canbeseen
that variance,optionality andconflictsarethe threetrans-
formationaspectsin their design.Interactionsbetweenvar-
iouscomponentsfor eachof theseaspectscanbeachieved
by properlydesignedconnectors.Varianceandoptionality
will mostly be addressedby the choiceof specificcompo-
nents. Conflicts can be capturedin the form of violation
of contractsby thecomponentsthatareparticipatingin the
composition.Sayfor example,therearetwo featureswhich
cannot co-exist in a product,connectorsemanticsshould
capturethatasa conflict.

The instantiationof a productline architecturefrom ex-
istingassetsby meansof automaticcompositionof assetsis
gainingimportancenow-a-days.Givenaparticularrequire-
mentspecification,a highly customizedandoptimizedin-
termediateor endproductcanbemanufacturedon demand
from elementaryreusableimplementationcomponentsby
meansof configurationknowledge using generative pro-
grammingtechniques[13]. The configurationpatternscan
becapturedasreusableartifacts.

For arriving at fundamentaldesigndecisionsandtrade-
off analysisat early stagesin the designof architecture
of productlines, architecturalpatterns[5, 9] canbe used.
Thesearecollection of high-level designdecisionswhich
arealreadymadeandreused.They provide guidelineson
how to connectcomponentsandconnectorstogether. Archi-
tecturalpatternsbasicallyprovide thefollowing. Thefunc-
tionality of componentsat runtime, topological layout of
componentsaspertheir relationsatruntime,asetof seman-
tic guidelines,asetof connectorsproviding communication
andco-ordinationor co-operationamongcomponents.

4. Role of component interaction patterns in
PLA design

Researchcommunityhasaddressedthe useof patterns
for attainingstructuralvariability [1] basedon mandatory,

alternative andoptional featurepropertiesas identifiedby
FeatureOrientedDomain Analysis (FODA) [14]. Only
structuralpatternshavebeenaddressedin this work. Based
on whethera variablefeatureis optional,mandatoryor al-
ternative a patterncanbe chosento staticallyplugging in
thevariability.

Thefeaturesthatdictatethevariationsmayinteractwith
oneanother. So, it is unlikely that the variationsarecon-
finedto a specificpartof thedesign.Theanalysisfor cap-
turing the commonalityandvariability shouldconcentrate
on thecommonpatternsof occurrenceof variabilities.The
interactionsof intendedvariability in the architecturemay
not only be dictatedstatically. The assetsmay have inter-
actionsat the time of compositionalso. Theseinteraction
patterns,asdictatedby theconnectorsemanticsformsakey
role in dictatingthecompositionof reusableassets.In PLA
design,becauseof the probableinter-relationshipbetween
featuresandtheir realizationmechanisms,interactionpat-
ternsplay a vital role. So,it is not enoughthatwe concen-
trateon the staticallyboundvariabilities. We have to con-
centrateon the configurationpatternsof componentsthat
areresultingfrom thecomposition.Thesepatternsserveas
reusabledesignsolutionsfor thekind of variability they are
addressing.

PLAs areintendedto be long-liveddesigns.So,a con-
ceptualabstractionof the entire PLA is an important re-
quirementfor its success. This abstractioncan be cap-
turedasinteractionpatternsfor realizingthe candidatear-
chitectures. Use of interactionpatternsis many-fold. In
theautomaticgenerationof productline architectures,these
patternsdictatethe desirableandundesirableforms of in-
teractionswhile composingarchitecturesfrom existing as-
sets.Knowledgeof standardizedinteractionpatternsenable
the learningof the architectureeasier. While modifying
reusableassets,thedependency betweenassetsis very im-
portant. This dependency cannot be capturedfully by the
staticbehavior of the system.Dependency betweenassets
will bedictatedduringcompositionaswell asrun time. So
variability will bedecidedbasedonall thesedependencies.

4.1. Patterns in architectural and design level

Abstractsolutionsto recurringproblemsareavailablein
theform of patternsatvaryinglevelsof granularity[5, 7, 9].
Thesesolutions addressthe functional as well as non-
functionalrequirementsof thearchitecture.Thesepatterns
canbeusedto makefundamentaldesigntrade-offs in thear-
chitecturedesign.They alsofacilitatetheevolutionof PLA
easier. Evolution takesplacewhennew featuresareadded
andexisting featuresareenhanced.Thoughthis activity is
costly, it is unavoidablein successfulapplicationssincere-
quirementschange.[6] suggestthe useof designpatterns
and domainspecificlanguagesfor achieving extensibility

in productlines.
Designpatterns[7] like strategy, abstractfactory, medi-

ator andstatesupportvariants. In optionality transforma-
tion, in someproductscertaincomponentscanbeomitted.
Strategy andproxypatternscanbeusedfor this. For resolv-
ing conflictsbetweenPLA andindividualproducts,adapter,
proxyandmediatorpatternscanbeused.

Patternsare capableof providing trade-off analysisin
casealternatedesignsexist. A methodologyfor designof a
framework for productlinesbasedonapatternorientedap-
proachis availablein [20]. This work usesa setof metrics
suggestedin [4] usinganabstractmodelof patterncalleda
patterngraph.

Whendesignpatternsareusedto modelvariabilitiesin
productlines,we takesinglevariableaspectsinto consider-
ation. Most of the patternsaddressvariability issues.The
importantpoint hereis that the variabilitiesshouldnot be
treatedin isolation. Therehasto be a mechanismbridg-
ing the gapbetweenrequirementmodelingof variabilities
andtheir designthroughimplementation.FeatureSolution
Graphhasbeensuggestedasameansto indicatetherelation
betweenfeature(problem)spaceandsolutionspace.

It is notonly adequateto representthevariabilities,their
traceabilityis important.Undesirableinteractionsin thede-
signusingpatternsareto becapturedandsuchpatterncom-
binationscannot beusedin modelingthesolutions.

Previous researchin software variability has identified
variation points [12] as points where variability is to be
pluggedin. But we believe that thetreatmentof variability
shouldbe startedright from the analysisphasesprecisely
in the hot-spotsidentified during the analysisand design
stages.Variableaspectscanbedesignedeitherin thecom-
ponentsor connectors.Therearedifferentwaysof achiev-
ing variability. In somecases,it may be possibleto attain
variability staticallyboundto theprogramat compiletime.
Anotheralternative is to havedynamicbehavior pluggedin
to thesystemby meansof run time customizationof com-
ponents.Variability couldalsobeachievedat composition
time. An importantreusableartifact in the last two cases
will bethedynamicconfigurationor thepatternof interac-
tions,thatthesystemhasduringthebehavioral change.

5. Related work

[17] initiatedPLAsin earlyin 1969.Information-hiding
principle by Parnasencodesa module’s commonalitiesas
its interface and variabilities as a module’s secrets[19].
RSEB(Reuse-drivenSoftware EngineeringBusiness) [12]
addressesdevelopmentof applicationproductfamiliestak-
ing into accounttheir organizationalandtechnicalissues.
RSEB andFODA [14] are integratedin FeatuRSEB[15].
This reuse-orientedmodel servesas a catalogto link use
cases,variationpoints,reusablecomponentsandconfigured

applications.In [6], a casestudyusingGenVocaapproach
hasbeendiscussedto achieveextensibilityof productlines.
Themethodthatwe envisagediffers from all theseworks,
in thatwegiveimportanceto thearchitecturalaspectsof the
productline by concentratingon theinteractionsamongthe
reusableassets.This approachthushelpsin the automatic
generationof architecturalinstances.

6. Conclusions and future work

A robust softwarearchitectureis critical for any prod-
uct line. In this paperwe have discussedthe importance
of interactionsbetweencomponentsmodeledin theform of
a softwareconnectorin dictatingthe variability in product
line architectures.A connectoris a morepowerful mecha-
nismto achieve variability becauseit canbeenrichedwith
the semanticsto customizeboth participatingcomponents
in thecomposition.This canresultin a configurablearchi-
tecturemodel for a PLA. The configurationpatternsthus
resultedcan also be usedas reusableartifactsfor model-
ing variability. Capturingthedependency betweenassetsin
the form of patternswill guidethe evolution process.The
dependenciesmay sometimesbe simple usagedependen-
ciesor sometimesthis maybecomplex behavioral patterns
composedfrom independentfeatures.

As part of our future work, we plan to addressthe is-
sueof interactionbetweenpatternsin moredetail for, we
believe thataddressingdesignreusein theform of patterns
andcodereusein theform of componentswill beapromis-
ing stepin largescalesoftwaredevelopment.

References

[1] B. Keepence,M. Mannion. Using Patternsto Model Vari-
ability in Productfamilies. IEEESoftware, 1999.

[2] J. Bosch. Product-LineArchitecturesin Industry: A Case
Study. In Proceedingsof the 21 st International Confer-
enceon Software Engineering, 1999,LosAngeles,Califor-
nia, UnitedStates, pages544–554.ACM, 1999.

[3] R. J. A. Buhr. UseCaseMapsasArchitecturalEntitiesfor
Complex Systems. IEEE Transactionson Software Engi-
neering, 24(12):1131–1155,December1998.

[4] D. JanakiRam,K. N. Anantharaman,K. N. Guruprasad,M.
Sreekanth,S.V.G.K.RajuandA. AnandaRao.An Approach
for PatternOrientedSoftwareDevelopmentBasedon a De-
signHandbook. Annalsof Software Engineering, 10:329–
358,2000.

[5] D. Schdmit,M. Stal, H. Rohnert,F. Buschmann. Pattern
OrientedSoftware Architecture: A Systemof Patterns- Vol
II . JohnWiley andSons,1999.

[6] Don Batory, Clay Johnson,Bob Macdonald, dale Von
Heeder. Achieving Extensibility Through Product-Lines
and Domain Specific Languages:A CaseStudy. ACM
Transactionson Software Engineeringand Methodology,
11(2):191–214,April 2002.

[7] E. Gamma,R.Helm, R.Johnson,J.Vlissides. DesignPat-
terns,Elementsof ReusableObjectOrientedSoftware, Ad-
disonWesley 1995.

[8] ESPRIT Working Group 23531,
http://www.dcs.ed.ac.uk/home/stg/ fire-
works/workshop.html.FIREworks,Workshopon Language
Constructsfor DescribingFeatures. 2001.

[9] F. Buschman,R. Meunier, H. Rohnert,P. Sommerlab,M.
Stal. Pattern OrientedSoftware Architecture: A Systemof
Patterns- Vol - I . JohnWiley andSons,1996.

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,CV.
Lopes,J-M. oingtier, J. Irvin. Aspect-OrientedProgram-
ming. In M. M, Askit, editor, Proceedingsof 11thEuropean
Conference on Object Oriented Programming (ECOOP
’97), pages220–242.LectureNotesin ComputerScience,
LNCS 1241,Springer-Verlag,1997.

[11] Hansde Bruin, R.S. Cassleman.ScenarioBasedGenera-
tion andevaluationof SoftwareArchitectures.In J. Bosch,
editor, Proceedingsof the Third Symposiumon Generative
andComponent-BasedSoftwareEngineering(GCSE2001),
pages128–139.LectureNotesin ComputerScience,LNCS
2186,Springer-Verlag,September10-13,2001.

[12] I. Jacobson,M. L. GrissandP. Johnson.SoftwareReuseAr-
chitecture, ProcessandOrganizationfor BusinessSuccess.
AddisonWesley, 1997.

[13] K Czarnecki,U Eisenecker. Generative Programming-
MethodsToolsandApplications. AddisonWesley, 2000.

[14] Kang K. S. Cohen Hess J. Nowak W. and Peterson
S. Feature-OrientedDomainAnalysis (FODA) Feasibility
Study. Technical ReportNo. CMU/SEI-90-TR-21Software
Engineering Institute Carnegie Mellon University Pitts-
burgh,PA, 1990.

[15] M. Griss,J.Favaro, M. d. Alessandro. IntegratingFeature
Modeling With RSEB. In Proceedingsof the Fifth Inter-
nationalConferenceonSoftware Reuse, pages76–85.IEEE
ComputerSociety, 1998.

[16] M. Shaw, D. Garlan.SoftwareArchitecture - Perspectivesof
an EmergingDiscipline. PrenticeHall, 1996.

[17] D. Mcllroy. MassProducedSoftwareComponents.Software
Engineering:Reporton a Conferenceby the Nato Science
Committee, pages138–150,October1968.

[18] MerriamWebsterDictionaryOnline. http://www.m-w.com.
[19] D. L. Parnas. On The Criteria to be Used in Decom-

posingSystemsinto Modules. Communicationsof ACM,
15(12):1053–1058,1972.

[20] RajasreeM S,D JanakiRam,JithendraKumarReddy.Sys-
tematicApproachfor Design of Framework for Software
Productlines. In Proceedingsof the PLEES’02,Interna-
tional Workshopon ProductEngineering:TheEarly Steps
PlanningModelingand Managing, OOPSLA2002. Fraun-
hoferIESE- October28,2002.

Feature Modeling Notations for System Families

Silva Robak
University of Zielona Gora

Institute of Organization and Management
s.robak@ioz.uz.zgora.pl

Abstract

System families have to address the problems inherent in
software artifacts due to the demand for variability,
which is necessary to support the needs of different users
or to enable functionality in diverse environments and
constraints. The possible features of a software product-
line may vary according to the needs of particular market
segments and purposes. In this paper an overview of
describing software variability with means of feature
modeling is presented. The role of feature modeling
within basic activities in the software development
process is shown. Different leading feature modeling
notations are compared and basic elements, feature types
and relationships between the features are discussed.
Further extensions as modeling features with UML and
employing fuzzy logic in feature diagrams are also
mentioned.

1. Motivation

An understanding of the concepts may be gained by
listing their properties, which may be further described
with features and dimensions. Features portray the
qualitative properties of concepts, while dimensions
present their quantitative properties. The value range of
the dimension may be continuous (as integer numbers) or
discrete (e.g., given as large, middle, small, etc.). The
values of dimensions may be ordered or not (i.e., like the
attributes).

A set of dimensions may be used to characterize a
number of concepts, each of them represented by a group
of values, with one value for each dimension. A similar
report is given by listings of feature values for a specific
member of the software family in the form of product and
feature matrix [1]. The basic role of feature modeling in
developing software families as product-lines is depicted
in Figure1.

There is no standard notation for feature diagrams
available. The most widely accepted notation is the
notation for purposes of the Generative Programming
(GP) introduced by Czarnecki and Eisenecker [2].

Section 2 of this paper contains the meaning of the
feature notion, feature model and comparison of some

leading notations applied in feature diagrams i.e.: FODA ,
FORM, FeatuRSEB, GP and Jan Bosch’s notation.
Section 3 summarizes the feature types and relationships
for feature diagrams. The last section contains the
conclusion of the work.

Scoping DE
Domain Analysis
(Feature Modeling)

Architecture Design

Product Engineering

Family Evolution

Management

Assets
Scoping

DOMAIN
ENGINEERING

Domain Analysiss
(Feature Modeling)

Architecture Design

PRODUCT
ENGINEERING
Feature and Component

Selection

Management

Assets

Fig.1 Role of features in basic activities in developing
system families [12].

2. Feature modeling
2.1. Feature notion

It is important to remark that the feature notion in this
paper (as also in domain modeling) has a somewhat
different meaning then the UML-feature defined as a
property, e.g., an operation or an attribute, that is
encapsulated within another entity, such as an interface, a
class, or a data type [10].

According to Feature-oriented Domain Analysis
(FODA) [7] the feature is the property of a system which
directly affects end-users: "Feature: A prominent or
distinctive and user-visible aspect, quality, or
characteristic of a software system or systems.”
Application features have been largely classified
according to [7] into: Capabilities (functional,
operational, presentation features), Operating
Environments, and Domain Technology Implementation
Techniques. Functional features are basic services

provided by the applications from the end-user’s
perspective. Operational features show from the user’s
perspective their interactions with the applications.
Presentation features are related to the way information is
presented to the users. Operating Environments are the
environments in which the applications are used and
operated.

For purposes of Generative Programming (GP)
Czarnecki and Eisenecker [2] define the feature notion as
“property of a domain concept, which is relevant to some
domain stakeholder and is used to discriminate between
concept instances”.

FODA definition has been extended in FORM-method
[8] - the features are considered within the domain
analysis to differentiate a specific application from other
related ones and are the “application features”
characterizing specific applications from the end-user’s
perspective and may be classified into the following
categories [9]:

1. Capability features:
• Service,
• Operation,
• Nonfunctional characteristics.

2. Domain technology features:
• Domain method,
• Standard,
• Law.

3. Operating environment features:
• Hardware,
• Software.

4. Implementation technique features:
• Design decision,
• Communication,
• ADT.

J. Bosch defines feature as a “logical unit of behaviour
that is specified by a set of functional and quality
requirements” [1].

2.2. FODA feature diagrams

The feature models first introduced in FODA to
represent a configuration aspect of reusable software
comprise:

• Feature diagram,
• Composition rules (relationships for optional and

alternative features),
• Issues and decisions (logical basis of features),
• System feature catalogue.

FODA feature models are the means to describe
mandatory, optional, and alternative properties of
concepts within a domain. The most significant part of a
feature model is the feature diagram that forms a tree
(graphical AND/OR hierarchical features) and captures

the relationships among features. The root of the tree
represents the concept being described and the remaining
nodes denote features and their sub-features. A feature is
mandatory unless an empty circle is attached to its node,
indicating an optional feature. An arc spanning two or
more edges of the feature nodes depicts a set of the
alternative features (see Table 1). Alternative features in
FODA are considered as specializations of a more general
feature (i.e. category). The term alternative feature
indicates that no more than one specialization can be
made for a system. The parent node of a feature node is
either the concept node or another feature or a sub-feature
node, respectively. Direct features of a concept and sub-
features (i.e., features having other features as their
parents) are distinguished. Direct features of a software
system may be mandatory, alternative, or optional with
respect to all applications within the domain. A sub-
feature may be mandatory, alternative, or optional with
respect to only the applications, which also enclose its
parent feature. If the parent of the feature is not included
in the description of the system, its direct and indirect
sub-features are unreachable. Reachable mandatory
features must be always included in every system
instance, while an optional feature may be included or
not, and an alternative feature replaces another feature
when included. In FODA, selected optional and
alternative features are highlighted in the feature diagram
for a specific system with the boxes around the name of
the selected feature.

External composition rules describe additional
dependencies between the features contained in a feature
diagram: the features may be described as “Mutual
exclusive With” or “Mandatory With” other features.
Supplementary information, such as the explanation of
the logical basis of the features (trade-offs, rationales), as
well as system feature catalogue (i.e., the register of
existing systems and their features), etc., are further parts
of the exterior feature definition.

2.3. Feature Diagram Notation in Generative
Programming (GP) and other methods

The most popular GP-feature diagram notation differs
in some details from the FODA notation and extends it
slightly (with Or-features) – see Table 1. Besides a “one-
of-many”-choice for the strong alternative group, there is
an additional kind of feature, so-called Or-features, i.e.,
an “n-of-many”- (nonempty) choice within an alternative
or-features group. In the GP-feature diagram notation,
each feature name is contained within a box. This makes
the presentation of selected options or alternative
branches for concrete systems (as in FODA) impossible.

In addition to the features listed above, in Table 1,
there are two further feature kinds used in GP [2]: open

features and premature features. The open features are
indicated by enclosing the feature name in brackets i.e.: [a
Feature]. The open feature is often an arbitrary extendible
XOR-Group. The premature features are marked with
partially dashed lines (at right and bottom) in the feature
name-box. Premature features may be used in situations
when the feature is premature, i.e., its use in the feature
diagram is still not sure and/or the sub-features of
premature features will be later modeled in detail.
Premature features are used also in situations when the
feature in the instance of the notion will be specified in
detail later.

The FORM method was developed upon the FODA
method by Kang et. al. [8]. In the notation the nodes
symbols are the same as in FODA, but all feature names
are depicted in boxes - as in GP. There is only strong
alternative available, as in FODA (see Table 1). The
differentiated feature relationships are composition and
generalization/ specialization, as also “Implemented By”.
The first two are available in other methods - composition
explicit, generalization and specialization (also implicit),
but the third one is new. “Implemented By” indicates, that
a feature is necessary to implement another feature [8].

In FeatuRSEB [4] the UML based notation is
introduced for creating feature graphs. The two types of
alternative (XOR and OR) are consonant with the
enhanced notion of RSEB-variation point. In RSEB [5]
the variation point was defined as a point, where a
variation may occur. The notion has been further
developed in FeatuRSEB and additionally précised in [2].
The binding time (see Section 2.4) maintained in FODA
and GP as external description has been integrated in
FeatuRSEB- feature model. In FeatuRSEB there are only
two possible binding time attributes for variation points:
reuse time (XOR) and use time (OR). The overview of
modeling features with UML is given in [11].

Jan Bosch uses another feature diagram notation. The
notation is as e.g. used in [13], and it is slightly different
than in FeatuRSEB (see Table 1). The symbols for the
feature nodes are the same as in FODA and feature names
are depicted in boxes as in GP. In alternative the empty
edges (as in GP) are presented by empty triangles (and
filled arcs - by filled triangles) – see Table 1. The external
features are introduced as a novel construct. The
indication of the binding time is not new, but in
comparison to FeatuRSEB more binding times are
possible (e.g., compile time).

There are also some further significant extensions to
feature diagram notation (not included in Table 1), such
as the description of the feature cardinalities, and also
arrows indicating the feature associations introduced by
Hein et al. [6].

2.4. Information associated with a feature

There is some further descriptive information
associated with each concept or feature, such as:

• Semantic descriptions (e.g., models in
appropriate formalisms, traceability links),

• Category of feature: concrete, abstract, aspect,
etc.

• Rationale (reasons and trade-offs in choosing a
feature),

• Stakeholder and client programs (interested in
the feature),

• Responsible people/organizations demand (for
the feature),

• Exemplar systems (including the feature),
• Constraints and default dependency rules (hard

constraints: excludes and requires; weak
constraints: default values),

• Binding times, availability sites, binding sites
(when, where, by whom the feature is
available/may be bound),

• Binding modes (e.g., static, dynamic, reversible),
• Open/closed attribute (extensible/non-extensible

alternative features’ group),
• Priority (relevance to the project).

It is not required to attach all possible information
(which may include much more items than described
above) to the portrayed features. Which information
should be attached to the feature depends on the concrete
domain, the project and the stakeholders.

The optional features as well as the features included
within the alternative and strict alternative groups are
referred to as the variable features. The most relevant
information for managing variability purposes is the
binding time for the variable features.

2.5. Use of Feature Weights for Variable Features

Each variable feature in a feature diagram may be
annotated with a weight symbolizing, e.g., a priority of
the variant. There are situations in which it is meaningful
to annotate variable features with priorities:

• Domain scoping and domain definition
(typicality rates of variable features based on the
analysis of known exemplar systems and the target
application areas),

• Feature modeling within domain analysis
(features’ relevance to the project),

• Domain implementation scoping (decisions
about which features will be implemented first).

Eisenecker, et al. give an example on the use of
priorities for features - not in the feature diagram but
within a table containing necessary additional information

Table 1. Comparison of feature diagram notations.

for each considered feature [3]. The priorities signify
features as very important (++), important (+), less
important (-) and minor (--).

Identical feature sets may be prioritized in different
ways for specific customer groups. The principle how
some variable features may be described on the basis of
fuzzy logic is introduced and discussed in [12].

3. Feature types and relationships
Table 1 contains a comparison of feature types for

significant feature modeling methods as:
• FODA,
• FORM,
• Generative Programming (GP),
• FeatuRSEB, and
• Jan Bosch’s notation.

In Table 1 the following feature node types are
distinguished:

• Mandatory (all methods),
• Optional (all methods),

Premature Feature----Prema-
ture

Open
Feature

----Open-
feature

[aFeature]

External
Feature

External
feature

-

Altern
a-tive
f.

Optio-
nal f.

Manda
-tory f.

J. Bosch

n-of-many
choice from

a group

or-
specia-
lization

Vp-f.
use time
bound
(OR)

Or-
features

One-of-many
choice from

a group

xor-
speciali-
zation

Vp-
feature
(XOR)

Alterna-
tive

Alterna-
tive

Optional
(if reachable, may be
chosen, or not)

Optio-
nal f.

Optio-
nal f.

Optio-
nal

Optio-
nal

Mandatory
(if reachable, then f.
must be chosen)

Compo-
sition

Compo-
sed of

Manda-
tory

Manda-
tory

MEANINGFeatu-RSEBGPFORMFODA

Premature Feature----Prema-
ture

Open
Feature

----Open-
feature

[aFeature]

External
Feature

External
feature

-

Altern
a-tive
f.

Optio-
nal f.

Manda
-tory f.

J. Bosch

n-of-many
choice from

a group

or-
specia-
lization

Vp-f.
use time
bound
(OR)

Or-
features

One-of-many
choice from

a group

xor-
speciali-
zation

Vp-
feature
(XOR)

Alterna-
tive

Alterna-
tive

Optional
(if reachable, may be
chosen, or not)

Optio-
nal f.

Optio-
nal f.

Optio-
nal

Optio-
nal

Mandatory
(if reachable, then f.
must be chosen)

Compo-
sition

Compo-
sed of

Manda-
tory

Manda-
tory

MEANINGFeatu-RSEBGPFORMFODA

• Alternative (in all methods),
• OR-Features (GP only); (also FeatuRSEB and

Jan Bosch’s notation - see below).
In addition, in FeatuRSEB there are two feature types

described as “variation points”:
• Variation point (OR) and
• Variation point (XOR).

These are not “new” feature types, different than listed
above, but are merely describing the fact, that they are
parent of the alternative features (XOR) or OR-features
(OR). The only difference is that first mentioned -
variation point (OR)- is also “use time bound” in
FeatuRSEB. The binding time information constrained to
this one time (i.e., use time) is not sufficient, because
there are many other times, to which the feature may be
bound. This kind of information is described in section
2.4 as additional information contained within the feature
model.

In Jan Bosch’s notation the OR-specialization and
XOR- specialization are the same as OR-features (OR-
specialization) and the strong alternative (XOR-
specialization) respectively. Jan Bosch has introduced a
new kind, so called “external feature” (that may also be
implemented by external features). This kind of feature

does not fit into the usual classification (listed above),
where an alternative, or optional feature may also be an
external feature.

The basic relationships between the features are:
• Generalization/ Specialization (all methods)
• Aggregation (Composition) (in all methods)
• “Implemented By” (FORM only)
• Required and Mutex – described in external

composition rules.
“Implemented By” (only in FORM) means that a feature
is necessary to implement another feature. This kind of
information is described as “required “ relationship in
FODA and other methods.

4. Conclusion

Specific requirements define the set of conditions or
capabilities that must be met by the system or a system
component to satisfy a contract, standard or other
formally imposed document or description. A conceptual
characteristic (e.g., system, component, etc.,) is a feature
visible to the stakeholder (e.g., users, customers,
developers, managers, etc.) and which is used to describe
and distinguish system family members. Some features
relate to characteristics visible to the end-user, while
others relate more to the structure of a system and system
capabilities, including also non-functional requirements.

 The feature model indicates the intention of the
described concept. The set of instances described by a
feature model is the extension of the concept. The
features are not equal objects - one feature may be part of
(different) objects, as also another feature may cover
several objects introducing crosscutting aspects into
software artifacts.

There is no standard notation for feature diagrams
available, the composition rules are maintained separately
from the feature diagram. In the paper the most known
notations have been compared, and feature types and
relationships presented. The presented notations differ
only slightly from each other. The basic relationships
between the features contained in all methods, such as
generalization and specialization, and aggregation
(composition), make modeling features with UML-means
possible.

5. References

[1] J. Bosch, Design and Use of Software Architectures.
Adopting and evolving product-line approach. Addison-
Wesley, New York, 2000.

 [2] K. Czarnecki, and U. Eisenecker, Generative Programming:
Methods, Tools and Applications. Addison-Wesley, New York,
2000.

[3] U. Eisenecker, M,. Selbing, , F. Blinn, and K. Czarnecki,
Merkmalsmodellierung für Softwarefamilien. In
OBJEKTspektrum September/Oktober, München 2001, pp. 23-
30. – in german language.

[4] M.L. Griss, J. Favaro, M. D’Alessandro, Integrating
Feature Modeling with the RSEB. In Proceedings of ICSR98,
Victoria, BC, IEEE, June 1998. pp. 36-44.

[5] I. Jacobson, M.L. Griss, P. Jonnson, Software Reuse:
Architecture, Process and Organization for Business Success.
Addison –Wesley Longman, New York, 1997.

[6] A. Hein A., M. Schlick and R. Vinga-Martins, Applying
Feature Models in Industrial Settings, In Proceedings of the
First Software Product Line Conference (SPLC1), Denver
Colorado August 2000 (P. Donohoe, Ed.). – Massachusetts: The
Kluwer International Series in Engineering and Computer
Science. pp. 47-70.

[7] K. Kang, S. Cohen, J. Hess, W. Nowak and S. Peterson,
Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report No. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh,
1990. Pennsylvania.

[8] K.C. Kang et al., FORM: a feature-oriented reuse method
within a domain-specific architectures. In Annals of Software
Engineering, V5, 1998. pp. 354-355.

[9] K. Lee, K.C. Kang, W. Chae, and B.W. Choi, Feature-
Based Approach to Object-Oriented Engineering of
Applications for Reuse. In Software: Practice and Experience,
Vol. 30, Issue 9, 2000 pp. 1025-1046.

[10] Object Management Group, Unified Modeling Language
(UML) Specification version 1.3, June 1999.
http://www.rational.com/uml/resources/documentation/.

[11] S. Robak, Framework for Comparison of Modeling
Features in UML. Feature Modeling Workshop. In conjunction
with Generative And Component-Based Software Engineering
GCSE’2001, Erfurt 2001.

[12] S. Robak and A. Pieczynski, Employing Fuzzy Logic in
Feature Diagrams to Model Software Product Lines Variability,
In Proceedings of the 10th IEEE Conference on ECBS 2003,
Model-based Development Session and Workshop, Huntsville,
Alabama USA – to be printed.

[13] M. Svahnberg, J. Bosch and J. v Gurp, On the Notion of
Variability in Software Product Lines. Landelijk Architectuur
Congres 2000.

Variability in Multiple-View Models of Software Product Lines

 Hassan Gomaa Michael Eonsuk Shin
 Dept. of Information and Software Engineering Dept. of Computer Science
 George Mason University Texas Tech University
 Fairfax, VA 22030-4444 Lubbock, TX 79409-3104
 hgomaa@gmu.edu Michael.Shin@coe.ttu.edu

Abstract

This paper describes how variability is handled in
multiple-view models of software product lines, which are
depicted using the Unified Modeling Language notation
(UML). A multiple-view model for a software product line
is an object-oriented domain model which defines the
different aspects of a software product line, namely the
use case model, static model, collaboration model,
statechart model, and feature model, including the
commonality and variability. The relationships between
the different views are described. The integration of
multiple views is achieved by considering relationships
among the views in a multiple view meta-model, so that
consistency between multiple views is maintained as the
multiple-view model evolves. Finally, tool support for the
approach is described.

1. Introduction

Several domain engineering methods [1, 2, 8, 11, 12,
13, 14, 17, 19] address modeling commonality and
variability in a software product line. Previous papers [5,
6] described how multiple views of software product lines
could be modeled using the UML notation [3, 4, 16]. This
paper extends the multiple view modeling approach by
describing how the different views and variability in
those views relate to each other, the underlying meta-
model of the multiple views, and tool support for the
multiple view modeling approach.

Multiple view modeling of software product lines face
greater challenges than single systems, namely how to
model commonality and variability. Furthermore, it is
important to define how the multiple views relate to each
other, for example how variability in one view of the
product line relates to variability in a different view. This
paper describes the multiple views of software product
lines developed using an object-oriented UML based
domain modeling method.

A multiple-view model captures different aspects of a
software product line, for functional modeling, static
modeling, and dynamic modeling. Using the UML
notation, the functional view is represented through a use
case model in the requirements phase, a static model view

through a class model, and a dynamic model view
through a collaboration model and a statechart model.
While these views address both single systems and
product lines, there is, in addition, a feature model view,
which specifically addresses modeling variability in
software product lines. In order to explicitly define the
relationships among the multiple views, the paper
describes the underlying meta-model of the multiple
views.

2. Variability in Multiple-View Model
Approach of Software Product Lines

A multiple-view model for a software product line defines
the different characteristics of a software family [21],
including the commonality and variability among the
members of the family. A multiple-view model is
represented using the UML notation [4] through the use
case model, static model, collaboration model, statechart
model and feature model views.

For software product lines, it is important to address
how variability is modeled in each of the different views.
A multiple-view model is modified at specific locations
referred to as variation points, which is addressed by

- Variation points in a use case model [11]
- Abstract classes and hot spots [15] in a static model
- Feature modeling [12] and feature dependencies [5]

in a feature model
These software reuse concepts are used to deal with

variability in the multiple-view model. In addition,
alternative decision concepts from single systems are
used to model product line variability in collaboration
models and statechart models of a software product line:

- Alternative branches and message sequences in a
collaboration model [4], which are only enabled if an
optional or variant feature is selected.

- Alternative branches and state transitions in a
statechart model [10], which are only enabled if an
optional or variant feature is selected.

It is important for the multiple views of software
product lines to be consistent with each other. In addition,
it is essential that as one view is modified at a variation
point, the other views are also modified at their variation
points so that consistency is maintained.

2.1. Variation Points in Use Case Models

The functional requirements of a system are defined in
terms of use cases and actors [11]. An actor is a user type.
A use case describes the sequence of interactions between
the actor and the system, considered as a black box.

In order to capture the commonality and variability of
a software product line, use cases are categorized as a
kernel, optional or variant use cases. Kernel use cases are
those use cases required by all members of the product
line. Optional use cases are those use cases required by
some but not all members of the product line. Some use
cases may be variant, that is different versions of the use
case are required by different members of the product
line. The variant use cases are often mutually exclusive
[5]. The use case categorization is depicted using the
UML stereotype notation, e.g., <<kernel>>.

Variability in a use case model can take place within a
use case at variation points [11], which are one or more
locations at which a change in a use case could occur. For
a use case model, a use case may extend or include
another use case at a variation point. The “extend”
relationship models a variation of requirements through
alternative paths that a base use case might take if
appropriate conditions hold. In the extend relationship,
the variation point is called an extension point [16]. The
“include” relationship models the variation by reusing a
common use case used by several other use cases. To
model use case variability in product lines, the concept of
a feature condition is introduced, which is used to
represent an optional feature of the product line. For a
given member of the product line, the feature condition is
true if the feature is selected.

Fig. 1 depicts variation points of the Move Part to
WorkStation use case in the factory automation product
line [5]. In this example, Move Part to WorkStation use
case is a kernel use case. Store and Retrieve Part is an
optional use case, which extends the kernel use case if the
feature condition [system has storage] is true. If system
has storage (that is, the feature condition is true), Store
and Retrieve Part extends the Move Part to WorkStation
use case at extension points -- Store Part and Retrieve
Part.

2.2. Alternative Message Sequences in
Collaboration Models

In software product lines, once the use cases have been
determined and categorized as kernel, optional, or variant,
the collaboration diagrams can be developed [5, 6].
Objects in a product line collaboration model can be
categorized according to two orthogonal perspectives, the
product line perspective and the application perspective
such as <<optional, coordinator>>. As with product line
use cases, an object can be categorized as a kernel,

optional or variant object to describe commonality and
variability of objects in product lines. From an application
perspective, an object is categorized depending on the
role it plays such as control, algorithm, entity, or
interface.

Variability in a collaboration model can be depicted by
using an alternative message sequence, which represents a
conditional path consisting of objects and messages. A
use case can extend a base use case under certain
conditions. This change in the use case model requires a
change in the corresponding collaboration model through
an alternative message sequence. Execution of the
alternative sequence is guarded by a feature condition.

Fig. 2 depicts a collaboration model for the Move Part
to Workstation use case. This diagram shows the system
with and without an automated storage and retrieval
system. If the system does not have a storage capability,
there are four kernel objects involved in the collaboration
and one external object. The base message sequence (B1
to B5) depicts the interactions among these objects.

If the system does have a storage capability,
corresponding to the Store and Retrieve Part optional use
case, optional objects Automated Store and Retrieval
System (ASRS) Handler and ASRS Forklift Truck (shaded
in gray) are added to the system. The feature condition
[system has storage] is used to identify if the system has
storage. If the feature condition is true, i.e., the specific
product line member supports this feature, then the
branch on the collaboration diagram, which is guarded by
the feature condition, can be taken.

M ove P art to
W o rk station

exte nsio n po ints
re trieve p art,

s to re part

S to re an d
R etrieve Part

«extend »

[Sy stem ha s sto ra g e]

«ke rn e l»

«o p tio nal»

Fig. 1. Variation Points in the Move Part to

WorkStation use case

2.3. Alternative State Transitions in Statechart
Models

A statechart [10] is developed for each state dependent
object in the collaboration model, including kernel,
optional, and variant objects. Each state dependent object
in a collaboration diagram is specified by means of a
statechart. Since there can be variants of a control object,
each variant is modeled using its own statechart.

Variability in statechart models is represented through
an alternative state transition point at which an alternative
state transition is triggered if the appropriate condition is
satisfied. Each statechart diagram describes each state
dependent use case whose corresponding collaboration

diagram contains state dependent control objects. As a
state dependent use case evolves, the corresponding
statechart model can capture the change in use case
behavior by using an alternative state transition.

Fig. 3 depicts a statechart model for Part Agent with
Storage object in Move Part to Workstation use case, in
which alternative state transitions are shaded in gray. If
the system has storage (that is, a feature condition is true),
then a transition could be made to these states (providing
other events and conditions are satisfied). This feature
condition corresponds to those depicted on Figs. 1 and 2.

<<kernel,
control>>

:Flexible Workstation
Controller

<<variant,
control>>

:Part Agent
with Storage

<<kernel,
coordinator>>

:AGV Dispatcher

A10, B3:
Part Arrived

A11, B4: Part Arrived

<<optional,
coordinator>>

:ASRS Handler

A1 [System has storage]:
Retrieve Part

A9 ASRS Stand
Available

A2: Retrieve Part A3: Part Retrieved

A4: Part Retrieved

A12, B5:
Part Placed
on Input Stand

A7: Part Removed
From ASRS

A6, B2:
Move Part

A5:
Move Part

A8: Part Off ASRS Stand

B1:
Move Part

<<kernel,
algorithm>>

:Part Scheduler

A0, B0:WS Available

<<external system>>
:ASRS

Forklift Truck
<<external system>>

:AGV

Fig. 2. An alternative message sequence in a
collaboration model for move part to workstation use

case

Unfinished
Part

Operation Info/
Check WS

Part Moving
to Workstation

B0: WS Available[Part is Available on Output Stand]/
B1: Move Part

Part Arrived/
Part Placed on Input Stand

Waiting for Available
Workstation

WS Unavailable

WS Available[Part is Available on Output Stand]/
B1: Move Part

Part Retrieving

A4: Part Retrieved/
A5: Move Part

Part at
ASRS Stand

A0: WS Available [System Has Storage &
Part is Unavailable on Output Stand]/

A1: Retrieve Part

WS Available [System Has Storage &
Part is Unavailable on Output Stand]/

A1: Retrieve Part

A8: Part Off ASRS Stand/
A9: ASRS Stand Available

Fig. 3. An alternative state transition in a statechart

model for part agent with storage

2.4. Abstract Classes and Hot Spots in Static
Models

Variability in class models can be addressed through
abstract classes and hot spots [15]. An abstract class is a
class with no instance because it declares at least one
abstract operation. Each subclass of the same abstract

class can have a different implementation of the abstract
operation. A hot spot is a place where class adaptation
takes place. Some operations of classes can be
implemented or replaced by the subclasses using the
inheritance mechanism. Such operations are called hot
spots, which provide the flexibility that makes class
models capable of evolving.

Fig. 4 depicts a hot spot in Part Agent for flexible
manufacturing systems. Flexible manufacturing systems
can be extended to flexible manufacturing with storage
systems. The Part Agent class in flexible manufacturing
systems provides an operation, receiveWorkstationStatus
(in workstationStatus), for the Part Agent with Storage
class in flexible manufacturing with storage systems. This
operation is a hot spot that is modified in Part Agent with
Storage class to handle storing a part in the ASRS and
retrieving it from storage.

«kernel, control»
Part Agent

«variant, control»
Part Agent with Storage

startPart()
receivePartComplete(in partComplete)
receiveWorkstationStatus(in workstationStatus) {hot spot}
receivePartArrived(in partArrived)
receiveOffOutputStand(in offOutputStand)

receiveWorkstationStatus(in workstationStatus) {modified}
receivePartOffASRSStand(in partOffASRSStand) {extended}
receivePartRetrieved(in partRetrieved) {extended}
receivePartStored(in partStored) {extended}

[System has storage]

Fig. 4. A hot spot in part agent class

2.5. Feature Dependencies in Feature Models

A feature [12] is an end-user functional requirement,
which is used to identify reusable requirements of a
software product line [9]. A feature is categorized as a
kernel, optional, or variant feature to capture
commonality and variability of a software product line.

Variability in feature models [5] can be captured
through dependencies among features. Each feature is
supported by one or more use cases. In an evolution of
the use case model, an alternative use case can extend a
base use case under certain conditions. The use case
dependency corresponds to a dependency between the
features. Each feature is also supported by one or more
classes. As a class model evolves at a hot spot, one class
can be specialized from another class where the two
classes support different features, respectively. This
relationship between the two classes corresponds to a
dependency between these two features.

Fig. 5 depicts a feature dependency based on a class
relationship. The Flexible Manufacturing kernel feature is
supported by the classes Part Scheduler, Part Agent,

Flexible Workstation Controller, and AGV Dispatcher.
The Store and Retrieve optional feature is supported by
the classes ASRS Handler and Part Agent with Storage.
The feature dependency between the features is reflected
in the inheritance dependency between the Part Agent
with Storage and Part Agent classes.

«kernel,
algorithm»

Part
Scheduler

«kernel,
control»

Part Agent

1..*Sends Part To1Check WS 11

«optional,
coordinator»

ASRS
Handler

«kernel,
coordinator »

AGV
Dispatcher

Moves Part

1

1

Requests
Parts From 11

«kernel feature»
Flexible

Manufacturing

«optional feature»
Store and Retrieve

«kernel, control»
Flexible

Workstation
Controller

«variant,
control»

Part Agent
with Storage

[System has storage]
[System has storage]

Fig. 5. A feature dependency based on class

relationship

3. Multiple-View Meta-Model of Software
Product Lines

A multiple-view meta-model describes how a product
line view relates semantically to other views, which were
informally described in the previous section. A meta-
model is a model that defines the meta-classes, their
attributes, and relationships for each view of the multiple-
view model. A software product line development phase
can contain several views, each of which is decomposed
into meta-classes. A user-defined multiple-view model is
an instance of the meta-model. A multiple-view meta-
model is represented using a class diagram in the UML
notation.

Fig. 6 depicts the underlying relationships among
multiple views in the development phases of a software
product line. The views in each phase are:

Requirements Modeling phase:
- Use case model: This model presents the functional

requirements of a multiple-view model in terms of
actors and use cases.

Analysis Modeling phase:
- Class model: This model addresses the static

structural aspects of a multiple-view model through
classes.

- Statechart model: This model captures the dynamic
aspects of a multiple-view model by describing
states and transitions.

- Collaboration model: This model addresses the
dynamic aspects of a multiple-view model by
describing objects and their message
communication.

- Feature model: This model captures the
commonality and variability of a software product
line by means of features and their dependencies.

 Design Modeling phase:
- Consolidated collaboration model: This model

synthesizes all the collaboration diagrams developed
for the use cases.

- Subsystem architecture model: Based on the
consolidated collaboration model, this model
addresses the structural relationships between
subsystems.

- Task architecture model: This model addresses the
subsystems decomposition into tasks (active
objects) and passive objects.

- Refined class model: This model addresses the
design of classes by determining the operations and
attributes of each class.

<<view>>
Use Case

Model

<<view>>
Class
Model

<<view>>
Statechart

Model

<<view>>
Collaboration

Model

Instantiated from

Realized by

Generates events for

<<view>>
Refined Class

Model

<<view>>
Consolidated

Collaboration
Model

<<view>>
Subsystem
Architecture

Model

<<view>>
Task

Architecture
Model

Refined to Integrated
into

Instantiates
objects for Decomposed into Abstracted into

Mapped to

<<phase>>
Design

Modeling

<<phase>>
Analysis
Modeling

<<phase>>
Requirements

Modeling

Generates actions and activities for

<<view>>
Feature
Model

Supported by

Supported by

Behavior
described by

Behavior described by

Maps to

Maps to

Equivalent to

Fig. 6. High-level relationships between multiple views

for a software product line

Each of the multiple views has relationships with
other views within the same phase, part of which is as
follows:
- The behavior of an object in the collaboration model

is described by a statechart diagram in the statechart
model.

- The statechart model generates actions and activities
for the collaboration model.

- The collaboration model generates events for the
statechart model.

- A feature in the feature model is supported by
classes in the class model. For example, the Flexible
Manufacturing feature (Fig. 5) is supported by four
kernel classes. As the system has storage, the
Storage and Retrieve feature (Fig. 5) is supported

by the classes ASRS Handler and Part Agent with
Storage.

A view has relationships with another view in different
phases, part of which is as follows:

- A use case in the use case model is realized by one
or more collaboration diagrams in the collaboration
model.

- The state dependent behavior of a use case in the
use case model is described by a statechart diagram
in the statechart model.

- A feature in the feature model is supported by use
cases in the use case model.

- If there is a use case dependency between two use
cases that support two different features
respectively, the use case dependency between the
use cases maps to a feature dependency between the
two features.

Each view in Fig.6 is decomposed into meta-classes.
The meta-model for the each view and its meta-class
attributes are described in [18, 20].

Consistency checking rules are defined based on the
relationships among meta-classes in the meta-model. The
rules resolve inconsistencies between multiple views in
the same phase or in different phases, and define
allowable mapping between multiple views in different
phases. To maintain consistency in the multiple-view
model, rules defined at the meta-level must be observed at
the multiple-view model level. Consistency checking is
used to determine whether the multiple-view model
follows the rules defined in the multiple-view meta-
model.

As an example of consistency checking, there is a
relationship between Class in the class model and Feature
in the feature model (Fig. 6), which is “each optional
class in the class model supports only one optional feature
in the feature model.” The optional class “Part Agent with
Storage” supports the optional feature “Store and
Retrieve” in the multiple-view model (Fig. 5) where “Part
Agent with Storage” class and “Store and Retrieve”
feature are respectively instances of Class and Feature
meta-classes in the multiple-view meta-model. For the
multiple-view model to remain consistent, this meta-level
relationship must be maintained between instances of
those meta-classes, that is, “Part Agent with Storage”
class and “Store and Retrieve” feature. Consistency
checking confirms that each optional class in the class
model supports only one optional feature in the feature
model.

4. Tool Support for Multiple-View Modeling
Approach

In order to support the multiple-view meta-modeling
approach, a proof-of-concept prototype, the Product Line
UML Based Software Engineering Environment
(PLUSEE) has been developed, which built on experience
gained in previous research [7, 8]. A domain model
addressing the multiple views of a software product line
is developed and checked for consistency among the
multiple views.

There are two different versions of the PLUSEE
prototype, using Rational Rose and Rational Rose RT
CASE Tools respectively as the interface to this
prototype. Fig. 7 depicts this proof-of-concept prototype.
A domain engineer captures a multiple-view domain
model consisting of use case, collaboration, class,
statechart, and feature models through the Rose tools,
which save the model information in a Rose MDL file.
From this MDL file, the domain model relations extractor
extracts domain relations, which correspond to the meta-
classes in the meta-model. Through the domain relations
extractor, a multiple-view model maps to domain model
relational tables. Using these tables, the consistency
checker checks for consistency of the multiple-view
model by executing the consistency checking rules
described in Section 4. After the domain engineer has
produced a consistent multiple-view model, an executable
model is developed using Rose Real-Time. The Rose RT
executable model is based on message communication
between active classes, which execute statecharts.

Use Case Model

Collaboration
Diagram

Class Diagram

0..*

Statechart Diagram

Event/ Action

State 1

State 2

Class 1 Class 2

Object 1 Object 2

Association

Message

Use Case

Rational
Rose S/W

Domain Model
Relations

Classes

Aggregate Class

Use Case
-

Rose
MDL
File for
Domain

Domain
Model
Relations
Extractor

Domain Model
Consistency
Checker

Domain
Engineer

Feature Model

Feature1
Feature2

Domain Model
Executable
Components
(Rose RT only)

1

Fig. 7. Product Line UML Based Software

Engineering Environment (PLUSEE)

5. Conclusions

This paper has described how variability is handled in
a multiple-view modeling approach for software product
lines. The approach integrates the multiple views by
defining relationships among the different views using a
multiple-view meta-model. To support this approach, a
proof-of concept tool was developed.

The meta-model depicts life cycle phases, views
within each phase, and meta-classes within each view.
The relationships between the different views are
described. Consistency checking rules are defined based
on the relationships among meta-classes in the meta-
model.

An important advantage of the multiple-view modeling
approach is that it permits the evolution of software
product lines by explicitly modeling the variation points
in each view where evolution can take place and by
defining the relationships between these variation points.

References

[1] Atkinson, C., Bayer, J., Muthig, D., Component-
Based Product Line Development: The KobrA Approach,
Proceedings, 1st International Software Product Line
Conference, 2000.

[2] Colin Atkinson, Joachim Bayer, and Oliver
Laitenberger and Jorg Zettel, “Component-Based
Software Engineering: The KobrA Approach,” ICSE
Software Product Line Workshop, 2000.

[3] G. Booch, J. Rumbaugh, I. Jacobson, “The Unified
Modeling Language User Guide”, Addison Wesley,
Reading MA, 1999.

[4] H. Gomaa, “Designing Concurrent, Distributed, and
Real-Time Applications with UML,” Addison-Wesley,
2000.

[5] H. Gomaa, “Object Oriented Analysis and Modeling
for Families of Systems with the UML,” Proc.
International Conference on Software Reuse, Vienna,
Austria, June 2000.

[6] H. Gomaa, “Modeling Software Product Lines with
UML”, Proc. Software Product Lines Workshop,
International Conference on Software Engineering,
Toronto, Canada, May 2001.

[7] H. Gomaa, L. Kerschberg, V. Sugumaran, C. Bosch,
and I Tavakoli, "A Knowledge-Based Software
Engineering Environment for Reusable Software
Requirements and Architectures," J. Automated Software
Engineering, Vol. 3, Nos. 3/4, August 1996.

[8] H. Gomaa and G.A. Farrukh, “Methods and Tools for
the Automated Configuration of Distributed Applications
from Reusable Software Architectures and Components”,
IEE Proceedings – Software, Vol. 146, No. 6, December
1999

[9] M. Griss, J. Favaro, M. D’Alessandro, “Integrating
Feature Modeling with the RSEB”, Proc. International
Conference on Software Reuse, Victoria, June 1998.

[10] Harel, D. and E. Gary, “Executable Object Modeling
with Statecharts”, Proc. 18th International Conference on
Software Engineering, Berlin, March 1996.

[11] I. Jacobson et al., “Software Reuse: Architecture,
Process and Organization for Business Success,” Addison
Wesley, 1997.

[12] K. C. Kang et. al., “Feature-Oriented Domain
Analysis,” Technical Report No. CMU/SEI-90-TR-21,
Software Engineering Institute, November 1990.

[13] B. Keepence, M. Mannion, “Using Patterns to Model
Variability in Product Families”, IEEE Software, July
1999.

[14] Maurizio Morisio, Guilherme H. Travassos, and
Michael E. Start, “Extending UML to Support Domain
Analysis,” Proceedings of the Fifteenth IEEE
International Conference on Automated Software
Engineering (ASE'00), Grenoble, France, 11-15
September, 2000.

[15] Wolfgang Pree, ”Design Patterns for Object-
Oriented Software Development,” Addison-Wesley,
1995.

[16] J. Rumbaugh, G. Booch, I. Jacobson, “The Unified
Modeling Language Reference Manual,” Addison
Wesley, Reading MA, 1999.

[17] Software Engineering Institute, “A Framework for
Software Product Line Practice – Version 3,”
http://www.sei.cmu.edu/plp/, Carnegie Mellon
University, 2000.

[18] Hassan Gomaa and Michael E. Shin, “Multiple-View
Meta-Modeling of Software Product Lines” the Eighth
IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2002), Maryland,
December, 2002.
[19] David M Weiss and Chi Tau Robert Lai, “Software
Product-Line Engineering: A Family-Based Software
Development Process,” Addison Wesley, 1999.

[20] Michael Eonsuk Shin, “Evolution in Multiple-View
Models in Software Product Families,” Ph.D. dissertation,
George Mason University, Fairfax, VA, 2002.

[21] Parnas D., "Designing Software for Ease of
Extension and Contraction", IEEE Transactions on
Software Engineering, March 1979.

69

Managing Knowledge about Variability Mechanism in Software Product Families

Kannan Mohan and Balasubramaniam Ramesh
Department of Computer Information Systems

J. Mack Robinson College of Business
Georgia State University

kmohan@cis.gsu.edu, bramesh@gsu.edu

Abstract

Effective design of product platform architecture is a

prerequisite for a flexible product family development. In
platform designs, managing points of variability is critical
to facilitate effective proliferation of product variety.
Selecting an appropriate mechanism to incorporate
variation points is considered to be crucial in achieving
the capability of the product platform to change
depending on variability needs. We suggest that the
capture of structured knowledge about the selection and
use of variability implementation mechanisms to handle
different types of variability would play a key role in
guiding further variability implementation. We discuss
the use of a knowledge management system that can be
used to capture variability mechanism related knowledge.
Using scenarios from a case study, we illustrate the use of
this system in capturing structured knowledge about
variability scenarios, specifically describing the choice of
the variability implementation mechanism.

1. Introduction
Customers expect products to be specifically tailored

to suit to their needs and at no extra cost. Product family
engineering facilitates proliferation of variety by
exploiting the commonality and variability among the
variety of products demanded by the customers in a
particular domain [1]. Flexible design and development
of product families highly depend on effective variability
management. Product variety can be achieved by careful
design and development of a flexible product platform
and then plugging in different components depending on
the customer-specific requirements. Variation points are
incorporated into these product platforms so as to delay
design decisions to later phases of the development life
cycle. These design decisions ultimately depend on
variable requirements. Selecting an appropriate
mechanism to incorporate such variation points is

considered to be crucial in achieving variety in the
product family. Svahnberg et al. [2] warn that many
factors affect the introduction of variability into a
software product family. Here, we propose the use of a
knowledge management system to capture structured
knowledge related to variability mechanism selection and
implementation. We argue that such a capture would
facilitate effective mechanism selection for future
variability scenarios.

2. Software Product Families
A product family is a set of products that share

certain common aspects and have predicted variabilities.
A software product family is defined as a set of software-
intensive systems sharing a common, managed set of
features that satisfy specific needs of a particular market
segment or mission [3]. Products are clustered as a family
based on their commonality, as it is easier to analyze,
design and manage the family as a related set of elements
rather than concentrating on each member of the family
separately [4].

2.1. Variability
Variability refers to the ability of the system to

change depending on customer specific requirements.
Variation points are specific locations in design artifacts
where the behavior of the system can be changed [5]. It is
defined using differentiation index, which measures
where differentiation occurs within the process flow [6].
Coplien et al. [7] describe variability as an assumption
that is true for some elements in a set of objects, or an
attribute with different values for at least two different
elements from the set of objects. Identification of the
points of variability is crucial in proliferating variety from
a single service platform. These variations are triggered
by customer-specific requirements that could indicate
changes in the environment or lead to algorithmic changes
in the domain [8]. Bachmann et al. [9] argue that the
existence of a collection of alternatives that provide a list

70

of potential solutions to the development team, is a cause
for variability. Feature-based recognition of variability,
proposed by Lee et al [8], suggests that variability should
be analyzed in terms of product/service features. Since it
is highly difficult to elicit all variable requirements
completely from the customer, the platform should be
designed in such a manner so as to accommodate changes
necessitated by evolving requirements. The use of
appropriate variability mechanism plays a crucial role in
effective application engineering.

3. Implementing Variability in Product
Families

Process-oriented issues associated with the design
and development of product families play a key role in
addressing variability concerns. Cugola et al. [4] argue
that following a process that lends itself to the
anticipation and identification of all possible family
members during the early phases of the development life
cycle would be an ideal method for product family
development. A wide variety of possible options for
finishing the development of a family of products
demands the capture of changes that have been planned
and those that have been anticipated [9]. Bachmann et al.
[9] categorize and describe variability at the architectural
level, and prescribe architectural solutions for the various
types of variations. Keepence et al. [10] provide a
pattern-oriented solution to model variability in product
families. They suggest the use of design patterns to
model discriminants.

3.1. Variability Realization Mechanisms
Past research has discussed the use of a variety of

mechanisms to realize variability. Anastasopoulos and
Gacek [11] identify various implementation approaches
and discuss the problems and advantages in using these
approaches. They enumerate the use of common object-
oriented techniques like aggregation and inheritance, and
other techniques like dynamic link libraries and
conditional compilation, in handling variability. They
emphasize that identifying a suitable approach is a critical
issue in implementing variability.

Svahnberg et al. [2] have emphasized the importance
of the suitability of variability mechanism to a specific
variation need. They advance a taxonomy of variability
realization techniques. They describe the various factors
that need consideration in the process of choosing an
appropriate mechanism. Here we propose a model that
structures the knowledge related to variability

implementation mechanism. Also, we illustrate the
instantiation of this model in our prototype system for
specific scenarios from a case study.

4. Knowledge Support for Variability
Mechanism Selection

Through a case study, we have developed a model
that identifies certain factors that play a critical role in the
choice of variability mechanism and how they are related
to each other. We argue that when a developer is in the
process of selecting a variability mechanism, these factors
can be used to guide him/her in documenting the various
aspects related to the choice of mechanism. Such
documentation can be used to provide with heuristics in
selection of mechanisms for future variability scenarios.

The knowledge model that represents the various
elements related to variability mechanism selection is
shown in Figure 1. Variability, which is the capability of
our system to handle changes depending on customer-
specific requirements, is driven by the feature model.
Such variability is implemented by specific variability
realization mechanisms. Use of specific mechanism is
constrained by factors like support provided by the
programming language to be used and performance.

We have developed a knowledge management
system to support the process of variability realization
mechanism selection. This system supports capture and
use of knowledge structured according to the model
shown in Figure 1. In the sections below, we describe the
capabilities of the prototype system and illustrate its use
in a specific scenario drawn from our case study.

4.1. Illustrating the Use of our KMS
The knowledge management system can be used by

designers to document the use of realization mechanisms
to implement variability. The underlying model that is
used to structure the knowledge capture can be tailored
according to project specific needs. Here, we use an
example from a case study to illustrate the capture of
knowledge related to variability mechanism selection.
We have conducted a case study with an organization that
is involved in the development of a family of warehouse
management systems. Figure 2 shows a specific scenario
associated with the selection of a design pattern, viz., the
strategy pattern to be used to realize the variability in
material handling. Since the model underlying the
knowledge capture can be tailored, we can also represent
a feature model and link specific features to variability
mechanisms used.

71

Variability
Mechanism

Feature
Model supports

Feature Type

Variability

Variability Type
Binding Time

Degree of Variation

Binding design
element

Status

implements Constraintdepends on

Figure 1: Conceptual Model: Knowledge related to Mechanism Selection

(Oval shape indicates attributes of the rectangles to which the ovals are linked)

The warehouse management system (WMS) has the

capability to interact with a material handling system
(MHS). Material handling requires equipment to be
stored in specific locations in the bays/aisles. Different
customers use different methods to handle their
equipment. Some customers use a completely automated
robotic system that should be commanded from the
material-handling module in WMS while some might use
a simpler system. The activities required for these
different systems and the algorithms used to direct the
semi or completely automated equipment handling
systems vary considerably. The rest of the material
handling system should remain independent of the
equipment handling system that handles the location and
storage processes. Hence, the designers chose to use the
strategy pattern here in order to allow variation of the
processes and algorithms independent of the rest of the
material handling system. Strategy pattern is used when
there is a need for algorithms to vary independent of the
clients that use the algorithm [12]. The intent of the
strategy pattern is to define a family of algorithms,
encapsulate each one and make them interchangeable. A
common interface supports algorithms used by specific
clients. These algorithms are implemented differently for
different clients in Concrete sub-classes. This is a very
appropriate pattern to be used here, as different

algorithms might be suitable for different types of
equipment handling depending on the customer-specific
requirements. Further, new types of material storage
handling that a new customer might request can be easily
accommodated with this design.

This particular scenario is captured by instantiating
the conceptual model shown in Figure 1. Our system is
capable of supporting feature models. Specific parts of a
feature model can then be linked to particular mechanism
use and related justifications. Here, a section of the
feature model for the WMS is shown. Alternative material
handling systems varying in the levels of automation are
shown to trigger the need for variability. Various
variability attributes are also captured. For instance, the
degree of variation attribute describes that the variability
is in the scale of automation, providing the commonly
used number of levels. Variability type is shown to be
alternative, which means the choice of a particular level
of automation could result in some components being
replaced by others. The feature under consideration, viz.,
communication with the material handling system, is
described as a mandatory feature, as this is one of the
features that identifies the system, i.e., it is very essential
for the WMS.

72

Figure 2: Selecting the Strategy design pattern to handle different types of material handling systems

Our knowledge management system can also be used
to represent links between these knowledge elements
capture and the design artifacts that are related to these.
In the above example, a particular UML class diagram has
the strategy pattern implemented to realize the variability
in material handling system communication. Our system
provides the interface to access the various elements in
UML models developed using Rational Rose. Through
this interface we can link any knowledge element to any
design element from a UML model. We are currently
working on extending the prototype system with the
capability of using the heuristics gained from such
knowledge captures to guide future variability mechanism
selection based on the various attribute values of features
and variability.

5. Discussion
In this paper, we have discussed the use of a

knowledge management system in capturing knowledge

about variability mechanism selection. This prototype
can be used to capture various factors that are considered
while deciding on a mechanism to implement variability.
Such a capture would be valuable in deriving heuristics to
guide future mechanism selection. Explicit capture of
factors affecting the choice of a variability mechanism
would bring forth any constraints or conflicts in
mechanism selection. Close integration of our prototype
system with work process and productivity tools like
Rational Rose, Microsoft office suite, and Groove, a
communication/collaboration tool tend to reduce the
overhead in switching from their work environment to
capture knowledge and link it to appropriate design
artifacts.

6. References
[1] J. Pine, Mass Customization: The new Frontier in
Business Competition. Boston, MA: Harvard Business School
Press., 1993.

73

[2] M. Svahnberg, J. v. Gurp, and J. Bosch, "A Taxonomy
of Variability Realization Techniques," Blekinge Institute of
Technology, Sweden 1103-1581, 2002.
[3] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Upper Saddle River, NJ: Addison-
Wesley, 2002.
[4] G. Cugola and C. Ghezzi, "Program Families: Some
Requirements Issues for the Process Languages," presented at
10th International Software Process Workshop, Dijon, France,
1996.
[5] J. Bosch, Design and Use of Software Architectures:
Addison-Wesley, 2000.
[6] M. Martin, W. Hausman, and K. Ishii, "Design for
Variety," in Product Variety Management, T.-H. Ho and C. S.
Tang, Eds. Norwell, MA: Kluwer Academic Publishers, 1998.
[7] J. Coplien, D. Hoffman, and D. Weiss, "Commonality
and Variability in Software Engineering," IEEE Software, vol.
15, pp. 37-45, November/December 1998.
[8] K. Lee, K. C. Kang, E. Koh, W. Chae, B. Kim, and B.
W. Choi, "Domain-Oriented Engineering of Elevator Control
Software: A Product Line Practice," in Software Product Lines:
Experience and Research Directions, P. Donohue, Ed. Norwell,
MA: Kluwer Academic Publishers, 2000.
[9] F. Bachmann and L. Bass, "Managing Variability in
Software Architectures," ACM SIGSOFTSoftware Engineering
Notes, vol. 26, pp. 126-132, 2001.
[10] B. Keepence and M. Mannion, "Using Patterns to
Model Variability in Product Families," IEEE Software, vol. 16,
pp. 102-108, 1999.
[11] M. Anastasopoulos and C. Gacek, "Implementing
Product Line Variabilities," presented at Symposium on
Software Reusability, Toronto, Ontario, Canada, 2001.
[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented
Software: Addison-Wesley, 1995.

 74

Towards a component-based, model-driven process

supporting variability of real-time software

Vieri Del Bianco Luigi Lavazza
CEFRIEL - Politecnico di Milano

P.zza Leonardo Da Vinci, 32
20133 Milano, Italy

{delbianc|lavazza}@elet.polimi.it

Abstract

Model-driven techniques for the development of
component-based real-time software are available. These
techniques have also been integrated with formal
methods, thus providing the developer with the degree of
confidence that is needed when dealing with real-time,
safety-critical applications.

Here we report an initial discussion concerning the
applicability of such techniques to the management of
variability.

1. Introduction

Real-time software is often safety-critical. This
suggests that formal methods are used (especially in the
specification phase) in order to guarantee that the
development has a sound base. Another consequence of
the criticality of real-time software is that the
development process tends to be quite expensive (for
instance, due to the need for extensive testing). It is
therefore desirable to be able to reuse as much as possible
the code already developed and tested. For this purpose
component based development is a promising technique.

A problem –which occurs particularly often for real-
time embedded software– is that the same software is
used in different contexts, because the user needs evolve
in time, but also because different users have different
needs at the same time. In both these cases, in order to be
able to manage the variations in an effective and
economic way we tend to modularize the system in order
to have a stable core and some additional components that
can vary from version to version of the system.

Here we discuss how to adapt the techniques that were
developed for the development of non varying (or slowly
varying) software to the development and evolution of
software which is subject to variability.

Best practices in software development call for precise
modeling of user needs and consequently for rigorous

specifications of the system to be developed. In order to
verify and validate specifications, several methods have
been proposed, including model checking. This
techniques requires that specifications are written in a
suitable formal language. Since formal languages are not
very easy to use, in past years we developed a technique
that allows the user to write the specifications of the
system as a UML model, and then translates this model
into a formal notation, thus enabling the application of
formal methods. For this purpose we defined an extension
of UML, called UML+ [2][5][6]. In order to make the
specifications more modular (hence easier to manage), to
allow an incremental approach to specification
verification, and to facilitate the transition to the
implementation phase, UML+ models can be structured in
terms of components (or capsules [7]). A component-
oriented version of UML+ is also available [8].

A possible process that exploits the UML+ notation
and tools is depicted in Figure 1. The idea is that the
specifications are written in UML+ and then they are
verified by means of a set of tools that can be applied to
models derived from the UML specifications. It is
interesting to note that the verification of specifications
requires that the environment where the system operates
must be modeled as well. This can also be done by means
of UML+. In Figure 1 we stress the need for verifying the
specifications in several different ways (including
simulation). This need descends from the nature of real-
time software, which is often safety-critical. However it is
well-known that errors in the specifications are likely to
be very expensive, thus the possibility of verifying UML+
models contributes also to keep the cost of development
under control.

2. Supporting variability

The UML+ notation and process were originally
conceived to support development of real-time software
without considering variability issues. Therefore it is

 75

UML+ tool
Specs
(XMI+)

Specs
(T.A.)

Translators

Model checker

Analyst

Results of model checking, simulation, etc.

Specs
(TRIO)

History checker

OPNET
models

OPNET simulator

Designer

. . .

UML+ model

Model
properties

(OCL)

Figure 1. The specification process exploiting UML+.

interesting to discuss the applicability of UML+ in

managing software variations.
We consider first the notation, and then the process in

its two main phases: specification and
design/implementation.

2.1. Notation

The first question we have to answer concerns the

notation: is UML+ adequate to support variability? In
order to answer this question we observe that with our
notation the component (or capsule) is the elementary unit
of the model. Thus most variations can be represented in
terms of components. In other words, it is possible to
define a taxonomy of variations where differences
between two versions of a system are described in terms
of components. For instance, here is a preliminary list of
possible variations:
• Component A is replaced by component A’, having

the same interface. In general this means that A and
A’ behave differently under some respect.

• A component B is removed from the model. This
typically means that the components that were
previously connected with B change their behavior
accordingly.

• Two components that are connected together change
the way they communicate. This generally means
that they also change their behavior.

• …
A taxonomy of variations is needed in order to make

the management of variations easier. E.g., it will be
possible to identify variations patterns, and thus to define
suitable management criteria for each pattern.

In general the UML+ notation proved to be flexible
enough to represent all the variations we spotted so far.

2.2. Process: specification phase

When dealing with variations the analyst will

generally build a new specification on the basis of:
• New requirements.
• Existing specifications (i.e., compositions of

components), generally associated with a set of
proved properties.

• Fragments of specifications, possibly single
components or small compositions of components,
generally associated with a set of proved properties.
These are particularly interesting, because they can
help in building specifications incrementally. In fact,
when using such a fragments in a bigger
composition it is generally not necessary to include a
detailed description of every single component
belonging to the fragment: often an abstract
description of the fragment (featuring the properties
that have been proven) is sufficient, and makes the
resulting specification smaller and easier to verify.

In any case, it is likely that the resulting specification
will have large parts in common with the existing
specification, but in general it will feature some new
components, some modification in the system structure or
in the communications among components, etc.

 76

component
specs

UML+ tool new
specs
(XMI+)

new
specs

Translators Verification tools
(formal
notations)

Designer

Verification results

User
requirements

existing
specs

Core

Variation

Figure 2. The specification variation process exploiting UML+.

In general the new specification can be verified against
user requirements by means of the set of formal
techniques mentioned in the previous section. The
specification process is synthetically described in Figure
2. Note that in Figure 2 it is explicitly represented that
there is a part of the model (the core) which is common
to several systems and a part which is specific of the
considered system.

UML+ model of core

core
properties

(OCL)

Formal methods

Formal
notation

validation

Figure 3. Verification of the properties of the
core.

As already mentioned, it is interesting to note that the
verification approach can be incremental. In fact the core
can be thoroughly verified (as depicted in Figure 3), and a
more abstract version of it can then be used to specify the
variations (as depicted in Figure 4). Of course, the larger
the core (that is, the smaller the variations) the more
efficient can be the verification. This approach is
effective under several respects, especially:
• The core of the system is explored in depth, thus

increasing the probability of finding possible errors
in the more critical part of the system.

• The abstract description of the common part
contributes to avoid the state explosion problem,
which affects some of the verification techniques
employed, namely model checking.

UML+ model

core
properties

(OCL)

Core

ith variation

system
properties

(OCL)

Formal methods

Formal
notation

validation

Figure 4. Verification of the properties of a
system exploiting the knowledge of the
properties of the core (which are represented in
an abstract way).

 In order to support the process described above we do
not need specific notations or tools: UML+ and the
associated tools can be used also in the incremental
development process. Nevertheless, in order to make the
process efficient, some support to process management is
needed. In particular, we need a configuration
management system that is able to treat the variability
concepts. It is also important to be able to manage

 77

CBD Implementation v.2

UML+ model

Model
properties

(OCL)

UML+ model

Model
properties

(OCL)

Specifications v.1
Specifications v.2

Timed
automata &
properties Kronos

model checker

CBD Implementation v.1

Timed
automata &
properties

Timed
automata &
properties

Timed
automata &
properties

Component
specs

Component
specs

Figure 3. Variability and verifiability.

traceability relations between requirements, specification
fragments, and components. Examples of such relations
are: dependencies among components, usage relations,
property associations, etc. The support system should
integrate CM and traceability management, and should be
able to treat the information at different granularity levels.
For instance a single requirement could be associated
with an aggregation of components, or vice versa a set of
related requirements could rely on a single component.

2.3. Process: design and implementation phases

In the implementation phase it is crucial to provide the
developers with a tool that verifies the consistency of the
implementation with its formal specifications.

The main problem here is that the syntax and
semantics of the design/implementation models
(asynchronous models) usually differ from the
specification models (synchronous models). In order to
guarantee that the implementation preserves the
specifications’ properties we have to formalize the
mapping between the notations used in the two phases.
This formalization is in progress.

Components simplify the problem. A component, in
our approach, is described by a model (containing Timed
Statecharts [9] in specifications, and standard UML [1]
statecharts in implementation) and the requirements the

component must satisfy (typically expressed in some sort
of logic language). The latter are often referred to as
“abstract specifications”.

Model checkers verify that the specifications model
satisfies the specifications requirements. The idea is to
extract the implementation requirements from the
specification model: if it is possible to verify that the
actual implementation model satisfies the implementation
requirements, as a consequence it is proved that the
system verifies the specifications requirements. For
bigger projects these proofs can be repeated for every
design step or refinement.

Variability increases the complexity of the process. In
fact we have to consider refinements at different levels.
The component approach helps to limit the scope of the
verifications. For instance, if we modify the model of a
component while maintaining the requirements
unchanged, the rest of the systems will not be affected:
we will have to consider only the implementation
refinements dependent on the change (down
propagation). On the contrary, if we modify the abstract
specification of a component, we will have to verify that
every component or system using the changed component
still satisfies its requirements: if so the change will not
propagate further, otherwise we can iterate the process
(up propagation).

 78

Figure 5 describes the complete process (with only
two levels of refinement: specifications and
implementation).

It is quite clear that the transition between two levels
of representation is a delicate step. We are currently
exploring different ways to maintain the needed
properties in the passage:
• Black box approach. The model of a component

specifies it completely. We are able to verify
properties on a model. We would like to
(automatically) verify if a model is a refinement of a
more general one. Bisimulation theories should help
us to verify whether a model is a refinement of
another (or just the same model).

• Model-properties approach. A model can be
completely characterized by the properties it
verifies. If it is possible to generate the
characterizing properties from a model, it would be
possible to check the refined model with the
properties of the previous one.

• Guided refinement/change approach. We could
demonstrate and verify that under specific
refinement operations the properties are maintained.
We could also demonstrate and verify that under
specific change operations some properties are
maintained, and other are modified in a predictable
way; thus we won’t need to verify the changed
component against all the properties, but only on the
properties we can’t predict.

These approaches are not mutually exclusive; on the
contrary, together they can successfully deal with
different aspects of the process. In the analysis phases
formal bisimulation is the preferred solution. On the
contrary in the passage from specification to
implementation the guided refinement seems the only
plausible approach, since it appears to be extremely
difficult to apply bisimulation to models expressed in
different formalisms. Moreover, the design and
programming languages are usually more expressive than
those used in analysis, and are not exhaustively verifiable;
in other words, no model checkers are available, the
properties cannot be verified, but only proved manually.

3. Conclusions

The development of real-time software can profitably
exploit well-established techniques like model-based
(more precisely, UML-based development), formal
methods, component-based development.

The management of variability in real-time software
can also benefit of the mentioned techniques.
Nevertheless, several issues need to be explored.

In this paper we sketched our approach to this
problem. Discussion is open, and the research agenda for
the problems mentioned throughout the paper is still in a
draft state.

References
[1] OMG:OMG Unified Modeling Language
Specification Version 1.4. September 2001.

[2] Lavazza, L., Quaroni, G., Venturelli, M.: Combining
UML and formal notations for modelling real-time
systems. In: Gruhn, V. (ed.): Proceedings of ESEC/FSE
2001, Vienna, Austria, September 10-14, 2001. ACM
Press, New York (2001).

[3] Ghezzi C., Mandrioli D., Morzenti A.: TRIO, a logic
language for executable specifications of real-time
systems. The Journal of Systems and Software, Vol.12,
n.2. Elsevier Science (May 1990).

[4] Yovine, S.: Kronos: A verification tool for real-time
systems. International Journal of Software Tools for
Technology Transfer, Vol.1, N.1/2. Springer, October
1997.

[5] Del Bianco, V., Lavazza, L., Mauri, M.: An
introduction to the DESS approach to the specification of
real-time software. Technical Report RT01002. CEFRIEL
(2001). Available from http://www.cefriel.it, “WISE”
section.

[6] Del Bianco, V., Lavazza, L., Mauri, M.: A
Formalization of UML Statecharts for Real-Time
Software Modeling. The Sixth Biennial World Conference
On Integrated Design Process Technology (IDPT 2002).
Pasadena, California, June 23-28, 2002.

[7] Selic B., Gullekson G., Ward P.T., Real-Time
Object-Oriented Modeling, Wiley, 1999

[8] Del Bianco, V., Lavazza, L., Mauri, M.: “Towards
UML-based formal specifications of component-based
real-time software”, Fundamental Approaches to
Software Engineering (FASE03), ETAPS European Joint
Conferences on Theory And Practice of Software, April
2003, Warsaw, Poland.

[9] Y. Kesten, A. Pnueli, Timed and Hybrid Statecharts
and their Textual Representation, Formal Techniques in
Real-Time and Fault-Tolerant Systems 2nd International
Symposium, 1992.

	Software Configuration Management Problems and Solutions to Software Variability Management
	Using UML Notation Extensions to Model Variability in Product-line Architectures
	Consolidating Variability Models
	Managing Variability with Configuration Techniques
	Supporting the Product Derivation Process with a Knowledge-based Approach
	Variability Analysis for Communications Software
	Evolving Quality Attribute Variability
	A Practical Approach To Full-Life Cycle Variability Management
	Capturing Timeline Variability with Transparent Configuration Environments
	Component Interactions as Variability Management Mechanisms in Product Line Architectures
	Feature Modeling Notations for System Families
	Variability in Multiple-View Models of Software Product Lines
	Managing Knowledge about Variability Mechanism in Software Product Families
	Towards a component-based, model-driven process supporting variability of real-time software

	x1: 30
	x2: 31
	33: 32
	47: 47
	48: 48
	49: 49
	50: 50
	51: 51
	52: 52
	53: 53
	54: 54
	55: 55
	56: 56
	57: 57
	58: 58
	59: 59
	60: 60
	61: 61
	62: 62
	63: 63
	64: 64
	65: 65
	66: 66
	67: 67
	68: 68

