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Software Configuration Management
Problems and Solutions to

Software Variability Management

Lars Bendix
Department of Computer Science

Lund Institute of Technology
Sweden

bendix@cs.lth.se

Abstract

These days more and more software is produced as
product families. Products that have a lot in common, but
all the same vary slightly in one or more aspects.
Developing and maintaining these product families is a
complex task. Software configuration management (SCM)
can, in general, support the development and evolution of
one single software product and to some degree also
supports the concept of variants. It would be interesting
to explore to what degree SCM already has solutions to
some of the problems of product families and what are the
problems where SCM has to invent new techniques to
support software variability management.

1. Introduction

Software product families are becoming more and
more common. There are many benefits from making and
selling basically the same product in many slightly
different variations. You can amortise your investment on
a greater number of sold products. You can satisfy your
customers’ desire for specialised products at a reasonable
cost. Your product will be able to run on many platforms
and support many languages in a globalised market. You
will be able to reuse parts from existing products allowing
a faster time-to-market time.

However, there is also a down side to software product
families. They are very complex to develop and even
more complex to maintain and further evolve. And
because of the high development costs and popularity of
such products they tend have long lives. In order to
balance the costs of the production with the benefits from
increased sales of software product families, we need to
be able to manage the complexity of software variability.

In my opinion, Software Configuration Management
(SCM) has a major role to play when it comes to handling

the complexities of software variability. SCM already has
a fundamental role in supporting the development and
evolution of single product software. If we were able to
distinguish exactly how product families differ from single
product software, we might discover that SCM can
provide – or develop – techniques to support product
families too.

In the following, I will first briefly outline the most
important concepts and principles of SCM relevant to
product families, after which I describe how I look at
software product families. Then I will detail where I see
previous relations between SCM and SVM – and finally
state my position on what could be some of the discussion
points at the workshop regarding the relationship between
SCM and Software Variability Management (SVM).

2. Software Configuration Management

For the past two decades my main interest has been
SCM. It is a discipline that spans a wide spectrum of
functionality, ranging from computer supported co-
operative work, that supports the developers in their tasks,
to product data management, that enables the company to
document the exact composition of their products.

SCM is the control of the evolution of complex
software systems. Traditionally it is said to cover the life-
cycle phases from coding to retirement. However, you can
apply SCM principles and techniques to everything from
your requirements specifications through design
documents to documentation.

One of the core concepts of SCM is the management of
a repository of components. Everything that the
developers produce goes into this repository where it
remains forever, such that it can be retrieved again at any
time. When changes are made to something in the
repository, they are not made directly to the component,
but rather to a copy and the modified copy is then added
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to the repository creating a new version of that
component. This means that we can have many versions
of the same component.

Another core concept is that of a product model. This
product model describes the structure of the product by
relating the components in a dependency graph.
Furthermore, the product model also contains information
about which actions to perform to build the product from
its components. This means that once this product model
has been described it is possible to automatically build the
product.

When we put these two concepts together we get a
slightly more complicated picture. The fact that the
repository might contain more that one version of a given
component means that there is a choice between which
version to use for each component when we build the
product. This gives rise to the concept of a generic
product model that gives only the structure. This generic
model is then bound to particular versions of components
using the repository and a selection profile describing
which version to use for which components.

These are problems where SCM has solutions that are
well understood and mature. A naive and simplistic view
at SVM would be to look at variants the same way as
versions and use these already established solutions.
However, variants do differ from versions so such an
approach has strong limitations.

3. Software Product Families

Unfortunately I am not yet an expert on the subject of
product families. However, in this section I will describe
what I perceive as some of the important aspects of
software product families.

From what I know, variation points have emerged as a
way to describe the parts where a component can or is
allowed to vary. There may be tens of thousands of
variation points in a product line – and that might sound
frightening. However, in my opinion it is not the number
of variation points that should cause most concern with
regard to complexity. It is the number of dimensions in
which a product family is allowed to vary. Usually that
number is in the tens or less, but still this low number
generates far more complexity.

The complexity of managing the amount of variability,
both in number of places and number of dimensions, can
become extremely high. Especially as the product family
evolves in time introducing also versions.

4. SCM relations to SVM

Within the SCM community there was an early interest
in variants and the handling of variability. Variations that
could be confined within a single file and involved only

minor pieces of code was studied in [WS88], and a
mechanism very similar to conditional compilation was
proposed. A later study by [Reichenberger89]
distinguished versions and variants as two separate
dimensions in which a component could differ. In his
approach he put emphasis on a model for the whole
product.

So there are already solutions for managing software
variability provided by SCM. But are they sufficient for
the variability found in today’s product families?

5. Position statement

From my point of view it would be interesting to look
at SCM from a solutions perspective. Can we “discipline”
or stream-line the use of variability in product families
such that it can be managed by present SCM techniques –
and how?

Equally as interesting would it be to look at software
variability management from a problems perspective. To
listen to an analysis of what the problems are to discover
the limitations of SCM support. This could lead to the
development of new SCM techniques to support (part of)
these problems.

It is “common wisdom” that evolution and variability
should be “kept apart” – but how do you implement that?

More specifically such a discussion could investigate
the following five themes:

Top-down vs. bottom-up approach: Is the variation
points a top-down approach, whereas current SCM
techniques are bottom-up? Are these for large and small
variations and which can be supported by SCM and how?

Anticipated vs. unanticipated variability: The latter
cannot be designed into the architecture. They could also
be considered as sort of proactive and reactive
approaches. Can we make a mix – and how should that be
done? Would it be possible – and desirable – to use
techniques like refactoring to bring unanticipated
variability under control?

Life-cycle phases: Is there any difference in the
support you need depending on when in the life-cycle you
bring in variability? Early (analysis/design), middle
(implementation), late (release – or production – and
maintenance). Which phases are variation points, SCM-
and PDM techniques most suited for?

Evolution vs. variability: These two dimensions
should be kept apart. But why – and how?

Traceability: How do we trace and relate a variation
point from the analysis to the design to the code to the
tests to the documentation?
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Abstract

The purpose of this paper is to define the extensions of
the UML standard specification for the explicit
representation of variations and their locations in
software product line architectures based on a design
method already established. The method will benefit a
more familiar and widely used notation, facilitating a
broader understanding of the architecture and enabling
more extensive tool support for manipulating it.
The description of the modeling constructs that manage
variability represents a part of a profile of the extended
or applied UML concepts intended primarily for use in
modeling product-line architectures. These new
constructs have to be used in combination with all the
other UML modeling concepts and diagrams to provide a
comprehensive modeling tool set.

1. Introduction
Product line software development requires a

systematic approach from such multiple perspectives as
business, organizational, architecture and process. In the
product line context, the architecture is used to build a
variety of different products. For several years the focus
of our research has been product line architecture (PLA)
design and analysis. One of our goals was to define a
quality-driven architecture design and analysis (QADA)
method [1]. An important issue in our research was to
explicitly represent variation and indicate locations for
which change is allowed. In this way, the diagrammatic
description of the PLA defined by using the QADA
method helps in instantiating PLA for a particular product
or in its evolution for future use. From the PLA
documented diagrammatically, it is easy to detect what
kind of modifications, omissions and extensions are
permitted, expected or required.

The QADA method was described by defining and
using a framework that consisted of the following
ingredients:

• an underlying model, referring to the kinds of
constructs represented, manipulated and analyzed
by the model;

• a language, which is a concrete means of
describing the constructs, considering possible
diagrammatic notations;

• defined steps, and the ordering of these steps;
• guidance for applying the method; and
• tools that help in carrying out the method.

In order to achieve an optimal method for a certain
development effort, these ingredients can be defined or
selected more properly. Some of these ingredients may
already be available (e.g. from the literature, from tool
vendors, etc.), whereas others may have to be specially
developed, configured or extended.

The work in this paper puts in practice this idea of
method improvement with the purpose of defining the
UML extensions for the management of variability in
space in the software architectures of product lines. The
extensions are described through the viewpoints defined
by the QADA method. The method will benefit a more
familiar and widely used notation, therefore facilitating a
broader understanding of the architecture and enabling
more extensive tool support for manipulating it.

One of our goals is to describe modeling constructs
that manage variability and represent a part of a profile of
the extended or applied UML concepts intended primarily
for use in modeling the product line architectures. These
new constructs have to be used in combination with the
other UML modeling concepts and diagrams to provide a
comprehensive modeling tool set.

The beginning of this paper is a brief description of the
viewpoints of the QADA method, with the focus on
modeling elements and relationships with UML extension
mechanisms and notation. The next section examines
some of the structural and behavior constructs that model
variability, trying to interpret them based on UML
concepts. UML extension mechanisms are used if a
refinement of the UML metamodel is necessary. The final

mailto:ldobrica@digi.ro
mailto:Eila.Niemela@vtt.fi
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result of our research is the definition of a UML profile
for designing software architectures based on the QADA
method. We think that standardization of the UML profile
defined in our study will be of benefit to the software
architecture developer community, especially for software
product lines where a systematic approach is mostly
required.

2. Modeling constructs and notation

The modeling constructs used by the QADA method
for representing software architectures for product line
development are partitioned into four groups: constructs
for modeling a structural view, constructs for modeling a
behavioral view, constructs for modeling a deployment
view and constructs for modeling a development view.
Variation in space is an integral part of the first three
views, contrary to the development view that represents
the categorization and management of domains,
technologies and work allocation. There are also two
levels of abstraction to be considered in PLA descriptions:
the conceptual level and the concrete level.

Entities of each view are defined in detail and
described in [1] and [2] . Figure 1 presents the entities of
three major conceptual views that embody variation in
space. Variation in time is managed through the
conceptual and concrete development views, but that is
outside the scope of this paper.

On a concrete level there are other architectural
elements (i.e. capsules, ports, state diagrams, deployment
diagrams, etc.) and relationships between them in each of
the views.

Conceptual Views

Structural Behavior Deployment

Architectural elements
System component
Subsystem component
Leaf component

Relationships
Passes-data-to - «data»
Passes-control-to - «control»
Uses - «uses»

Architectural
elements

Service component

Relationships

Ordered seqence of
actions

Architectural
elements

Deployment Node
Unit of deplyoment

Relationships

Is-allocated-to

Figure 1. Entities of the Conceptual Views.

To address UML extensions in accordance with the
QADA method we decided to define and apply a
framework, accompanied by a set of activities and
techniques, for identifying differences between the UML
standard [3] and the QADA viewpoint description.

The framework is based on the following activities:
• Mapping: Identifies what information is overlapping

between the existing QADA language and UML;

• Differentiation: Identify differences between the
UML standard model elements and those defined by
QADA;

• Transformation: By using UML extension
mechanisms or other techniques we try to integrate
the UML standard with the new required QADA
elements.

UML supports the refinement of its specifications
through three built-in extension mechanisms [3] :
• Constraints that place semantic restrictions on

particular design elements; UML uses the Object
Constraint Language (OCL) to define constraints.

• Tagged values that allow new attributes to be added
to particular elements of the model.

• Stereotypes that allow groups of constraints and
tagged values to be given descriptive names and
applied to other model elements; the semantic effect
is as if the constraints and tagged values were applied
directly to those elements.

Tabular forms for specifying the new extension
elements have been organized (Figure 2). For stereotypes,
the tables identify stereotype name, the base class of the
stereotype that matches a class or subclass in the UML
metamodel, the direct parent of the stereotype being
defined (NA if none exists), an informal description with
possible explanatory comments and constraints associated
with the stereotype. Finally, the notation of the stereotype
is specified.

Tabular form of a Stereotype
definition
• Stereotype: Leaf
• Base Class: Subsystem
• Parent: Architectural element
• Description: ...
• Constraints: None or

self.isMandatory=true
• Tags: None
Notation: A UML package
stereotyped as «leaf»

Tabular form of a Constraint definition
• Constraint: isMandatory
• Stereotype: Leaf
• Type: UML::Datatypes::Boolean
• Description: Indicates that the

Leaf is Mandatory

Tabular form of a Tag definition
• Tag: isDynamic
• Stereotype: Capsule
• Type: UML::Datatypes::Boolean
• Description: Identifies if the

associated capsule class may be
created and destroyed dynamically.

Figure 2. Examples of stereotypes, constraints
and tag definitions.

For example, based on QADA, the conceptual
structural view is used to record conceptual structural
components, conceptual structural relationships between
components and the responsibilities these elements have
in the system. Specifically in QADA, the constructs for
modeling this view are summarized in Figure 1.

Typically, UML provides class diagrams for capturing
the logical structure of systems. Class diagrams capture
universal relationships among classes – those
relationships that exist in all contexts.

Components of this conceptual structural view are
mapped onto the Subsystem UML concept. We identified
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a hierarchical description of components that introduces
differences between them and requires transformations
using new stereotypes. The stereotypes add additional
conceptual-specific semantics onto the various aspects
that are associated with the UML-based classes. We
proceeded with mapping elements and identifying the
new required stereotypes.

A graphical equivalent of the stereotype declarations
previously described for tabular form is presented in
Figure 3. The class diagram has been realized in Rose RT
[4] . This shows the relationships among UML
metaclasses and the new stereotypes they represent in
architectural components. Generalization and predefined
«stereotype» dependency are included in this diagram.

G eneralizableElem ent
<<m etaclass>>

Classifier
<<m etaclass>>

Subsystem
<<m etaclass>>

ArchitecturalElem ent
<<stereotype>>

subsystem
<<stereotype>>

system
<<stereotype>>

leaf
<<stereotype>>

<<stereotype>> <<stereotype>>

<<stereotype>>

<<stereotype>>

Figure 3. Graphical equivalent of the stereotype
declarations described in tabular form.

We also indicate whether or not a commercial tool case
supports the UML standard and extended elements.

3. Modeling variability using UML
extensions

An important aspect of product line architectures is
variation among products. A variability mechanism is a
wide range of generalization and specialization
techniques. Jacobson [7]  defined the following variability
mechanisms: inheritance, uses, extensions,
parametrization, configuration and generation.
Nevertheless, variation is difficult to model in
architectural descriptions. UML models provide the
means to use specific variation mechanisms [6] [7] to
describe hierarchical systems (ways to decompose
systems into smaller subsystems). However, the UML
standard does not support a description of variation, as
QADA requires.

3.1 Conceptual structural view
We consider variation in the conceptual structural view

to be divided into internal variation (within Leaf
components) and structural variation (between Leaf/
Subsystem components). To enable variation, we separate
components and configurations from each other. Flexible

representations are needed to instantiate components and
bind them into configurations during product derivation.

3.1.1. Structural variation.  The structural conceptual
view has to offer the possibility of preventing automatic
selection of all Leaf or Subsystem components included
in a System during product derivation. Variability can be
included in this view by using specific stereotypes for the
architectural elements (Figure 4).

Subsystem 1
<<m andatorySubsystem >>

Leaf1

<<m andatoryLeaf>>

(from Subsystem 1)

Leaf2
<<optionalLeaf>>

(from Subsystem 1)

Leaf4

<<alternativeLeaf>>

(from Subsystem 1)

Leaf5
<<optionalAlternativeLeaf>>

(from Subsystem 1)

Leaf3
<<alternativeLeaf>>

(from Subsystem 1) A
B

A

<<control(opt)>>

<<uses (alt)>>

<<control(alt)>>

<<data (optAlt)>>

Leaf6
<<m andatoryLeaf>>

(from Subsystem 1)

<<control>>

Figure 4. Variation points included in the
conceptual structural view.

Thus we consider that a Leaf or a Subsystem could be
further stereotyped in:

• «mandatoryLeaf» or «mandatorySubsystem»
• «alternativeLeaf» or «alternativeSubsystem»
• «optionalAlternativeLeaf» or

«optionalAlternativeSubsystem»
• «optionalLeaf» or «optionalSubsystem».
In case of «alternative» or «optionalAlternative»

variability of a Leaf or Subsystem, the inclusion of a letter
“A” or “B”, etc., at the bottom of the UML package
symbol indicates the product that requires that specific
architectural element.

Variation points included in the conceptual structural
view are shown in Figure 4. Subsystem1 is a
«mandatorySubsystem» that consists of «mandatoryLeaf»
components (Leaf1 and Leaf6), «optionalLeaf»
component (Leaf2), «alternativeLeaf» (Leaf3 of product
A and Leaf4 of product B) «optionalAlternativeLeaf»
(Leaf5 of product A). In this way, variation points
identify locations at which the variation will occur.

Some of the constraints that govern variability
modeling cannot be expressed by the UML metamodel.
They concern the following:
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If a «mandatorySubsystem» only consists of
«optionalLeaf» components, at least one of them must be
selected during the derivation process; otherwise, a
«Subsystem» that only consists of «optionalLeaf»
components must be an «optionalSubsystem».

Two «alternativeLeaf» or «alternativeSubsystem»
components of different products are exclusive, meaning
that only one can be selected for a product. The product is
specified at the bottom of the notation.

There should be no relationships between alternative
or optionalAlternative components; they belong to
different products.

The relationships are appropriately stereotyped to the
associated components (Table 1).

Table 1. Stereotypes of relationships for
variability.

Stereotype Description
«control»
«data»
«uses»

Represents a Control/ Data/
Uses association between two
mandatory subsystems (UML).

«control (opt)»
«data (opt)»
«uses (opt)»

Represents a Control/ Data/
Uses association between two
subsystems (UML). At least one
of them is an optional
stereotype.

«control (optAlt)»
«data (optAlt)»
«uses (optAlt)»

Represents a Control/ Data/
Uses association between two
subsystems (UML). At least one
of them is an
optionalAlternative stereotype.

3.1.2. Internal variation. We define internal variation
only for Leaf components. A Leaf component is on the
lowest hierarchical level and may perform functional
requirements variable for different products.

LeafN am e
<<m andatoryLeaf>>

���� vp << m | o  > <VariationPointName >>|

<< a | oa > <VariationPointName > <ProductId>>

Figure 5. Internal variation of a mandatoryLeaf
component.

The internal variation of Leaf components is
designated by a ● symbol (Figure 5). Although the
symbol is not included in the UML standard, Jacobson [7]
and later Webber [6] introduced the ● symbol for
variation points. The UML tag syntax

vp <<m|o><VariationName>> |
<<a|oa><VariationName><ProductId>>

shows the reuser the parts of an internal variation so that
the reuser can build a product.  Mandatory (m) or optional
(o) functionality (VariationName) of a Leaf component is
specified in the tag syntax.  In the case of alternative (a)
or optionalAlternative (oa) the product identifier
(ProductId) is also specified.

3.2 Conceptual behavior view
The conceptual behavior view may be mapped directly

onto a hierarchy of UML collaboration diagrams. The
elements of this view are roles/instances of the Subsystem
stereotypes defined in the conceptual structural view.

Variable parts of a collaboration or interaction diagram
can be represented with dashed lines. Optional messages
between ServiceComponents use dashed lines with solid
arrowheads (Figure 6).

1: mandatoryMessage

:OptionalServiceComponent1

3: optionalMessage2.2: optionalMessage

:MandatoryServiceComponent2

:MandatoryServiceComponent3

2.1: optionalMessage

Figure 6. Optional interactions.

Collaboration diagrams describe each operation that is
part of the specification requirements. Similar to the
conceptual structural view, alternative and
optionalAlternative ServiceComponents may be
represented in this view. An identifier of the specific
product that requires a particular interaction should be
introduced and represented in the diagram. The notation
used in collaboration diagrams for variability
representation is shown in Figure 7.

:OptionalServiceComponent 3: optionalMessage

:MandatoryServiceComponent

4: alternativeMessage (P_Id):AlternativeServiceComponent (P_Id)

:OptionalAlternativeServiceComponent (P_Id) 5: optAltMessage (P_Id)

1: mandatorylMessage

Figure 7. Variability  in the conceptual behavior
view.
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3.3 Conceptual deployment view
In UML a deployment diagram shows the structure of

the nodes on which the components are deployed. The
concepts related to a deployment diagram are Node and
Component. DeploymentNode in QADA is a UML Node
that represents a processing platform for various services.
The notation used for DeploymentNode is a Node
stereotyped as «DeploymentNode». UML notation for
Node (a 3-dimensional view of a cube) is appropriate for
this architectural element.

A DeploymentUnit is composed of one or more
conceptual leaf components. Clustering is done according
to a mutual requirement relationship between leafs. It
cannot be split or deployed on more than one node. The
stereotype, «deploymentUnit» is a specialization of the
ArchitecturalElement stereotype and applies only to
Subsystem, which is a subclass of Classifier in the
metamodel. The other three stereotypes «mandatory»,
«optional» and «alternative» are specializations of the
DeploymentUnit stereotype and also apply to Subsystem.

Figure 8 describes a class diagram that defines
alternative deploymentUnits. DeploymentUnitA is
alternative to DeploymentUnitB; if there are at least two
elements - a LeafA in DeploymentUnitA, and a LeafB in
DeploymentUnitB - those exclude each other. Exclude is
a new stereotype of UML association introduced in this
diagram.

De ploymen tU nit B
<<alternative>>

D eploym entU nitA

<<alternative>>

0..1

*

0..1

*

LeafA LeafB<< exclude>>
1 1

Figure 8. Alternative deploymentUnits.

3.4 Concrete structural view
The notation in this view includes a means to represent

the decomposition of Capsule components. This feature
allows step-by-step understanding of more and more
details of the product line architecture. Decomposition is
also used to show possible variations. A Capsule cannot
only be decomposed into componentCapsules but can also
be decomposed so that new functionality is added.

Figure 9 illustrates how the stereotypes of this view
can have relationships with each other. Between abstract
components we have decomposition relationships, and
concrete components for particular products are obtained
by specialization.  The notation of Capsules specifies
particular product (A) or subset of products (B, C) at the
bottom of the symbol.

Capsule1
<<topCapsule>>

CapsuleSN
<<subsystemCapsule>>

.. ...
Capsu leS 1

<<subsystemCapsule>>

Capsule11
<<compone nt1Capsule>>

Capsule21
<<component2Capsule>>

.. ...

.....CapsuleC1
<<concreteComponent>>

Capsu leCM
<<concreteComponent>>

.....

A B ,C

Abstract
Components

Concrete Components
and Products

Composition/
Decomposition

Specialization/Inheritance
 Figure 9. Structural variation in the concrete view.
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Looking top-down, the AbstractFeatures encapsulated
in the «TopCapsule» are decomposed into
«subsystemCapsule» abstract components: CapsuleS1,..,
CapsuleSN. Decomposition continues on
«component1Capsule» and « component2Capsule» if
necessary. In each component, abstract features of the
corresponding sub-domains are collected, which are
subsets of the parent domain abstract features. For each
product that is a member of the family, each of the
abstract components is specialized in a
«concreteComponent». For example, Capsule21 is
specialized in CapsuleC1,..., CapsuleCM, and so on.

The diagram includes specification of products or
product sets, providing information on the reusability of
each component. CapsuleC1 is modeled for product A
and CapsuleCM is modeled for a subset of products {B,
C}.

3.5 Concrete behavior view
The concrete behavior view of QADA is mostly

modeled using two main important diagrams: a state
diagram and a message sequence diagram. This view
describes how the system reacts in response to external
stimuli.

State machines are used with the concrete structural
view’s entities: capsules, ports and protocols. Standard
UML state charts are applied for modeling the state
machines of capsules. A particular usage of this, in
combination with inheritance, facilitates reuse in
modeling the concrete behavior view.

Variability is included in notation and state
decomposition. As for notation, parts that are not needed
in all products are represented with dashed lines (optional
states) or a different fill pattern and Product_Id
(alternative states). State decomposition is the other
source of variants. The decomposition of a state may be
shown by a small symbol in the top left corner of a state.

3.6 Concrete deployment view
The concrete deployment view of the QADA method

is mapped directly on the deployment diagram of UML.
UML deployment diagrams are much less well explained
in the standard than other elements of UML. However,
nodes - the UML elements which represent processing
elements – are Classifiers in UML, which means that they
can have instances, play roles in collaborations, realize
interfaces, etc. They can also contain instances of
components.

4. Conclusions
This paper describes how UML standard concepts can

be extended to address the challenges of variability
management in space of software product line
architectures. In particular, a new UML profile has been
defined to be integrated in a systematic approach, a

quality-driven architecture design and quality analysis
method. Standard UML extensibility mechanisms can be
used to express diagrammatic notations of each view of
the architecture modeled using the method. The detailed
description of each required extension presented in this
paper would allow a possible standardization of this
profile. Integrated use of a standard profile and a design
method as described here would allow extensive and
systematic use, maintenance and evolution of the software
product line architectures.

By using UML notation extensions, our method
models the variability, and hence explicitly describes,
where in the PLA views software evolution can occur. A
variation point specification is needed in a PLA view to
communicate to reusers where and how to realize a PL-
member-unique variant.

In the area of tool support a feasibility analysis of the
implementation of the new UML extensions was also
performed. A concrete CASE tool for software design
was examined during our study to investigate whether or
not it supports the new UML refinement. With smaller
adaptations the required extensions can be made available
in a CASE tool. In the experiment we evaluated the
Rational Rose RT tool, which strongly supports capsules-
based design [5] . With regard to how the tool can be
configured or what other new components it needs, our
evaluation showed that the conceptual views are mostly
affected by the missing required extension components,
but the concrete structural and behavior views need no
new components supported by the tool.
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Abstract 
 

Variabilities must be managed during many stages of 
product-line development including requirements 
elicitation and architecture design. We are reporting on 
our experience with mapping variabilities between 
requirements and architecture models that we have 
gathered during three different product line projects 
within Avaya. One of them being small-sized and 
exploratory in nature, prototyping new ways of IP 
telephony feature development, a mid-sized project 
currently entering implementation phase, and a third 
project that is of substantial size with major 
organizational changes involved. In all three projects, 
we were following a common approach of developing 
two separate variability models: one for capturing 
commonalities & variabilities during requirements 
elicitation (commonality analysis) and another one for 
realizing commonalities & variabilities during 
architecture design (module guide). In all three projects 
requirements and architecture models decomposed the 
system in different ways, which reflects different user and 
developer views, but results in many traceability issues. 
Further analysis, however, has shown that for the 
aforementioned projects, there is no need to express user 
and developer views in structurally different 
decompositions of the same system. What is actually 
needed are different refinements of the very same 
decomposition and additional statements that cut across 
the modules of that decomposition. 

1. Context 

Product-line engineering in Avaya follows a variant of 
the FAST software product-line engineering process [17] 
with project-specific extensions, if needed (such as 
strategic product-line engineering [5], domain 
assessments [9], or collaboration-based design [6]).  A 
common aspect of product-line projects is capturing family 

requirements in the form of a commonality-analysis 
document and using a module guide as a key component 
for architecture description [14][15]. Both of these model 
variability across the product family. 

A commonality-analysis document specifies system 
requirements that all family members share (commonalities) 
and also specifies how family member requirements differ 
(variabilities) [17]. In terms of a set of attributes that can 
be used to describe the family domain, a commonality is an 
attribute for which all family members yield the same value, 
while a variability is an attribute for which different family 
members yield different values. We quantify each 
variability by specifying its value space (parameters of 
variation) and also decide upon its binding time, i.e., the 
time when the actual value must be determined (e.g., 
specification time, compile time). 

 A module guide is a key structure for describing 
software architectures and specifies how a system is 
decomposed into an information-hiding hierarchy of the 
sort suggested in [15].  Each module describes its secret 
and responsibilities. System properties that are likely to 
change independently should be hidden in different 
modules, while we expect the interfaces between modules 
to be stable. While a commonality analysis specifies what 
variabilities must be supported by the architecture, a 
module guide specifies how to decompose the system in 
order to best support these expected changes. 

A module guide also represents work assignments 
because each module can be designed and maintained 
independently. Depending on the size of the product-line 
project1 one or more development teams have 
responsibility for developing the modules. Each team must 
know about the commonalities and variabilities that are 
relevant for their work assignment(s). Tracing 
commonalities and especially variabilities to the 

                                                 
1 Our largest-scale project currently has more than 200 leaf 
modules in the module guide. 
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corresponding architecture modules is therefore crucial to 
the success of a product-line engineering project.  

The people who perform the commonality analysis are 
not necessarily the same as those who are responsible for 
designing the architecture. This makes traceability even 
more important.  For our large-scale project a team of 
about 5 system engineers works on the commonality 
analysis and a team of about 10 lead developers and 
architects works on the module guide. It is not unusual for 
the two to proceed concurrently. It is therefore necessary 
to maintain traceability continuously between 
commonalities/variabilities and architecture modules while 
the two models develop. 

In later phases we must continue to maintain 
traceability also. If one variability model changes (for 
instance, a change in performance requirements may result 
in a restructuring of the software architecture) then 
traceability is either lost or we must go back and reanalyze 
how requirements relate to architecture components. It is a 
well-known problem that when the models evolve 
independently, we get non-trivial relations between 
requirements & architecture and traceability gets more and 

more difficult [1] [4] [11]. It is therefore advisable to look 
for ways to keep traceability as simple as possible. 

2. Differences between Variability Models 

Commonality analysis and module guide are variability 
models that serve different purposes. As already 
mentioned, this may result in traceability issues, i.e., the 
two models become difficult to compare. There are two 
possible ways to deal with that problem. First, we can 
allow the models to evolve independently and try to 
bridge the semantic gap by establishing increasingly 
complex and possibly imprecise relations. Second, we can 
limit the semantic gap and hence preserve traceability in 
the first place, i.e., create the simplest possible mapping 
between the two. 

From our experience, traceability degrades because of 
structural mismatch. We believe that a sufficiently precise 
variability model (such as a commonality analysis or 
module guide) needs to introduce a module structure in 
order to manage complexity. If there is no clear one-to-one 
correspondence between modules of a commonality 

General model for specifications 
For our purposes, we only need a few basic notions. In [1] [10] [12] [13], for example, similar notions are used as 

a basis for much more elaborate models of requirement and problem specifications. 
A system is part of the real world that is considered a unit. In a system, several phenomena are collected and 

correlated. Phenomena are, e.g., states (e.g., the water temperature read by a buoy at sea) and events (e.g., a message is 
sent via a communication channel). Terms, i.e., words in natural language are used to designate phenomena of the real 
world. We use terms to formulate statements about phenomena. Statements specify how phenomena are related to each 
other. An example for a statement could be: If an incoming call is not accepted by a call-center agent within 10 
seconds, the agent’s work state will change to “absent”. This statement describes a relation between the event 
incoming call, the state of a call, and the state of an agent. In addition, other terms are used. There is the value 10 
seconds and a temporal relation within <time duration>. Apparently, phenomena can be quite different things. There is, 
however, one type of phenomenon that we want to emphasize: phenomena whose value can change over time. These 
phenomena could be represented by timed functions or timed predicates. We will simply use variables for their 
representation. We call the set of terms and statements that describe a system, the system specification. 

Many notations have been proposed in the literature such as function tables [12] or temporal logic [16], [2], 
that allow expressing statements formally.  

For managing complexity, we structure a specification into several 
modules. A module in this context is a collection of terms and corresponding 
statements. A module declares those variables among the involved phenomena 
that are visible to the environment. All other variables are hidden from the 
environment. Variables are a means of interaction among modules. For instance, 
a unidirectional data flow between modules can be established, if a variable that 
is controlled by one module is visible to the other. Aggregation (submodule-of 
relation) is an additional relation among modules that we allow in our model for 
specifications. 

A commonality analysis is a system specification with parameterized 
statements. Statements with a value space greater than one are variabilities. 

 
 

Figure 1: General model for specifications 

 

…

… 

Module 1 Module 2  Module n 

System 

Module 2.1 Module 2.2 
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analysis and module guide2, traceability issues become 
inevitable. Figure 1 illustrates a simple semantic model for 
a commonality analysis and a decomposition into 
modules. 

If we demand structural equivalence between 
commonality analysis and module guide, we avoid most 
traceability issues and still allow for sufficient flexibility to 
express differences in user and developer view. Our 
product-line projects suggest (Section 3) that differences 
in user and developer views do not present themselves as 
structural differences, but as different refinements of the 
very same structure and cross-cutting statements relative 
to that structure. Commonality analysis and module guide 
describe the same structure, but with emphasis on 
different aspects: 

 
Commonality analysis: 
• Every module of the commonality analysis has a 

counterpart in the module guide, but not vice versa. 
• Commonality/variability statements can refer to single 

leaf modules. 
• Commonality/variability statements can refer to single 

intermediate modules or the root module. 
• Commonality/variability statements can refer to 

several (arbitrary) modules and describe how these 
modules cooperate. 

•  Commonality/variability statements can refer to 
several (arbitrary) modules and describe common 
characteristics of those modules (such as common 
look-and-feel). 

 
Module guide: 
• Module structure is complete in the sense that 

o there is no module from the commonality 
analysis structure that can’t be mapped to a 
module of the module guide, and 

o it defines a useful subsystem. 
• Every statement refers to single modules only. 
• A statement describes a variability hidden by a 

module (secret), or it describes a commonality 
expressed by the module interface. 

 
Apparently, even structural equivalence between 
commonality analysis and module guide leaves some 
complicated mapping issues, because, e.g., cross-cutting 
statements must be broken down into module-specific 
statement to become real work assignments. However, it 
seems that such mapping issues are inevitable and by far 
less complex than structural mismatch. Take for instance a 
statement about the common look & feel of the different 
user interfaces. This abstract statement cuts across 

                                                 
2 We allow modules from the module guide not to have 
counterparts in the commonality analysis, but not vice versa. 

several interface modules and must be refined into a 
precise specification for each of them. Another example 
would be a statement that describes how work items 
arriving at a media channel must be accepted and directed 
to the corresponding media processing module. Input 
medium and media processing vary and can be either for 
voice or text -based email. The statement describes a 
collaboration that cuts across media channel and media 
processing modules and must be refined into module-
specific statements for the involved modules, i.e., modules 
for voice media processing & voice channel and modules 
for text processing & email channel. 

3. Empirical Evidence 

We have studied three different product-line projects 
within Avaya. One of them is small-sized and exploratory 
in nature, prototyping new ways of IP telephony feature 
development, a mid-sized project currently entering 
implementation phase, and a third project that is of 
substantial size with major organizational changes 
involved. For all three projects commonality analysis and 
module guide were developed independently and 
compared later on. In all three cases it turned out that 
structural differences were not essential for expressing 
different views and that a consolidation was not too 
difficult. We consider this important evidence that 
structural mismatch between variability models can be 
avoided without sacrificing expressibility. 
• In cases where we could find one-to-one 

correspondence between modules from the 
commonality analysis and modules from the module 
guide a simple renaming is sufficient for consolidating 
the two models . 

• In other cases we found subordinate levels in the 
commonality analysis that provided a finer 
decomposition than the module guide. For instance, 
we had a commonality analysis module dealing with 
agent activities at the user interface that had a one-to-
one correspondence in the module guide. In the 
commonality analysis this module was further 
decomposed into submodules dealing with the 
different types of activities (e.g., accept work), while 
the module guide did not offer this refinement.  The 
reason for this was that the two models developed in 
parallel and the refinement in the module guide is 
planned for later phases. Therefore no further action 
was necessary. 

• In yet another case we had correspondence in lower-
level modules that were aggregated differently to 
higher-level modules by the different variability 
models. For instance, in the commonality analysis we 
grouped domain data model, user UI, knowledgebase 
management, and system data model all into a high-
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level module “data”. In the module guide, however, 
domain data model and user UI both belong to the 
domain behavior module, while knowledgebase 
management and system data model are aggregated 
into the platform services module. This implied a 
restructuring (i.e., new aggregation of the lower-level 
modules) of one or both decompositions. This 
restructuring was usually not difficult to perform 
because the structural difference was only minor. 

• Another case that implied a minor restructuring was 
when higher-level modules corresponded to each 
other, but their submodules were not consistent. We 
had, for instance, a higher-level module dealing with 
external interfaces in both the commonality analysis 
and the module guide. The decomposition of this 
module, however, differed for both models. The 
commonality analysis considered additional aspects 
such as communication channels or resource 
assignments that were assigned to different higher-
level modules by the module guide. On the other hand 
the commonality analysis also assigned some 
commonalities and variabilities to other high-level 
modules that the module guide would assign to the 
external interface module. A new aggregation of 
commonalities and variabilities solves this problem. 

• And finally we had collaboration statements for which 
a commonality or variability specifies a requirement 
that does not relate to one single module, but rather 
describes a collaboration among several modules. 
One example is that all family members shall provide 
functionality to upgrade data schemas when data 
structures are changed or added. This is a 
collaboration that concerns modules dealing with 
installation, data management, as well as system data 
models. As mentioned earlier these collaboration 
statements must be captured by a separate document 

To summarize we found that a consolidation was 
possible and only minor rework is necessary. Besides 
collaboration statements and not considering refinements 
all commonalities and variabilities could be mapped onto 
the module guide. 

4. Conclusion 

Based on theoretical considerations and practical 
experience, we are planning to adapt our development 
practice and always pursue structural consolidation while 
developing the variability models. Figure 2 illustrates this 
process. Whenever a structural change happens in one of 
the models it is necessary to consolidate it with the other 
model. The goal is to have corresponding structures in the 
end with the exception of cross-cutting statements that 
show up only in the commonality analysis and must be 
kept separately. 
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Abstract This paper focuses on the latter half of the product line 
definition: how product line products are developed using 
the assets (product development) and explores how the 
variability within and among those assets can be 
managed. 

 
Many manufacturers offer a broad range of software-

intensive products. In a product generation, thousands of 
product variants may be developed for different price 
segments or to account for different technologies. 
Variability must therefore be carefully managed to best 
meet each customer’s individual needs. Structure-
oriented configuration provides a suitable general 
approach to variability management, but it must be 
integrated into the existing reuse process to be useable. 
This paper motivates the importance of variability 
management in product development. It discusses the 
chances, tradeoffs, and open issues of managing software 
variability with structure-oriented configuration 
techniques, and presents our position with respect to 
other approaches. 

The central task in product development is to select a 
set of variable components which fulfills a particular set 
of customer requirements while also satisfying certain 
business and technical considerations (product 
derivation). Note that product line product development 
involves far more than reusing components however: “A 
core asset may be an architecture, a software component, 
a process model, a plan, a document, or any other useful 
result of building a system” [1]. 

Structure-oriented configuration is a generalized 
product derivation approach that is well suited to product 
line product development. Moreover, its language is 
amenable to existing tools.  

The ConIPF project [2] is currently investigating how 
to combine the product line approach with structure-
oriented configuration to produce a product development 
methodology that is practicable in industrial application, 
This methodology should address both direct product 
derivation as well as hybrid forms of product derivation 
and product development. 

1. Introduction 
 

Software-based products are rarely only-children. 
Over time, sibling products evolve through demand for 
variants of the same product or for separate but similar 
products. Examined in their entirety, these products 
represent a family of related products – a software 
product line.  

2. Industrial Software Product Lines In recent years, software product lines have become a 
topic of intensive research and widespread industrial 
interest as they offer seductive benefits. The product line 
approach provides a framework for systematic 
development of product line assets and their reuse in 
product development. 

 
The product line approach is appropriate for various 

organizations. It seems especially suitable for the parts of 
industry that exhibit the following characteristics: 

Systems, with software – The products are integrated 
packets of hardware and software. In the case of 
embedded systems, the algorithms for controlling the 
physics of the system must sometimes also be developed 
along with the hardware and software. 

According to Clements and Northrop [1], a software 
product line is “A set of software-intensive systems 
sharing a common, managed set of features that satisfy 
the specific needs of a particular market segment or 
mission and that are developed from a common set of 
core assets in a prescribed way”. 
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Hardware resource constrained – In a volume 
manufacturing context the hardware platform unit cost is 
significantly greater than the amortized development 
costs. The least expensive feasible hardware is therefore 
employed and the software must be adapted to suit. 

Technical configuration methods can be used for these 
tasks as they employ formal languages that guarantee the 
solutions’ correctness and completeness with respect to 
the models. To date, the representation language’s 
adequacy and maintainability have been the primary 
problems in technical configuration. The structure-
oriented approach ameliorates these concerns as follows: 

Large number of variants – Companies can develop 
hundreds or even thousands of variants in a product 
generation, each adapted to meet special customer or 
legal requirements, to conform to national preferences or 
to international standards. Each variant is based on 
common assets which minimizes the effort to develop it. 

Adequacy – The formal description language provides 
a means to structure variability hierarchically and 
therefore reduce complexity. Non-hierarchical constraints 
can be added independently to restrict variability. 

A stable and well-understood technological basis – A 
product line requires an architecture and reusable 
components, which cannot be adequately defined without 
an intimate knowledge of the subject domain. 

Clarity and maintainability – The different types of 
knowledge required for describing variability are 
explicitly distinguished in the models: knowledge about 
the variable entities is separated from solution procedures 
and concrete tasks. Also, the representation of the 
knowledge is separated from its presentation 
(visualization). 

The fundamental hypothesis behind the product line 
approach is that the investment in analysis, construction 
and maintenance of the assets will be justified by the 
benefits accrued from reuse. In situations where customer 
projects are highly complex, the variability introduced 
through product line considerations must be managed 
efficiently. The major challenges are: 

Applicability – Structure-oriented configuration 
provides a general method that can be applied to different 
domains and development phase. Tools (so-called 
inference engines) are available. 

Magnitude – Requirements specifications can number 
in the thousands of pages. A solution may consist of 
hundreds of modules to be integrated and parameterized. 

Configuration techniques have been proven useful for 
building complex products in various technical domains 
[3]. They are not limited to routine cases where all 
variants are anticipated and the variability models are 
assumed to be static. Dynamic adaptation and 
enhancement of the models has been integrated to support 
non-routine configuration [4]. 

Traceability – It is hard to make suitable selections 
from the vast number of components and parameters. 
Safety and reliability requirements, e.g., are not trivial to 
trace and verify. 

Interdependencies – Complex interdependencies may 
exist between different options, and consistency of the 
overall system must be guaranteed. 

 
4. Incorporating Configuration in Product 
Development 

Change – It is difficult to estimate the consequences of 
a specific change in requirements. In systems 
development, hardware and also algorithms may be 
developed in parallel with the software. Software 
requirements may therefore change repeatedly during 
development. 

 
A product development methodology for product lines 

must address the following: 

y Which system attributes correspond to the customer 
requirements 

y Which assets correspond to those attributes Product lines of the scale and complexity outlined 
above are demanding to use, especially when a holistic 
approach to variability management and comprehensive 
tool support are missing. 

y How can these assets be used to develop the 
product as quickly and efficiently as possible while 
ensuring the product’s quality 

 While assembling product components is clearly a 
configuration task, the product line approach has other 
dimensions. Firstly, it involves the entire software 
development process, not just component configuration. 
Moreover, it also involves deciding how to reuse 
components when appropriate and, when not, how to 
develop a product through reusing other suitable product 
line assets. This requires identifying software artifacts 
that may be relevant to considerations at the code, design 
and architectural levels – that is, a traceability to non-
component assets. 

3. Structure-Oriented Configuration 
Techniques 
 

In order to get a grip on the product derivation 
problem, we first examine the individual variability 
management or configuration steps. A simplified process 
would contain the following tasks: 

y Select appropriate generic components 
y Set the attribute values for these components 
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4.1 End-to-End Traceability Product line methodologies have always recognized 
the existence, and separation, of variability at the problem 
and solution (or requirements and realization) levels 
[5],[6],[7]. Regardless of whether feature modeling is 
included, the knowledge about the variability must be 
made explicit. Note that this knowledge exists in the 
organizations anyway. The danger is that only a few have 
it or that it is used sub-optimally. 

 
The product line approach attempts to provide an end-

to-end traceability – from initial requirements elicitation 
through product release. Frequently, there is no direct 
connection from specific requirements to specific 
components, or the components do not exist in the 
appropriate form. This brings other issues to the fore, 
such as:  

4.2 Traceability to Non-Component Assets Feature modeling – Individual customer requirements 
must be aggregated to ascertain the desired product 
characteristics. In conventional development they can be 
aggregated according to many schemas. With product 
lines, features are used to express the user-visible 
variability between products. 

 
Structure-oriented representations can be used to 

describe the required system attributes formally. The 
resulting model can be traversed to identify suitable 
assets, but these assets need not be components. This 
allows the freedom to define intermediate, more abstract 
or incomplete representations of the components as well 
as to integrate development documents. 

Parameter management and product calibration – In 
the industrial setting, there can be hundreds, even 
thousands, of products, each composed of thousands of 
components, each having numerous interrelated 
parameters. At the moment, these are managed on a 
component-by-component basis. 

With a structure-oriented representation of the 
variability, it is natural to proceed top-down and to refine 
the configuration stepwise. Parts of the configuration 
process can be automated – when decisions follow from 
other decisions. Other parts must be handled interactively. 
A special case is that the models and the product line, 
respectively, are insufficient to obtain a satisfactory 
solution. This can be resolved either by customer-specific 
adaptations or enhancements to the individual system, or 
by evolution of the product line. Initial ideas of how to 
integrate and support development in the product 
configuration process are described by Hotz et al. [8]. 

From a product line perspective, the guarantee of end-
to-end traceability itself is a variability management 
issue. Product lines can legitimately take different forms. 
They may differ in the level of parameterization support 
depending on the inherent complexity of the inter-
component dependencies. But support for feature 
modeling is more an explicit modeling decision. 

Basically, feature modeling is best used to support the 
transformation of customer requirements to system 
attributes: from problem to solution. This transformation 
is typically done manually by experts using 
undocumented knowledge. Not only can this process be 
error-prone, inconsistent and sub-optimal, it leaves 
organizations vulnerable to the loss of these experts and 
to unrecognized knowledge gaps. Whether or not this is 
acceptable or at least tolerable depends on a number of 
factors: 

 
4.3 Investment Considerations 
 

Using structure-oriented modeling has the advantage 
of a mature approach and existing tools compared to other 
product line approaches. Available configuration engines 
provide a domain-independent core technology that must, 
however, be extended by a domain- and process-specific 
modeling and configuration interface. Size of the domain – For smaller domains, the 

complexity may remain manageable. The hybrid configuration methodology described 
above is especially appropriate for large and complex 
variability management problems that cannot be handled 
manually (cf. chapter 2). A reasonably stable application 
domain and a basically mature domain model strengthens 
the case for investment. 

Maturity of the domain – In new or fast-changing 
domains, the state of the explicit knowledge may lag the 
state of the development environment, or the effort to 
maintain the knowledge model may be too great. 

Maturity of the organization – Knowledge about the 
transformation of requirements to system attributes must 
be learned and becomes more precise over time. New 
organizations may therefore not possess this knowledge 
even when they are in mature domains. 

Compared with single systems development, the 
product line approach requires a considerable additional 
modeling effort in order to ensure traceability. Aligning it 
with the structure-oriented configuration approach best 
assures that this will be recouped. Features can therefore be used to obtain an initial 

system configuration. Should the investment in feature 
modeling not be justified under consideration of the 
above factors, reference configurations of the system 
based on similar cases could be used as a starting point. 
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5. Related Work 6. Conclusions 
  

Clements and Northrop [1] describe software product 
line practices and patterns. The practice areas it 
introduces focus on building product lines rather than on 
using them. Our methodology is meant to complete the 
product line approach in this respect. Particularly, it 
integrates configuration techniques into product line 
product development. 

Structure-oriented configuration offers a formal 
method for solving configuration problems which lie at 
the heart of product line product derivation: the selection 
and parameterization of components. It guarantees 
consistent and complete component configurations. 
Commercial structure-oriented configuration tools exist 
already. 

Bosch et al. [7] present a collection of variability 
issues that the product line community encounters in 
practice and theory. These issues are input into the 
methodology development. 

Product lines, however, tackle a bigger problem: they 
aim at a comprehensive approach to systematic reuse, 
where variability management plays a significant role. 
We therefore examined how structure-based 
configuration and allied knowledge management 
techniques can be applied to support end-to-end 
traceability and traceability to non-component assets. 
Moreover, we have emphasized their role in reducing the 
complexity of parameter management. 

Günter and Kühn [4] give an overview of various 
configuration approaches (e.g., rule-based systems and 
case-based technologies). The technical problems 
encountered in configuration of complex products have 
been primarily related to the representation language’s 
adequacy and maintainability. The structure-oriented 
approach addresses these concerns. 

We have outlined techniques to tailor the methodology 
to immature organizations or small domains, thus 
minimizing the investment needed to instantiate a viable 
product line. 

Kühn [9] introduces state-based behavior descriptions 
into configuration models. This allows the configuration 
of system behavior; an aspect which might be especially 
important to software-based systems. The importance 
depends on the level at which a system is to be configured 
and on the configuration goal, respectively. The 
organizations that we have studied have all modularized 
the variability without crossing the state-machine 
boundaries. 

The ConIPF project is defining a comprehensive 
methodology that uses configuration techniques to 
improve product line product development. The main 
deliverable of the project will be a book aimed at 
practitioners which will outline the issues and challenges 
in introducing the methodology and our experiences in 
applying it in two industrial-scale experiments. 

Felfernig et al. [10] present a way to use UML as a 
configuration language. Essentially, they extend UML 
with respect to variability representation and define the 
semantics of the UML constructs using a formal 
description language that is amenable to an inference 
engine. This represents an option for integrating software 
engineering and configuration knowledge engineering. 
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Czarnecki and Eisenecker [6] and Batory et al. [11] 
apply domain-specific languages (DSLs) and generators 
to produce variants from a generic implementation 
platform. The DSL specifies the customized applications 
and the generator converts the specifications into source 
code. This approach only handles predefined cases, 
however. Our methodology also addresses adaptation and 
evolution. 
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Abstract

In this paper, a product derivation process is described,
which is based on specifying customer requirements, fea-
tures and artifacts in a knowledge base. In such a knowl-
edge base a model about all kinds of variability of a
software-intensive systems is represented by using a logic-
based representation language. Having such a language,
a machinery which interprets the model is defined and
actively supports the product derivation process e.g. by
handling dependencies between features, customer require-
ments, and artifacts. Because the adaptation and new devel-
opment of artifacts is a basic task during the derivation pro-
cess where a product for a specific customer is developed,
this evolution task is integrated in the proposed knowledge-
based derivation process.

1. Introduction

The product line approach makes a distinction between
domain engineering, where a common platform for an ar-
bitrary number of products is designed and realized, and
application engineering, where a customer product is de-
rived based on the common platform (product derivation
process) [3, 5]. In this paper, a product derivation process
which includes both the selection and assembling of config-
urable assets (like requirements, features, artifacts) out of a
platform and their adaptation, modification, and new devel-
opment for customer specific requirements is presented.

The main assumption is based on the existence of a
descriptive model for representing already developed arti-
facts and their relations to features and customer require-
ments as well as the underlying architectural structure with
its variations [2, 14]. All kinds of variability are repre-
sented (described) in such a model. Thus, variability is
made explicit while the realization of the variability in the
source code is still separate. This model is called configu-
ration model. Thus, we speak of a knowledge-based prod-

uct derivation process (kb-pd-process). Furthermore, it is
assumed, that such a model is necessary to manage the in-
creasing amount of variability in software-based products.
Such a configuration model can be used for partially auto-
mated configuration of technical systems, where ”configur-
ing” can be selecting, parameterizing, constraining, decom-
posing, specializing and integrating components of diverse
configurable assets (e.g. features, hardware, software, doc-
uments etc.). With partially automated we mean a process
where user interactions are made for specifying a configu-
ration goal and logical impacts are made automatically by
the system.

A configuration model describes all kinds of variability
in a software system. Thus, it describes all potentially deriv-
able products. But this is done on a descriptive level: when
using a configuration model with an inference engine, only
a description of a product is derived, not the product itself.
But it is intended to use the description for collecting the
necessary source code modules and realizing (implement-
ing, loading, compiling etc.) the product in a straight for-
ward manner. Furthermore, a configuration model is not
a model to be used for implementing a software module,
e.g. it does not necessarily describe classes for an object-
oriented implementation.

Summarizing, a product derivation process which is sup-
ported by a knowledge base, includes the following basic
tasks:

1. Make the software, i.e. design and implement the ar-
tifacts. This is done in domain engineering, but also
when changes according to specific requirements have
to be realized.

2. Model all assets related to the software, i.e. customer
requirements and features, as well as the software it-
self according to their variability facilities. This means
generate the knowledge base.

3. For a specific product, the product derivation process
is performed to realize the product configuration.

24



A major difference of configuring software and config-
uring hardware is that the creation of the software (or mini-
mum parts of it in the evolution case) is closely related to the
configuration process itself (i.e. point one and three have to
be interchanged). This is normally not the case for hard-
ware, where the creation of technical entities like evalua-
tors, PC’s or aircraft cabins are strictly separated from their
descriptive configuration, and later changes are hardly pos-
sible.

In the following, we first describe some distinct levels
which we have to deal with when describing configurable
assets (Section 2). In Section 3, we present the language
entities as well as their interplay in the product derivation
process. Evolution aspects are discussed in Section 4. A
short survey on some related work is given in Section 5.

2. Levels of abstraction

We identify three tasks to be done on distinct levels
of abstraction for exploring a knowledge-based product
derivation process:

1. Language for specifying the knowledge base –
What is used for modeling?

This level describes what can be used for modeling the
general aspects of the process and the domain specific
part. This is done by specifying a language, that can
be used to describe the necessary knowledge. Further-
more, a machinery (inference engine) for interpreting
this description is specified and realized in a tool. Ba-
sic ingredients of the language are concepts, relations
between concepts, procedural knowledge and a spe-
cific goal description (see [8, 10] for an example of
such a language and a suitable tool). Entities of this
language are further described in Section 3.

2. Aspects of the process – What are the general in-
gredients of a product derivation process?

On this level, general aspects that have to be modeled
for engineering and developing products are specified.
This level determines, which entities for the kb-pd-
process have to be described. This is intended to be
a description for a number of kb-pd-processes in dis-
tinct business units or companies, ideally for develop-
ment of combined hardware/software systems in gen-
eral. The description of a specific domain is done on
the next level.

Following aspects of the kb-pd-process are currently
taken into account:

� Customer requirements: A description of
known and anticipated requirements expressed in
terms which can be understood by the customer.

� Features: A description of the facilities of the
system and its artifacts.

� Artifacts: A description of the hardware, soft-
ware components and textual documentations to
be used in products.

� Phases of the process: A description of general
phases of the process, e.g. ”determine customer
requirements”, ”select appropriate features”, ”se-
lect and adapt necessary artifacts”.

� Reference configurations: A description of typ-
ical combinations of artifacts (cases), which can
be enhanced or modified for a specific product.

For each aspect, an upper model with e.g. decompo-
sitions (e.g. sub-features) and relations between these
aspects is expressed. The upper model describes com-
mon parts of domain specific models. Upper models
are used to facilitate domain specific modeling. They
reflect the phases of the product derivation process
as well as their aspects. Furthermore, relations be-
tween those aspects are specified, e.g. require relations
between customer requirements and features. This
means, relations between parts of the upper-model are
specified.

An example of an upper model is given in Figure
1. Two different views on features (i.e. customer-
view (cv-feature) and technical-view (tv-feature))
are shown. Both specialize to a concept which has
sub-features and one which doesn’t (cv-no-subs, cv-
with-subs). The dotted arrows indicate places where
the domain specific models come in. Lines indicate
specialization relations and arrows decomposition re-
lations. This example shows how conceptual work
done in [7, 12, 13, 19] can be used for specifying an
upper model, which in turn can be used for automated
product derivation.

Each aspect of the process is modeled by using the lan-
guage. Thus, it is described how e.g. customer require-
ments and their relations can be represented by using
concepts and concept relations. In this paper, we do
not further elaborate on this topic.

Artifacts

CPS

CPS-system

Customer-Requirements Features

has-subrequirements has-subfeatures

has-parts

has-component

Figure 1. Example of an upper model
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3. Domain specific level – What is modeled for a spe-
cific domain?

On this level, a domain specific model is created by
using the language and the upper model. By interpret-
ing the model with a machinery (given by a tool), this
model is used for performing the process. For devel-
oping software modules (i.e. on a file, source code, de-
veloper model level), development tools and software
management tools are integrated. In this paper, we do
not further elaborate on this topic.

3. Entities of the knowledge based model

Basic entities of the model and the process are listed in
the following:

1. A concept model for describing concepts by using
names, parameters and relations between parameters
and concepts. Main relations are decomposition rela-
tions, specialization relations and restrictions between
parameters of arbitrary concepts expressed by con-
straints. Such concept models can be used to describe
properties and entities of products like features, cus-
tomer requirements, hardware components, and soft-
ware modules.

2. Procedural knowledge mainly consists of a descrip-
tion of strategies. A strategy focuses on a specific
part of the concept model. E.g. a strategy focuses on
features, another one on customer requirements and a
next one on software components or on the system as
a whole. Furthermore, conflict resolution knowledge
is used for resolving a conflict (e.g. by introducing ex-
plicit backtracking points).

3. A goal specification describes a priori known facts, a
specific product has to fulfill.

Strategies are performed in phases which focus on a spe-
cific part of the model. After selecting this part, in a phase
all necessary decisions (i.e. configuration steps) are deter-
mined by looking at the model. Each configuration step
represents one decision, e.g. the setting of a parameter
value or processing a decomposition relation. Possible con-
figuration steps are collected in an agenda, which can be
sorted in a specific order, e.g. first decomposing the archi-
tecture in parts, then selecting appropriate components and
then parameterizing them. Decisions can be made by us-
ing distinct kinds of methods including automatic or manual
ones. Each decision is computed by a value determination
method, which yields to a specific value representing the de-
cision. Examples for value determination methods are: “ask
the user”1 , “take a value of the concept model” or “invoke a

1By the means of this value determination method the partially auto-
mated process is realized, i.e. user interactions come in here.

given function”. Thus, in a configuration step the decisions
to be made are described and after applying some kind of
value determination method the resulting value is stored in
the current partial configuration. A partial configuration
represents all decisions made so far and their implications,
which are drawn by the mechanisms described in the fol-
lowing. The resulting configuration, or final configuration
describes the product with all configurable assets (features
that are included, artifacts that have to be used etc.). Some-
times this is called product model (do not confound that
with the previously mentioned configuration model, which
describes not one but all products in a generic way).

In a cyclic practice, after each configuration step more
global (i.e. systemwide) mechanisms are (optionally) exe-
cuted. Examples are:

� Constraint propagation: For computing inferences
followed by a decision and for validating the made de-
cisions, constraints defined in the knowledge model
(constraints represent relations between concepts and
their properties) are propagated, based on some kind
of constraint propagation mechanism.

� External mechanisms: For performing an external
method, which does not use the concept model but
only the currently configured partial configuration, ex-
ternal techniques can be applied. Examples are:

– Simulation Techniques: a simulation model is de-
rived from the partial configuration and a sep-
arated module (like matlab) is called for this
task. Some specific kind of simulation in the area
of software product derivation is ”compiling the
source files”.

– Optimization techniques: the current partial con-
figuration is used to compute optimal values for
some parameters of the configuration.

– Calibration: the current partial configuration
might only give ranges for some parameters,
which can be further specified by calibrating the
real system. This calibration process can be
started as a global mechanism. Its results can be
stored in the partial configuration for further con-
sidering their impacts on other parameters in the
model.

� Further logical inferences: Methods, which perform
logical inferences that are not performed using the de-
cision process but use the concept model, can be in-
voked (e.g. taxonomic inferencing, description logic
etc.).

The objective of global mechanisms is to compute values
for not yet fixed decisions or to validate the already made
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decisions. Those mechanisms (if more than one is present)
are processed in an arbitrary order but repeated until no
new values are computed by those mechanisms, i.e. until
a fixed point is reached. If this validation is not success-
ful or the computed value for a parameter is the empty set,
a conflict is detected (e.g. if the compilation of the source
files fails). A conflict means that the goal description, the
subsequent decisions made by the user and their logical im-
pacts are not consistent with the model. For resolving a
conflict, diverse kinds of conflict resolution methods (e.g.
backtracking) can be applied to make other user-based deci-
sions (see [8]). Those conflict resolution methods all try to
change the goal description or subsequent decisions made
by the user, because they are not consistent with the cur-
rent model. On the other side, one could also try to change
the model, because if a conflict is detected, with the given
model it is not possible to fulfill the given goal descriptions
and user needs. This gives a starting-point for evolution, i.e.
to modify or newly develop artifacts and include them in the
model to fulfill the needs (see Section 4).

Summarizing as a general skeleton the kb-pd-process
performs the following (slightly simplified) cycle:

Until no more strategy is found:

1. Select a strategy

2. Compute the agenda according to the focus

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry

� Perform a value determination method

� (Optionally) execute the global mechanisms

� If a conflict occurs, evaluate conflict resolution knowledge.

4. Including evolution aspects in the process

Above, a well-known configuration process is described
(see [6, 9]). The changing of artifacts and further develop-
ment of new components (i.e. evolution) can be included
in this process as described in the following subsections.
The aspect of evolution can be seen as a kind of innova-
tive configuration. We see innovative configuration not as
an absolute term but as a relative one – relative to a model.
A model describes a set of admissible configurations. In-
novation related to this model is given if the configuration
process computes a configuration which does not belong to
the predefined set. For supplying a product derivation pro-
cess where evolution of artifacts is a basic task, we expect
to apply methods known in innovative configuration to be
used.2

2A survey on innovative configuration is given in [8, 15].

4.1. Points of evolution

Following situations which come up in the process de-
scribed in Section 3 indicate the necessity for evolution:

1. Anticipated evolution can partially be realized with
more general models: Instead of narrowing the model,
broader value ranges for parameters and relations can
be modeled a priori. For example, the sub-models de-
scribing customer requirements or features can repre-
sent more facilities than the underlying artifacts can
realize. If during the derivation process such a feature
is selected by the goal description or inferred by the
machinery, it gives raise to evolution of an artifact.

2. Conflicts which cannot be resolved by backtracking,
i.e. by using the current model, indicate places where
evolution can take place. For example, if two arti-
facts are chosen which are incompatible, a resolution
of such a conflict would be to develop a new compati-
ble artifact and include it into the model.

3. Points set by the user: Instead of selecting a value at a
given point, the evolution of the model can be started
by the developer for integrating a new or modified ar-
tifact in the partial configuration. Another example is
given when the user does not accept system decisions.
Thus, an evolution process is explicitly started by the
user to change the model for making another decision
than the model indicates. Thus, evolution as a kind of
value determination method is introduced.

4.2. Evolve the configuration model

All dependencies of new concepts (features, artifacts,
customer requirements) to existing ones must be specified.
Having a model, the context where a new concept will be
included, can be computed on the basis of this model. For
instance, the related constraints of a depending aggregate
or a part-of decomposition hierarchy can be presented to
the developer for consideration during the evolution of the
model.

4.3. Supporting the evolution of features, customer
requirements and artifacts by a knowledge-
base approach

By analyzing the knowledge base, following information
used for development, can be presented to the developer.
The underlying idea is to present those parts of the model,
which can be used in special development situations, to the
developer.

� Present already defined concepts with their parameters
and relations.
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� Present the specialization relations of all, of some se-
lected or of some depending concepts. In the last case
subgraphs, which describe a specialization context of
a given concept are computed, e.g. the path to the root
concept with direct successors of each node.

� Present the decomposition details of a given relation of
all, of some selected or of some depending concepts.
In the last case subgraphs which describe the decom-
position context of a given concept are computed, e.g.
all aggregates, which the concept are part-of and all
transitive parts which the concept has.

� Given a concept, present all concepts which are in re-
lation to it by analyzing the constraints, i.e. also a sub-
graph is computed. Because constraints relate param-
eters of concepts the subgraph presents not only con-
cepts but also relations between parameters.

� Given a concept, present all strategies where a param-
eter or relation of the concept is configured.

� Given a new concept description (with parameters and
relations), compute a place in the specialization hierar-
chy for putting the concept into.

Knowledge modeling can be seen as a specific kind of
evolution. If no given model exists, knowledge modeling
is an evolution of the always given upper model. The men-
tioned services can be used for bringing up the first model of
the existing artifacts, features and customer requirements.
Thus, by supporting the evolution task, the task of knowl-
edge modeling is also be supported.

4.4. Conflict resolution with an evolved model

When the model is changed, e.g. because new artifacts
are included, the changes must be consistent with the model
and already carried out inferences stored in the partial con-
figuration. What kind of resolution techniques are useful,
still has to be developed. One trivial approach is to start the
total process again with the new model and the old tasks,
and make all decisions of the user automatically. Thus,
test the new model with the user needs if they are consis-
tent. This can be done automatically, because the user in-
put is stored in the partial configuration, only the impacts
of the inference machine (e.g. constraint propagation) have
to be computed again, based on the new model. Another
approach is to start some kind of reconfiguration or repair
technique, which changes the partial configuration accord-
ing to the new model.

4.5. Evolve the real components

Last but not least the new components have to be build.
The new source code can be implemented by using existing

tools for developing and changing software systems.

4.6. The kb-pd-process with the evolution task in-
cluded

Summarizing, the kb-pd-process where evolution is
included looks like the following:

Until no more strategy is found:

1. Select a strategy.

2. Compute the agenda according to the focus.

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry.
� Perform a value determination method or evolution is started

by the user.
� (Optionally) execute the global mechanisms.
� If a conflict occurs, evaluate conflict resolution knowledge or

start evolution for changing the model.

5. Related Work

There are some approaches which try to automate soft-
ware processes [17, 18]. The main distinction to the ap-
proach proposed in this paper is the different kind of
knowledge representation. Instead of using rule-based sys-
tems, which have deficiencies when used for large domains
[9, 11, 20], a basic concern of the language we propose
is to separate distinct types of knowledge (like conceptual
knowledge for describing components and their variabil-
ity and procedural knowledge for describing the process
of derivation). A product derivation process with distinct
knowledge types is implemented in the tools EngCon [1]
and KONWERK [8, 10]. A requirement which is e.g. not
followed in [4], where information about components is
mixed with information about binding times in UML dia-
grams. One has to distinguish the knowledge representation
and the presentation of the knowledge to the user. For pre-
senting it might be useful to mix some knowledge types at
certain situations (as described in 4.3). But for maintain-
ability and adequacy reasons it is of specific importance to
separate them.

In [16] a support for human developers, which is not
based on automated software processes, is proposed. E.g.
representations are mainly designed for human readability
instead of machine interpretation. As a promising approach,
structured plain text based on XML notations are consid-
ered. Thus, the combination of formal structured knowl-
edge and unstructured knowledge should be achieved. On
the one hand XML is a mark-up language, where the main
problem is to create a document type definition that de-
scribes the documents to be used for representing software.
One could see the language described in Section 3 as a spec-
ification for such a DTD. Thus, in our opinion for formally
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describing configuration knowledge in a structured way the
necessary type definitions are already known. On the other
hand, if unstructured knowledge should be incorporated,
one should also define tools which can handle them in more
than a syntactic way (e.g. similarity-based methods or data-
mining techniques) to get a real benefit of those kinds of
representations.

6. Conclusion

Modeling knowledge about features, customer require-
ments, and artifacts and a tool-based usage of such a model
yields to a partially automated product derivation process.
Partially means that goal descriptions and user interactions
are still possible, but logical impacts are drawn by the infer-
ence engine. It was shown, how such a product derivation
process can be defined. Furthermore, the evolution of arti-
facts is introduced in the process and can be supported by
using the knowledge which is explicit in the model.
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Introduction 
 
Most software systems contain areas where 
behavior can be configured or tailored based on 
user objectives. These areas are referred to as 
variation points. Management of variability 
becomes mo re and more important, because it is 
closely related to software reuse, object-oriented 
design frameworks, domain analysis, and software 
product lines. Software variability is the ability of 
a software system that can be changed, tailored, or 
configured for specific use in a particular 
environment. Variability management is 
recognized as a critical concept in software 
engineering. Successful management of variability 
can shorten development time and lead to more 
flexible and better customizable software products.  
 
Generally, the main reason for software variability 
management is to support reuse in a product 
families. Variability management could range 
from more formal approach based on mathematical 
models  [Lung94], systematic methods like domain 
analysis, to simple programming support, e.g., 
inheritance in object-oriented programming 
languages or the #ifdef compiler directive. This 
paper, however, studies variation points and 
software variability from the performance point of 
view. Specifically, this paper deals with analyzing 
and building a framework for communications 
software for routing applications with an aim to 
support detailed software performance evaluations.  
 
There are many possible alternatives for 
concurrent and networked software. Schmidt et. al,  
[Schmidt00] captured and documented a set of 
design patterns for this area. The book discussed 
alternatives in details. However, it is often still 
difficult to make concrete evaluation or objective 
tradeoff analysis  based on patterns from the 
performance point of view due to the details we 
need in performance evaluation.  

This paper studies various variation points for 
communications area. The study will be used to 
build a generative framework. The framework will 
be studied together with software performance 
engineering techniques , layered queuing networks 
(LQNs) [Woodside95], to characterize 
performance aspects for various approaches . The 
approach will provide useful guidelines for the 
users to choose an appropriate model or design to 
meet their performance requirements. 
 
Problem Description and Approach 
 
In distributed applications, there exist many 
variations. For example , there are  client-server 
model and peer-to-peer model. For each model, 
there are further variations depending on specific 
applications and requirements, typically 
scalability, performance, and portability. For 
instance, for a server design, we may adopt a 
straightforward Reactive design pattern. However, 
the approach often leads to scalability concern. 
This can be improved using either Half-Sync/Half-
Async or Leader/Follwers pattern. For a design 
pattern like Half-Sync/Half-Async, there still exist 
further variants, as discussed in [Schmidt00].  
 
The design patterns document general guidelines 
and principles for building software systems. 
However, for some applications, we need deeper 
understanding and more detailed analysis. A 
simple example is demonstrated here. Figure 1 
illustrates the structure of the Half-Sync/Half-
Async pattern. It is easy to identify a simple 
variation point, which is number of worker threads 
in the thread pool. The number can be easily 
configurable. Yet, from the performance 
perspective, it is difficult to determine the number 
of threads that will provide the best result. The 
most commonly adopted approach in industry is 
measurement, because there are many 
implementation and platform specific details 
involved. 



 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Another variation point that is more difficult to 
deal with is the number of request queues . 
Multiple queues provide more flexibility to 
support QoS (Quality of Service), but we need a 
scheduling policy to retrieve data from those 
queues . Moreover, we need to consider if it is  
better to have a dedicated thread for each request 
queue than a tread pool. 
 
An even more difficult tradeoff analysis is to 
determine an appropriate design pattern or 
structure. The Leader/Followers pattern can als o 
be used as an alternative for concurrent and 
networked software. There are advantages and 
disadvantages for each approach. Schmidt et al, 
[Schmidt00] discussed those issues. However, 
there are many questions need to be answered in 
order to derive an objective tradeoff analysis. On 
the other hand, it is almost impossible in practice 
to develop several alternative designs and perform 
thorough evaluations for each of the alternative 
due to resource constraints and competitions.  
 
The main idea of this paper is to actually develop 
some typical alternative designs and conduct 
thorough performance analysis and 
characterization for each design. Hands-on 
experience is critical in building a useful 
framework. The process will help identify concrete 
variation points and the results will be useful in 
predicting performance and building a generative 
framework to support future system development. 
 
The focus of this project is on network router 
software. One of the main functions of a router is 
to route and forward data packets. However, many 

features or requirements are related to data routing 
and forwarding. For example, there may be 
different levels of QoS requirements. Each level 
may need a separate queue associated with a 
queuing mechanism. Each level of traffic may also 
need to be policed differently based on pre-defined 
policy. Even for the same level of QoS, there exist 
different approaches. 
 
We did not build a system from scratch; instead, 
we obtained a router software system from 
industry. The original design of the software was 
similar to the Reactive pattern as shown in Figure 
2. The software process contains a main thread. 
When a router receives a packet from the network, 
the packet is stored in a kernel buffer. The main 
thread will then read packets from the buffer and 
process them and put them in a destination queue. 
There is a dedicated thread for each destination 
queue to forward the packet to an adjacent router. 
The select () function is used to demultiplex a set 
of socket handles. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3 illustrates our initially modified design 
based on the Half-Sync/Half-Async pattern. The 
software process now contains several threads. 
Multiple threads cannot use the select function 
concurrently to demultiplex a set of socket handles 
because the operating system will erroneously 
notify more than one thread calling the select 
function when I/O events are pending on the same 
set of socket handles [Steven98]. Therefore, there 
is only one thread for this layer to properly read 
data from the network. The asynchronous layer 
reads data packets from the network and stores 
them into an appropriate queue, depending on the 
data type. There are several worker threads in the 
synchronous layer. The number of worker thread is 
configurable. Currently, the number of input queue 
is static, because there are two types of data packet. 
The number of input queues , however, can be 
changed. Moreover, a scheduling algorithm is  

Figure 1. Structure of the Half-Sync/Half-
Async Pattern 
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needed among multiple queues. The scheduling 
policy is another point of variation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Work in Progress 
 
Currently, we are in the process of building 
another alternative design based on the Leader/  
Followers pattern as diagrammed in Figure 4. 
 
 
 
 
 
 
 
 
 

Figure 4. An Alternative Design Based on the 
Leader/Followers Pattern 

 
In this design, multiple threads coordinate 
themselves. Only one thread at a time – the 
leader – waits for an event to occur. Other 
threads – the followers – can queue up waiting for 
their turn to become the leader. After the leader 
detects an event, it promotes one follower to be the 
leader. It then becomes a processing thread 
[Schmidt00]. 
 
The main reason that we choose to convert the 
original router system to the Leader/Followers 
pattern is that the model adopts a different design 
principle that is closely related to performance. By 
doing it, we will identify more variation points, 
which will provide valuable lessons in building the 
framework. Moreover, this design will help us 
better understand related performance issues. 
 
We are also considering other alternatives. Figure 
5 illustrate some examples. 
 

We are also investigating issues associated with 
notation and evolution. Evolution is more complex 
and may be problematic for a generic system that 
is not well represented and designed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Other Alternatives: an Example 
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ABSTRACT 
System architectures embody the same kinds of structuring and 
decomposition decisions that drive software architectures. 
Moreover, they include hardware/software tradeoffs as well as the 
selection of computing and communication equipments, all of 
which are completely beyond the realm of software architecture. 
The foundation of any software system is its architecture, that is, 
the way the software is constructed from separately components 
and the ways in which those components interact and relate to 
each other. If the requirements include goal for variability 
management, then the architecture is the design artifact that first 
expresses how the system will be built to achieves this goal. Some 
architectures go on to become generic and adopted by the 
development community at large: three-tier client server, layered, 
and pipe-and-filter architectures are well known beyond the scope 
of any single system. In this paper, we use a platform based on 
multi-agents system in order to test, evaluate component, detect 
fault and error recovery by dynamical reconfigurations of the 
architecture. This platform is implemented on pipe-and-filter 
architecture which is applied for controlling a mobile robot to 
follow a trajectory towards the desired objective in the presence 
of obstacles. The hardware/software of this architecture system is 
completely monitored by the platform in order to evolve quality 
attribute variability. Some scenarios addressing the variability at 
architectural level is outlined by both with and without using our 
platform-based-agents. In this paper, we discuss how our 
approach supports the variability management of complex 
software / hardware systems. 
 
Keywords 
Platform-Based-Agents, Fault-Tolerance, Monitoring, Variability. 
 
1. INTRODUCTION 
A critical aspect of any complex software system is its 
architecture. The architecture deals with the structure of the 
components of a system, their interrelationships and guidelines 
governing their design and evolution over time [13][3].  
 
 
 
 
 
 
 
 

The architectural model of a system provides a high level 
description that enables compositional design and analysis of 
components-based systems. The architecture then becomes the 
basis of systematic development and evolution of software 
systems. It is clear that a new architecture that permits the 
dynamism reconfiguration, adaptation and evolution while 
ensuring the variability management of an application is needed. 
The variability is defined as the ability of a software system or 
artifact to be changed, customized or configured for use in a 
particular context [9][11][15]. The architectural level reasoning 
about the variability quality attribute is only just emerging as an 
important theme in software engineering. This is due to the fact 
that the variability concerns are usually left until too late in the 
process of development. In addition, the complexity of emerging 
applications and trend of building trustworthy systems from 
existing, untrustworthy components are urging variability 
concerns be considered at the architectural level. In [1] the 
researches focus on the realization of an idealized fault-tolerance 
architecture component. In this approach the internal structure of 
an idealized component has two distinct parts: one that 
implements it’s normal behavior, when no exceptions occur, and 
another that implements it’s abnormal behavior, which deals with 
the exceptional conditions. Software architectural choices have 
profound influence on the quality attributes supported by system. 
Therefore, architecture analysis can be used to evaluate the 
influence of the design decisions on important quality attributes 
such as variability management [6]. Another axe of research is the 
study of fault descriptions [4] and the role of event description in 
architecting dependable system [5]. Software monitoring is a 
well-know technique for observing and understanding the 
dynamic behavior of programs when executed, and can provide 
for many different purposes [14][16]. Besides variability, other 
purposes for applying monitoring are: testing, debugging, 
correctness checking, performance evaluation and enhancement, 
security, control, program understanding and visualization, 
ubiquitous user interaction and dynamic documentation. Another 
strategy is used, like a redundant array of independent component 
(RAIC) which is a technology that uses groups of similar or 
identical distributed components to provide dependable services 
[7].  
 
The RAIC allows components in redundant array to be added or 
removed dynamically during run-time, effectively making 
software components “hot-swappable” and thus achieves greater 
overall variability. The RAIC controllers use the just-in-time 
component testing technique to detect component failures and the 
component state recovery technique to bring replacement 
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components up-to-date. To achieve high variability management 
of software/hardware, the architectures must have the capacity to 
react to the events (fault) and to carry out architectural changes in 
an autonomous way. That makes it possible to improve the 
properties of quality of the software application [2]. The idea is to 
use the architectural concept of agent to carry out the 
functionality of reconfiguration, to evaluate and to maintain the 
quality attributes like variability management of the architecture 
[10]. Intelligent agents are new paradigm for developing 
software/hardware applications. More than this, agent-based 
computing has been hailed as “the next significant break-through 
in software development” [12], and “the new revolution software” 
[8]. In this paper, we propose a new approach which provide a 
platform based agents. This platform will monitor the global 
architecture of a system and improve variability quality attribute. 
It will achieve its functional and non functional requirements and 
evaluate and manage changes in such architecture dynamically at 
the execution time. 
 
This paper is organized as follows. In the next section, we will 
introduce the platform based multi-agents. Then a strategy to 
achieve fault tolerance by our platform  will be presented. In 
section four, we describe an example showing the application of 
our platform on Pipe-and-Filter architecture and its benefits are 
outlined through some scenarios about the variability 
management. Finally, the paper concludes with a discussion of 
future directions for this work. 
 
2. THE PLATFORM MULTI-AGENTS 
In recent years, agents and Multi-Agent Systems (MAS) have 
become a highly active area of Artificial Intelligence (AI) 
research. Agents have been developed and applied successfully in 
many domains. MAS can offer several advantages in solving 
complex problems compared to conventional computation 
techniques. The purpose of traditional Artificial Intelligence is to 
perform complex tasks, thanks to human expertise. This often 
assumes assimilation of many competencies to be subject of 
centralized programming. Moreover, in such monolithic system, 
the consensus between various expertises is difficult to model; 
indeed, the structure of communication between the experts is 
fixed whereas it should depend on the considered problem. Thus, 
a formalization close to reality where several people work 
together on a same problem is needed. Such formalism should 
describe the participants and interactions between them. This 
approach is the paradigm of the Distributed Artificial Intelligence 
(DAI). The DAI leads to the realization of systems known as 
"multi-agent" systems allowing modeling the behavior of all the 
entities according to some laws of social type. These entities or 
agents have certain autonomy and are immersed in an 
environment in which and with which they interact. Their 
structure is based on three main functions: perceiving, deciding 
and acting. 
 
The cooperative view point of agent can be based on four 
dimensions which are: Agent (A), Environment (E), Interaction 
(I), and Organization (O). Facet A indicates the whole of the 
functionalities of internal reasoning of the agent. The facet E 
gathers the functionalities related to the capacities of perception 
and actions of the agent on the environment. Facet I gathers the 
functionalities of interaction of the agent with the other agents 
(interpretation of the primitives of the communication language, 

management of the interaction and the conversation protocols). 
The facet O east can be most difficult to obtain, it relates to the 
functions and the representations related to the capacities of 
structuring and management of the relations of the agents between 
them. 
 
While following a logical reasoning, we thus manage to perceive 
two layers in our platform, but it is noticed well that we need a 
link between the two various layers, since the reactive layer 
answers only to stimulus, and the higher layer is dedicated to 
management and reasoning. Thus, we need a layer which interacts 
with the two layers, it must act on the reactive layer by 
stimulating and coordinating the actions of these agents, but also 
interact with the higher layer by informing it of the state of the 
architecture and the agents. This layer acts as links between the 
decisional and the reactive parts of the platform. This offers to us 
a division of the tasks and a specialization of the layers. Thus we 
obtain the speed, flexibility and a weaker cost of communication 
as well as a greater stability of the all platform, resulting from the 
cooperation and the coordination of the layers. 
 
The other aspect of our problem is the dynamic nature of our 
architecture, indeed architecture does not cease to evolve, to 
reconfigure and to extend. It is inconceivable to create a rigid and 
static platform which can follow the evolution of this 
architecture!. We must thus already think of such a dynamic and 
evolutionary platform so that it can constantly reach and follow 
the evolution of this architecture. We will consider that our 
software architecture is a such board cut out in small pieces. We 
consider that we can extend this board as parts are added. We 
have also the freedom to modify the parts and to make them move 
on the board. While considering this example, we will establish 
specific rules to the platform based multi-agents which we will 
build. We will consider that the available software architecture is 
divided into localities, grouped, it forms one or several zones. 
This strategy will enable us to better control the characteristics of 
modifiability and extensibility of the available architecture. The 
architecture of our platform consists of three distinct layers. A 
layer known as higher equipped with evolved agents able to 
communicate with the external environment or other agents in 
order to establish the plans and the adequate strategies to achieve 
the desired goals. A second layer comes in continuation, which is 
the intermediary layer, located between two layers, communicates 
with the higher layer and the lower layer known as a reactive 
layer. The agents in the intermediary layer are less evolved than 
the agents of the higher layer (equipped with a less advanced 
social nature). The last layer is the reactive layer having purely 
reactive agents to a stimulus, their roles are limited exclusively to 
the perception/action (see Figure 1). 
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Figure 1. Topology of the layers of the platform. 
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2.1. The Higher Layer  
The higher layer is the highest layer of the platform, it is thus, 
more evolved than the others. This layer has the capacity to 
analyze information coming from architecture, thanks to the facet 
E of its agents. Thus, it can evaluate qualities of architecture 
constantly and intervene in a targeted way, since the agents have a 
facet A, implying the reasoning. The facet O and I, of the agents 
enter in action when the agents of the intermediary layer do not 
manage to find only a solution to a problem. The agents of the 
higher layer have the capacity to organize a group of agents in the 
intermediary layer  (implies a cooperation) or to utilize another 
agent of the higher layer (implies a negotiation) in order to 
achieve the goal to seek. The agents of this layer can constantly 
exchange information relating to the zone which it controls so that 
they always have a global and complete architecture vision. Each 
agent of this layer controls a zone of architecture, it is responsible 
for a group of agents of the intermediary layer. The planning by 
analysis of environment is specific to the higher layer. The 
capacities of perception of the environment and of organization of 
the agents offer a greater coordination in the platform. Thus, we 
facilitate the division of the work by directing the agents toward 
common goals. The agents of the higher layer act according to the 
received messages from their environments and other agents. By 
coordinating this information, they establish a work plan, which 
targets the objective to be reached and which defines the 
coordinating agents for achieving the goal. In other words, by 
dividing work according to the agents aptitudes. The agent of the 
higher layer can perceive signals coming from architecture 
(system) or from the agents (agent of the higher layer  or 
intermediary layer). The perceived information (by using facets 
I,E) is sorted, classified and decoded according to the protocol 
used for each type of message. Thereafter, the agent define the 
objective to be reached by identifying the place and the type of 
the desired reconfiguration. Thus, it adopts one of the strategies 
implemented in its knowledge base, it is the facet reasoning of the 
agent. Then, the agent establishes a plan according to the 
information collected by its sensors and the available information 
on the architecture in its knowledge base. By adopting a specific 
plan, the agent can act in three manners: A) Negotiation: It can 
start a negotiation with an agent of the higher layer so that it can 
complete work, if the desired reconfiguration is apart from its 
own zone. B) Cooperation: the agent established a plan of 
cooperation between the agents of the intermediary layer, if the 
reconfiguration is in its own zone. C) Action: the agent can act of 
itself, for example the creation of a new agent in the intermediary 
layer, carrying out a simple test or making a reconfiguration on 
architecture (this action is very limited). The strong points of this 

layer are: 1 - Knowledge bases distributed and exchanged 
constantly between the agents of the higher layer, which avoids 
the losses of information in the event of breakdown. 2 - A very 
high social character, thanks to facet O,I of the agent: thus being 
able to organize agents or to negotiate with agents an application 
of a task. 3 - A low number of agents: imply a better coordination 
of the actions and a weak cost of communication. 
 
2.2. The Intermediary Layer  
As its name indicates it is a layer which is placed between the 
higher layer and the reactive layer. Each agent of this layer takes 
care of several agents of the reactive layer, it is responsible for a 
quite precise locality. The agent itself is connected to only one 
agent of the higher layer. A set of agents of the intermediary layer 
forms what is called a zone. The principal role of this layer is to 
take care of the good progress of the reconfigurations imposed by 
the higher layer. It is a question of controlling and coordinating 
the agents of the reactive layer in order to carry out and to achieve 
a goal. Another role of this layer is the collection of information 
coming from the reactive layer in order to forward them to the 
agent of the higher layer. The agents of the intermediary layer can 
be confronted with two kinds of problems: queries of 
reconfiguration in their locality, but also outside. From where the 
name of planning according to task. The agent establishes two 
kinds of plans so that it can answer to the requests which they are: 
a planning centralized with the agents of the reactive layer or a 
planning distributed in certain case, toward the supervisory agent 
of the higher layer: A) Distributed planning: In the intermediary 
layer, the agents use a distributed planning. In the case where they 
are in the incapacity to solve only the posed problem. They refer 
to the agents of the higher layer. The agents of this layer break up 
the problem into sub-problems and elaborate the sub-plans so that 
they can be carried out by the agents of the intermediary layer. B) 
Centralized planning: In certain case, the agents are unable to 
solve only the posed problem. For example, if we ask an agent to 
reconfigure a locality which it does not control, in this precise 
case, the plans are generated by the higher layer. This layer has a 
total sight of architecture and platform. Thus the higher layer put 
in cooperation mode agents of intermediary layer in order to carry 
out work requested, by dividing and managing the work of each 
one. Contrary to the agents of the higher layer, the agents of the 
intermediary layer do not have advanced social character. The 
communications between the agents of this layer are simple and 
indirect, i.e. that they are conveyed by the agents of the higher 
layer. The agents are thus limited to an interaction with the agents 
of the higher layer described above, and a communication by 
passage of asynchronous message with the reactive agents by 
directing acts primarily. 

 
2.3. The Reactive Layer 
This layer is the body of perception and of action of the platform. 
It is equipped with purely reactive agents which act with simple 
stimulus coming from the intermediary layer. The reactive agents 
belong to a locality depending on only one agent of the 
intermediary layer whose they receive the plans. These agents 
answer to a centralized planning and work in cooperation. The 
exchange between the reactive agents and the agent of 
intermediary layer is simple. The perception induces sending 
simple information toward the central agent, the action is the 
consequence of a stimulus or a simple command. 
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3. THE PLATFORM AND FAULT 
TOLERANCE 
3.1. Fault at Architectural Level 
The basic strategy to achieve fault tolerance in a system can be 
divided into two steps. The first step called error processing is 
concerned with the system internal state, aiming to detect errors 
that are caused by activation of faults, the diagnostic of the 
erroneous states, and recovery to error free states. The second 
step, called fault treatment, is concerned with the sources of faults 
that may affect the system and includes: fault Planning and fault 
removal. The communication between components is only 
through request/response messages. Upon receiving a request for 
a service, the components will react with a normal response if 
request is successfully processed or an external exception, 
otherwise. This external exception may be due to the invalid 
service request, in which case it is called an interface exception, 
or due to a failure in processing a valid request, in which it is 
called a failure exception. The error can propagate through 
connector of software architecture by using the different 
interactions between the components. Internal exceptions are 
associated with errors detected within a component that may be 
corrected, allowing the operation to be completed successfully; 
otherwise, they are propagated as external exceptions. 
 
3.2. Monitoring System 
Software monitoring is a well-know technique for observing and 
understanding the dynamic behavior of programs when executed 
and can provide for many different purposes. Besides variability, 
other purposes for applying monitoring are testing debugging, 
correctness checking, performance evaluation and enhancement, 
security, control, program understanding and visualization, 
ubiquitous user interaction and dynamic documentation. System 
monitoring consists in collecting information from the system 
execution, detecting particular events or states using the collected 
data, analyzing and presenting relevant information to the user, 
and possibly taking some (preventive or corrective) actions. As 
the information is collected from the execution of the program 
implementation, there is inherent gap between the levels of 
abstraction of the collected events, states of the software 
architecture. For event monitoring, there are basically two types 
of monitoring systems based on the information collection: 
sampling (time-driven) and tracing (event-driven). By sampling, 
information about the execution state is synchronously (in a 
specific time rate), or asynchronously (through direct request of 
the monitoring system). By tracing, on the other hand, 
information is collected when an event of interest occurs in the 
system. Tracing allows a better understanding and reasoning of 
the system behavior than sampling. 
 
3.3. Detection of Faults With the Platform 
We will use a monitoring system based on the agents, by 
implementing our platform, described above, on the top of the 
architecture. Each component will be supervised by a reactive 
agent, by sampling or tracing. The reactive agents will use 
sampling on architecture and collect information on the state of 
the components with each interval of time predefined or limited 
by the user. Another type of detection in reactive agent is the 
tracing, in this case, the component generates an external 
exception in the form of an event, this event will be collected and 

will be transmitted towards the intermediate agent, this event will 
be thereafter analyzed, identified and then sent by this agent 
towards the agent of the superior layer in order to establish plans 
to correct the errors. In other words, the signals are collected by 
the agents of the reactive layer, which transmit them immediately 
to the intermediate agent of its locality. This agent analyzes this 
information using its knowledge base containing the description 
of the errors. Thus, it will sort information coming from the 
reactive agents and send only the error messages towards the 
agent of the superior layer of its zone. According to the detected 
errors the superior agent establishes the plans in order to solve the 
errors coming from architectural level (see Figure 2).  
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Figure 2. Multi-agents platform treatment process. 

 
3.4. Treatment Process 
After the phase of detection, the platform identifies the type of 
error and establishes the plans in order to achieve at architectural 
level the necessary reconfigurations to correct the faults. This 
treatment process uses tow types of plans, the first plans consist to 
reconfigure architecture connections for finding temporary 
solution of fault (disabled component or connector), the second 
plans recover errors by addition or changing disabled component 
or connector. 
 
In the detection phase, the information travel up through the 
layers of the platform in order to arrive to the superior agent, in 
this decisional layer the treatment process begins by establishing 
plans. The superior agent chooses the best solution to support 
evolution and changing requirements of the architecture. The 
platform can reconfigure connections of architecture to isolate the 
disabled components (if the platform can’t create new 
components), the superior agent distributes the plans to the 
intermediate agent on the locality of fault. When the intermediate 
agent receives the plans, it distributes directives to the reactive 
agents. The reactive agents delete the connection of disabled 
component and create new connection to isolate it, all of this steps 
descript of the first strategy of treatment process, one speaks 
about reconfiguration of the connection. 
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The second treatment process is creation of new component, it 
operate when the platform has the possibility to create new 
component in order to recover errors at architectural level, the 
superior agent distributes plans to the intermediate agent. This 
agent distributes directives to reactive agents, and the reactive 
agents work together in order to delete the disabled component 
and it’s connection and create new component and it’s new 
connection. 
 
4. IMPLEMENTATION OF THE PLAT-
FORM ON PIPE-FILTER ARCHITECTURE 
4.1. The Navigation of the Mobile Robot in an 
Environment Without Obstacle 
We dispose of a mobile robot in a flat environment, it must go 
from a point initially to parameterize towards a finale point in a 
plan (environment represented here by a plan), the robot can 
move in a horizontal way or vertical way, when it is immobile, it 
can do rotation on itself. The mobile robot moves on a plan (see 
Figure 3) which we divide into six parts by taking the finale 
position of robot the origin point of Cartesian coordinates (0,0). 
Thus, we distinguish six possibility approaches, if the robot is on 
parts 1, 2, 3 or 4, then it manages to reach the finale desired point 
by deploying a very simple navigation plan which is: an approach 
on the X axis, then a final approach on the Y axis. In both 
remaining cases (part 5 and 6), if the robot is on part 6, then it 
uses an approach on the X axis, or if it is on the part 5, then it 
starts an approach on the Y axis. 
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Figure 3. Strategy of navigation of the mobile robot. 
 

4.2. Pipe-and-Filter Architecture for the 
Navigation of the Mobile Robot in an 
Environment Without Obstacle 
In an environment without obstacles, we will choose a Pipe-and-
Filter architecture which corresponds as well as possible to our 
navigation strategy. The first component (see Figure 4), 
“Parameter ” is used to enter the Cartesian coordinates (X,Y) of 
the initial and finale position of the mobile robot. The component 
“Planning” defines the position of  the robot in the plan in order to 
establish the ideal planning to reach the finale point. The 
component “X approach” increments X position of the mobile 
robot and the component “Y approach” increments position Y. 
The component “Simulation” is charged for displaying the robot 
displacement on the screen. 
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Figure 4. Pipe-and-Filter architecture for the navigation of  
mobile robot. 

 
4.3. The Navigation of the Mobile Robot in an 
Environment With Obstacle  
The mobile robot moves in a flat environment (the plan) with 
obstacles which are positioned randomly (see Figure 5). We will 
install a sensor on the robot which will help the mobile robot to 
detect the obstacles, when it tries to reach the final position. In 
order to avoid the obstacle we will use the same basic 
displacement of the robot, i.e. rotation on itself of 90° and the 
vertical or horizontal way. If  the obstacle is out of the mobile 
robot trajectory then its origin navigation planning will not be 
affected. In other case the obstacle is on the trajectory of the 
mobile robot during its X or Y approach. When the obstacle is 
detected (the distance from detection of the mobile robot depends 
on the range of the used sensor). The mobile robot decreases its 
speed, then stops in order to make a rotation of 90° on itself and 
starts to avoid the obstacle. When this one is out of the trajectory, 
the robot carries out a new planning with new X or Y approaches 
to reach its finale position. 
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Figure 5. The navigation of  the mobile robot in an 

environment with obstacle. 
 
4.4. Pipe-and-Filter Architecture for the 
Navigation of the Mobile Robot in an 
Environment With Obstacle 
The mobile robot moves in an environment with obstacle, the 
software architecture proposed previously is retained, but a new 
hardware component installed on the robot is taking into account, 
it represents, in our architecture, by a software component called 
the "Scan" (see Figure 6). The mobile robot will use the new 
architecture which takes into account the possibility of founding 
obstacles on its trajectory with  each incrementing on the Y or X 
axis. 
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Figure 6. Pipe-and-Filter architecture for the navigation of  
mobile robot. 

 
4.5. The Role of the Platform to Manage the 
Variability in the Mobile Robot Navigation 
The multi-agents platform will be placed on the top of our Pipe-
and-Filter architecture, and exerts on it a permanent monitoring in 
order to avoid all processing possible errors. Generally, the multi-
agents platform reacts to the events emitted by the architecture 
using two distinct strategies: the reconfiguration of the 
component’s connections or the creation of the new components 
able to solve the arise problem. The sensor is installed on the 
robot and it sweeps sequentially its environment, in the case the 
sensor detects an obstacle on its trajectory, it sends a signal 
towards the component “Scan” of the software architecture, which 
emits an event towards the platform. On the level of the 
architecture, the error is collected by the reactive agent which 
supervises the component “Scan”. The error is then transmitted 
towards its intermediate agent, this error is then identified and 
sent towards the superior agent. The superior agent establishes the 
plans in order to correct the errors, in this case, the multi-agents 
platform will create new components so that the robot avoids the 
detected obstacle.  
 
When the obstacle is finally out of the trajectory of the mobile 
robot, the component “Planning” establishes new plans. If these 
plans require a reconfiguration of the connections, the component 
“Planning” emits an event towards the platform, which is 
collected by the reactive agent of the platform related to the 
component “Planning”. The event is transmitted towards the 
intermediate agent which identifies the event thanks to its 
knowledge base describing the event which is emitted by the 
software architecture. The agent of the intermediate layer sends 
information towards the superior agent, which establishes the 
plans so that the error is corrected on the level of the architecture, 
and distributes them to the agent of the intermediate layer. The 
agent of the intermediate layer orders the reactive agents to create 
the new connectors necessary to the new navigation plan of the 
mobile robot. 
 
5. SCENARIO OF NAVIGATION OF THE 
MOBILE ROBOT ON AN ENVIRONMENT 
WITH OBSTACLE 
In this scenario the mobile robot is in part 1 of the plan (Figure 5), 
the final position is entered by the user. The obstacle will be 
placed on the first trajectory of the X axis. The mobile robot starts 
with an approach according to the X axis. After the detection of 
the obstacle by the sensor, the robot slows down for stopping, it 
makes a rotation of 90° on itself. Then the obstacle is avoided by 

choosing a vertical trajectory as soon as the obstacle is not located 
on the X axis trajectory, the mobile robot begins a new approach 
on the X axis, then finishes by an approach on the Y axis to 
achieve its finale goal. 
This scenario is produced on the level of the architecture by 
applying the following steps: 

• The mobile robot will use the starting configuration of the 
architecture, and starts its approach X.  

• The detection of obstacle and creation of components: when 
the sensor detects the obstacle on its trajectory it emits one 
signal towards the “Scan” component, which will send an 
event towards multi-agents platform (see Figure 7-a). The 
event will be detected by its reactive agent which transmits 
it towards its intermediate agent. The agent of the 
intermediate layer identifies the event and transmits the 
information to its superior agent. The superior agent 
establishes a plan which will be sent towards the 
intermediate agent. The intermediate agent orders to its 
reactive agents to create and activate new components and 
their connections (see Figure 7-b). The information on the 
reconfiguration goes up towards the agent of the superior 
layer so that it will have a precise sight of the architecture 
state. 

• The destruction of the useless components for new planning 
of the navigation: the component “Analysis” collects 
information relating to the position of the robot as well as 
information coming from the “Scan” component. Then, this 
“Analysis” component activates both the “Escape” 
component which starts its plan to avoid the obstacle and 
the “Simulation” component for displaying the movement. 
If the obstacle is out of the trajectory of the mobile robot, 
the component “Escape” sends an event towards the 
platform to restore the original configuration of the 
architecture (see Figure 7-c). This event is detected by the 
agent of the reactive layer and transmitted to its agent of the 
intermediate layer so that it can be identified. After the 
identification, the intermediate agent sends information 
towards its superior agent. The superior agent will establish 
again so that the component “Escape” and “Simulation” and 
all their connections are destroyed. This plan will be sent to 
the intermediate agent which orders to its reactive agents 
related to these components and connections to begin the 
destruction. These agents will be themselves destroyed 
thereafter (see Figure 7-d). The components “Scan” and 
“planning” will be connected by the reactive agent (see 
Figure 7-e). All of these modifications are transmitted to the 
superior agent.  

• The creation of new connectors for new planning of 
navigation: the “Planning” component defines new plan to 
reach the finale point. The component “Planning” emits an 
event towards the platform (see Figure 7-f) so that new 
connector will be created to connect component “X 
Approach” to component “Planning” (see Figure 7-g) with 
the aim to reactivate the approach on X axis. The event is 
collected by the reactive agent and is sent towards its 
intermediate agent which will identify the new event, and 
send it towards the superior agent. This agent will establish 
a new plan. In this way the mobile robot will start its 
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movement according to the X approach, then it will reach 
the finale point by an Y approach. 
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Figure 7.  Scenarios of navigation of the mobile robot on an 

environment with obstacle. 
 
6. A REAL APPLICATION  
After we have established a Pipe-and-Filter architecture for the 
navigation of a mobile robot in an environment with obstacle, we 
have programmed an application which shows well how the 
mobile robot move on the our simulator. The user has a user-
friendly and intuitive interface for various simulations. Thus, it 
can parameter the initial and final position of the robot as well as 
the position of the obstacle on the screen of our simulator and also 
the range of the sensor. 
During simulation, the user can choose different architectures 
(with or without multi-agents platform). The importance of our 
platform in the maintenance of the dependability and performance 
in any circumstance, is well illustrated in the Figure 8. 
Without the intervention of our platform the robot crash on the 
obstacle. In Figure 9, we can see that the initial Pipe-and-Filter 
architecture is modified by our platform. During the simulation 
the robot detects the obstacle, and the architecture is dynamically 
reconfigured, so that the mobile robot avoids the obstacle and 
reaches the finale point. The user can parameter in the “Scan” 
component the range of the sensor via the platform. If the user 
raises the range of the sensor then during the simulation the robot 
detects earlier the obstacle on its trajectory. 
 
7. CONCLUSION  
The right architecture is the first step to success. The wrong 
architecture will lead to calamity. We can identify causal 
connections between design decisions made in the architecture 
and the qualities and properties that result downstream in the 
system or systems that follow from it. This means that it is 
possible to evaluate an architecture, to analyze architectural 
decisions, in the context of the goals and requirements like 
variability management that is levied on systems that will be built 
from it. The architecture then becomes the basis of systematic 
development and evolution of software/hardware systems. It is 
clear that a new architecture that permits the dynamism 
reconfiguration while ensuring the use of software in multiple 
contexts and the ability of software to support evolution and 
changing requirements in various contexts are needed. This paper 
presents a new platform based multi-agents which monitors the 
global architecture of a system and manages the provided 
variability. It will achieve its functional and non functional 
requirements and evaluate and manage changes in such 
architecture dynamically at the execution time. In this paper we 
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have developed our generic platform and we have applied and 
implemented it on the Pipe-and-Filter architecture. This 
software/hardware architecture is used for controlling a mobile 
robot to follow a trajectory towards the desired position in the 
presence of obstacles. We have showed by some scenarios the 
dynamic reconfigurations related to the improvement of the 
variability management through the structuring investigation of 
fault-tolerant component-based systems at architectural level of 
Pipe-and-Filter style. Our approach can be extended to deal with 
other architectural “non-functional” quality attributes in the 
context of developing complex and reliable systems. 
 

 

 
 

Figure 8. The crash of the robot on the obstacle without using 
our platform. 

 
 

 
 

Figure 9. The mobile robot avoids dynamically the obstacle by 
using our platform. 
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Abstract1

In order to enable a smooth transition to product develop-
ment for an organization that so far did only perform single
system development, it is necessary to keep as much of the
existing notations and approaches in place as possible.
In this position paper we propose a specific approach to the
comprehensive management of variability that enables to
leave as much of the existing notations and approaches in
place as possible. This approach has so far been applied in
several cases where PuLSETM2 has been introduced into a
software development organization. 

1. Introduction

Variability Management is a concern that arises in Product
Line development throughout all lifecycle phases [6]. It can
actually be seen as the key feature that distinguishes product
line development from other approaches to software devel-
opment.
While the basic concerns are similar throughout the differ-
ent stages of a software lifecycle, the means for addressing
them are typically different in the various stages: in the
analysis phase mechanisms related to the specific analysis
technique are used, typically text-based [26] or UML-based
techniques are proposed [11, 15, 24, 4, 17], specific design-
based approaches have been proposed [5 ,9], and of course,
implementation mechanisms have been studied [19, 10, 25].
Already for some time proposals have been made for full-
life-cycle management of variability using decision models
[1, 18, 12]. However, these approaches are always related to
a specific notation. The only exception we found so far is
the Synthesis approach[13, 22].
In the context of industrial projects using the PuLSE-
approach [2, 3] we needed an approach that enables us to
homogenously manage variability across the different life-
cycle stages, independent of the specific notation. In this
paper, we will discuss this approach to variability manage-
ment and the fundamental assumptions and concepts on
which it relies. 

2. Requirements on the Approach

We are focussing here at the situation of introducing a prod-
uct line approach in an organization that so far performed
only single system development. This is a quite common
situation in the context of Fraunhofer IESE where we do
technology transfer to different contexts. In order to facili-
tate the introduction of the variability concepts in such a sit-
uation we like to keep the existing notations and processes
as far as possible. So for example, if an organization per-
forms a text-based requirements process, we may often
keep the text-based process and augment it with variability
concepts. Later on, after the variability issues have been
widely understood and accepted we then move to a more
formal notation like the UML. In another case we devel-
oped an extension of a graphical notation, to which we
added variability concepts by adding notational elements
along with a decision model [20]. 
On the other hand we must support variability throughout
the lifecycle. Thus, we must map the same variability in a
consistent manner to the various artifacts like requirements
or code, in order to widely apply it in industrial practice:
In total, we came up with the following list of requirements
for our variability management approach:
• The approach needs to be notation-independent
• The approach must be applicable to all kind of life-cycle

artifacts
• The approach must support traceability of variabilities

both horizontally and vertically:
- horizontally means that we must be able to trace a

variability to the various places within a life-cycle arti-
fact, where it has an impact

- vertically means that we want to be able to trace a
variability in one life-cycle stage to corresponding
variabilities in artifacts of other life-cycle stages.

• The approach must support the instantiation of variabil-
ity in order to support product derivation

• It must be possible to hierarchically structure the
approach in order to keep the approach scalable.

We developed an approach that satisfies these requirements.
This approach draws on earlier work like [8, 20].1. This work was supported in part by Eureka Σ! 2023 Pro-

gramme, ITEA project ip00004, Café.
2. PuLSE is a registered trademark of Fraunhofer IESE.
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3. Comprehensive Variability Management

The specific approach to variability management we pro-
pose consists of the following components:
1. A decision model as a basis for characterizing the

effects of variability 
2. An approach to describe interactions among different

decisions
3. An approach to describe the relation between variation

points and the specific decisions (or group of deci-
sions) on which the resolution of the variability
depends.

4. A common (maximal) set of variation types.
5. An accompanying mapping of the variability types to

the specific notation to express the variation points.
Only the last point, the mapping, has to be adapted to the
specific representation technique. The other parts as well
as the semantic interrelation among them are independent
of the specific representation approach. We will now
briefly describe how these components are implemented
in this approach.

3.1 The Decision Model
The decision model was initially devised in the context of
the Synthesis approach for variability management [13].
In the meantime, this technique has been widely applied
both in research and in industry [15, 16, 1, 14, 18, 20, 12]. 
The specific kind of decision model we propose is differ-
ent from other approaches in two ways:
• It is more comprehensive in terms of the information it

contains.
• It does not explicitly relate to the variation points, but

rather it defines decision variables which are then ref-
erenced at the specific variation poins using the deci-
sion evaluation primitives.

The second characteristic makes this approach particularly
notation-independent.
Each of the decision variables that is defined in the deci-
sion model is in turn described by the following informa-
tion:
• Name: The name of the defined decision variable; the

name must be unique in the decision model
• Relevancy: The relevancy of a decision variable for an

instantiation may depend on other decision variables.,
e.g. the decision variable describing the memory size
is only valid if the decision variable describing the
existence of memory is true. This can be made explicit
by the relevancy information.

• Description: A textual description of the decision cap-
tured by the decision variable

• Range:  The range of values that the decision variable
can take on. This can be basically any of the typical
data types used in programming languages. However,
instead of a real or integer often only a range is
important. Moreover, probably the most common type
is the enumeration, as the relevant values are often
domain-dependent. Further, Boolean variables are

quite common. 
• Cardinality: As opposed to other approaches, we do

not emphasize the difference between variables which
can only assume a single value and variables that can
assume sets of values during application engineering.
Rather, we define a selection criterion, defining how
many of the values of a decision variable can be
assumed by it. This is due to the fact that in practice we
found cases where sets are required, but their cardinal-
ity is restricted.
This is represented by m–n, where m and n are integers
and give the upper- and lower-bounds for the cardinal-
ity of the set representing the value of the decision
variable in the context of a specific application. Thus,
basically, all decision variables get a set of values dur-
ing application engineering. However, we use 1 as a
short-hand notation for 1–1 and in this case we also
write the value of the decision variable as a single
value (without curley brackets) and treat it for the pur-
pose of decision evaluation like a non-set value.

• Constraints: Constraints are used to describe interre-
lations among different decision variables. This is used
to describe value restrictions imposed by the value of
one variable onto another variable. We use this
approach also to describe the requires relationship, as
this can be treated as a special case in our framework.
This constraint can of course also contain domain
knowledge. Consider for example the following con-
straint: the value of the decision variable describing
the memory size has to be > 16384 if the decision vari-
able describing the existence of memory is true. This
constraint at the same time represents the domain
knowledge that in the product line the minimum mem-
ory size is 16KB.1 

• Binding times: A list of possible binding times when
the decision can be bound. This can be sourcetime,
compiletime, installation time, etc. [12]. Additional
binding times may exist, and can be product line spe-
cific. As opposed to the FODA work and many related
approaches, we allow several binding times, meaning
depending on the specific product the variability may
be bound at any of these times. This technique was
first introduced in ODM [23] as “binding sites”. In par-
ticular, this implies that a development decision for
one system may be a runtime decision for another — a
case we found quite frequently in practice.

Depending on the specific context of our industrial
projects, we sometimes used slight variations of this
approach to decision modeling. However, regarding the
information content, it was always a subset of this infor-
mation [20]. In case, we want to use the decision model
also as a basis for tracking implementation and evolution,
it is useful to define an additional facet, describing the
binding times already supported by the implementation.
This may of course include “not yet supported” and in
general the supported binding times should be later or
equal than the current binding times.

1. Of course, this would usually be represented with a con-
stant like Min_Mem_Size := 16384.
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Using this description of a decision variable, we can
define a decision model simply as a set of decision vari-
able definitions. For practical reasons this will usually be
represented by a table. However, especially for particu-
larly large decision tables this may be impractical. To han-
dle this case hierarchical decision models have been
proposed [7].
There is another reason that may lead to splitting the deci-
sion model, which is that certain decision may be relevant
only for certain binding times. In this case it is useful to
define subsets of the decision model based on the binding
times. In this case the decision model should be decom-
posed into parts that can be directly implemented, e.g.,
using makefiles, or preprocessor directives. However, as
these notations do not support the full range of informa-
tion that we require, it will always be necessary to keep
additional information in the form of comments in these
representations. 
The decision model provides the basis for describing the
concrete products, as a specific product can be defined by
assigning values to the decisions in the decision model,
where the constraints among the decisions determine the
possible values. With these assigned decisions the varia-
tion points related to the decisions can be instantiated.

3.2 Decision Evaluation Primitives
As a basis for describing the relationship both among dif-
ferent decisions (in the decision model relevancy and con-
straints) as well as the relationship of a variation model to
a concrete decision, we need to be able to describe more
complex evaluations of the decisions. The basic constructs
for describing these evaluations are called the decision
evaluation primitives. These primitives support three
tasks:
• The description of the relevancy dependencies
• The description of the contraints dependencies
• The description of the relation between variation

points and and the specific decisions
Thus, they support the components two and three of our
approach. It would also be possible to use three different
approaches to satisfy these needs, however, it is of course
more practical to use an unified approach.
The following list provides some relations we use for deci-
sion evaluation:

sub      real subset ⊂
subeq   subset or equal ⊆
#           cardinality of a set 
in          is element of a set
->          logical implication
<->      mutual implication (iff)

In addition logical relations (AND, OR, NOT) are used.
Regarding the different contexts in which we use these
evaluation primitives we do further differentiate:
• For describing the relevancy dependency we need to

derive a boolean value, i.e., a logical expression. If for
specific values for a product this value is evaluated as
true, we need to determine a value for the correspond-

ing decision variable for this product.
• For describing the constraints we need to built rela-

tional expressions, involving the specific decision vari-
able. Thus, the constraint MEM_PRESENCE=TRUE -
> MEM_VALUE > 100 as part of the description of
MEM_VALUE would restrict the possible values of
MEM_VALUE if MEM_PRESENCE would be true.

• Finally, for describing the relation between variation
points and decision values, we need both logical
expression and value expressions (e.g., integer, enu-
meration), depending on the specific variability type.

Thus, depending on the specific context, slight variations
of the underlying language might be used, we always use
the same basic set of operators.
A key task of the decision evaluation primitives is to relate
a decision to a variation point. We usually do not directly
relate the impact of a decision variable to the variation
points as the same decision may easily have many differ-
ent forms of impact on the variation points. This allows us
to decouple the decision itself from its impact on the prod-
uct line model. 
The approach to decision evaluation proposed here is very
similar to expression evaluation in existing program lan-
guages or constraint languages, the main extension being
that we may need to deal with set values.

3.3 Supported Variability Types
Many different variability types have been proposed in lit-
erature: optionalities, alternatives, set-optionalities (a set
of options may be selected), etc. Based on our practical
experience we deem the following types of variability to
be the most relevant. They are neither minimal nor do they
cover all proposed concepts, but they have been sufficient
from a practical point of view:
• optionality: a property either exists in a product or not
• alternative: two possible resolutions for the variabil-

ity exist and for a specific product only one of them
can be chosen

• set alternative: only a single instance may be selected
out of a range of possible alternatives

• set selection: several variabilities may be simulta-
neously selected for inclusion in a product

• value reference: the value of the decision variable can
be directly included in the product line model. (This,
of course, only makes sense with decision variables
that only assume a single variable in application engi-
neering.)

All these variability types are mapped to concrete repre-
sentations in the context of a specific notation. Optionality
and alternative use logical expressions to determine the
specific instantiation that shall be made. Set alternative,
set selection, and value take a value expression as basis. In
addition set alternative and set selection take values as
labels in order to describe the variabilities that should be
part of the instantiation. 

3.4 Representation-Specific Mapping of
         The Variation Points
The concepts we discussed so far are representation-inde-
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pendent. However, we need to represent the variation
points in the various life-cycle artifacts (domain model,
code, etc.), which employ a specific specification tech-
nique. Therefore we need to map the different types of
variabilities to the target notation. 
As we discussed in a companion paper [21], the specific
notation for the variation point may be graphical, textual
based, or on any other basis. The different variability types
should be mapped in a homogenous manner to the  specifi-
cation language. For each variability type a unique map-
ping must be found.  This mapping has to take a form so
that confusion with other legal expressions in the target
specification language can be minimized. Only this map-
ping from the variability types to the target specification
mechanism must be adapted for the different formalism.
We will discuss below a textual mapping, which can be
used as a basis for domain modeling and a mapping to an
implementation in C. Both approaches are used in indus-
trial transfer projects.

3.5 Discussion of the Approach
The approach outlined above is sufficient to describe all
common forms of variabilities and dependencies among
them that we encountered so far in industrial practice. 
Dependencies like “requires” can also be modelled, and
they are modelled on the level we believe to be the most
adequate: they are made explicit on the level of the deci-
sion model in the form of constraints on the possible val-
ues of  the variable.

4. Examples for using the approach 

The approach to variability management in product line
modeling described above has already been applied in sev-
eral cases, most notably two industrial applications, where
one used a graphics-based approach, while the other uses
as a text-based approach. We will now briefly discuss the
implementation of our approach in these two vastly differ-
ent contexts, as this nicely illustrates the different forms of
mappings that are made.

4.1 Experiences with a Text Based Representation   
Our variability management approach has been applied in
practice with text-based requirements in an embedded sys-
tems company. A textual representation was chosen
because the stakeholders in the domain were very familiar
with textual representations and not with other forms of

requiremetns documents. They had also invested consider-
able effort into the improvement of their approach to tex-
tual requirements documentation. 
In order to be able to model and manage variability, the
existing mechanisms for writing textual requirements had
to be extended into a product line modelling approach.
According to our approach, only the mapping of the vari-
ability types onto the target representation formalism had
to be adapted. However, to be complete, we will now
briefly describe the specific realization of all four compo-
nents of our approach.
• The decision model as described in section 3.1 was

introduced. This was realized using an Excel-table. A
sanitized version of such a table excerpt is shown in
Figure 1.

• We used the decision evaluation primitives shown in
Section 3.3.

• We did decide to not support the single selection, as it
is a special case of the multiple selection. Moreover, so
far most instances we found during our work in this
domain were instances of the multiple selection any-
way.

This shows that, as expected, we could transfer our con-
cepts in a straight-forward manner to this domain. This
leads to the most interesting part of the case studies: how
was the mapping of the variation point types performed.
For the mapping of the variability types onto the textual
specification we decided to use textual constructs framed
with “<<“ “>>”, as these are text fragments which did so
far never occur in this domain.
Thus, we wrote optional variability in the following way:

<<opt expr1 / text >>. 

Here expr1 is a logical expression. If it evaluates to true
for a specific product (i.e., for the decision variable
assignments for a specific product), then text is included
in the instantiated product description.
Similarly, for set alternative variability, we use the term:

<<alt  expr1  / value-1 / text1
  / value-2 / text2
 ..... >>.

Again, expr1 is a value expression, while value-1..-n are
values that are in the possible range of expr1. 

Figure 1. Example of a decision model
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For set selection variability we used the same schema.
However, we found that it is usually sufficient to use a
decision variable as a basis. In order to express this case
we introduced the keyword mult:

<<mult  expr1 / value-1 / text1
/ value-2 / text2

.....>>

Finally, for value references the term <<value decision-
variable>> was used.
Using this approach we described the product line model.
Figure 2 shows a sanitized excerpt of such a product line
model document which includes optional, alternative, and
value variability.
In this company, we  identified so far during modeling
about 50 decision variables and about 100 variation points
had to be introduced into the documentation. We expect
that once the product line model is complete, it will con-
tain more than 100 decision variables and several hundred
variation points. The resulting domain models went
through inspection by the company and were well
accepted by the development team. In particular the nota-
tion was considered to be well readable and the resulting
models to be well understandable.

4.2 Implementation Representation
Similarly we can describe the mapping to an implementa-
tion. As an example, we use the mapping to a compile-
time binding, based on the C-language. The obvious
approach for this is to use the C-Preprocessor. The prepro-
cessor provides macro capabilities that can be used to
select the code that is compiled. This language is very
restricted. It allows to use #define to define a macro
(which may contain parameters). It also allows to test for
complex expressions using #if and whether a variable is
defined (#ifdef). In addition an #include directive allows
to include a large part of C code at the corresponding posi-
tion.
Using our approach we can represent individual decision
variables as precompiler variables. This technique allows
to some degree to map also the decision model itself to
preprocessor directives. The relevancy-section of a deci-
sion variable can in this case be mapped by defining the
preprocessor variable only in case the corresponding deci-
sion variable is relevant. The constraints will usually only
be mapped, if they lead to a unique value for a decision

variable, as in this case it can be automatically be defined. 
The description of dependencies on the decision variable
values for a specific product is then described using the #if
directive. So we can map in a straightforward manner
optionality and alternative. In order to map a set alterna-
tive we can use the #elif construct as shown in Figure 3.
The set selection can not be directly translated. Rather, we
actually need to break it down into the different specific
cases. Finally, the value reference can be used in a
straightforward manner, as this is automatically resolved
by the preprocessor.
In addition, it is of course pretty common to use the #ifdef
directive as a shorthand notation in the context of boolean
decisions. 
In Figure 3, we illustrate the translation of an optionality
(Time_Measurement) and of a set alternative
(Memory_Size). Both examples are based on the decision
model given in Figure 1. As the example illustrates while
the translation into the C preprocessor language is possible
in order to implement the different variability types, it can
be cumbersome and the expressiveness of the C prepro-
cessor poses some restrictions. This can be improved
using more powerful preprocessors. To some extent also
constraints from the decision model can be implemented
using the preprocessor, however, in our example, we do
simply assume that permissable values are initially pro-
vided to the preprocessor.

5. Conclusion

In this paper we described an approach to variability mod-
elling in a product line context. The development of this
approach was driven from the need for an approach that
can be easily applied in a wide range of practical contexts
and in combination with many different specification tech-
niques. Based on our experiences in applying this
approach, we found that

Our approach to variability management can be 
applied systematically throughout the software lifecy-
cle with a large range of artifact types. 

Figure 2. An example using the textual notation

#if (Time_Measurement = Software)
start_software_clock();
#else
start_hardware_clock();
#endif

#if Memory_Size == 0
get_no_memory();
#elif Memory_Size == 10
get_small_memory();
#elif Memory_Size = 100
get_medium_memory();
#else /* Memory_Size = 1000 */
get_large_memory();
#endif

Figure 3. Example using the C preprocessor
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Moreover, we could already apply this approach as part of
the PuLSE approach in different industrial contexts, dem-
onstrating that it provides sufficient expressiveness for
these situations. Based on these encouraging results, our
next steps will be to further define the formal basis upon
which this approach relies.
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Abstract

Virtually every non-trivial software system exhibitsvari-
ability: the property that the set offeatures—characteristics
of the system that are relevant to some stakeholder— can be
changed at certain points in the system’s deployment life-
cycle. Some features can be bound only at specific moments
in the life-cycle, while some can be bound atseveraldistinct
moments (timeline variability). This leads to inconsistent
configuration interfaces; variability decisions are generally
made through different interfaces depending on the moment
in the life-cycle. In this paper we propose to formalize vari-
ability into a feature model that takes timeline issues into
account and to derive from such feature models configura-
tion interfaces that abstract over the life-cycle.

1. Introduction

Managing the variability in software systems is rapidly
becoming an important factor in software development. In-
stead of developing and deploying a “fixed” one-of-kind
system, it is now common to develop a family of systems
whose members differ with respect to functionality or tech-
nical facilities offered [4]. As a simple example, consider
a software development environment that is delivered in a
light, professional, and enterprise version, each providing
increasing amounts of functionality. As another source for
variability, modern systems need to run on different com-
puting platforms and provide a user interface in different
natural languages and possibly interaction styles. Finally,
systems typically offer extensive means for configuration
and customization during installation, startup, and run-time.
Again, this extends the space of actual systems of the fam-
ily.

An important reason for explicitly introducing variabil-
ity into a system is to obtain reuse of software. Building
a separate system for each variant means that the overall
development effort and time will increase, and that time to
market will be seriously affected. In addition, having multi-
ple systems with significant overlap among them seriously
affects the programming and management effort needed in
maintenance.

Variability is studied, among others, in the field of sys-
tem families or software product lines [2]. A common ap-
proach found there is to explicitly identify features that are
common to a family of products, or specific for some of
its members, and to organize them in a feature model. A
feature then represents a variation point in the system for
which multiple choices or variants can be made available.
For each variation point, a particular variant may have to be
selected to actually use the system.

A feature model specifies the variability in a system on
a conceptual level. It is typically used as a basis for the de-
sign and implementation of family-common and product-
specific assets. However, since feature models are not first-
class citizens in development environments, the link from
variability on a conceptual level to the actual implementa-
tion typically has to be maintained manually and frequently
is not available at all [5].

Timeline variability To create an implementation, the
feature model itself is not enough, because the timing char-
acteristics of variation points [7] play a prominent role in
the design process. For each variation point, we have to ask
ourselves when (in the development, deployment and usage
timeline) it should be possible to extend or reduce the set
of variants and when the variation point should be bound to
a particular choice. Typical examples of such decision mo-
ments are compilation-time, distribution-time, build-time,



installation-time, start-time, and run-time. To identify such
moments, it is necessary to consider the needs of various
parties or stakeholders that might be involved in the deci-
sion process — e.g., designer, coder, product manager, sys-
tem administrator, end-user.

From such an analysis it may follow that it should be pos-
sible to make a decision atseveralmoments on the timeline.
For instance, if we consider an operating system it may be
desirable to statically link a driver into the kernel, but also
to have the opportunity to load it at startup-time. Thistime-
line variability is an extra dimension to variability that is
often ignored. In current practice, the issues of the timeline,
decision moments, stakeholders and timeline variability are
not considered, nor modeled explicitly. As a result, variabil-
ity is often not orthogonal to the timeline and the variabil-
ity of a system appears to have been designed in an ad-hoc
fashion. Some features can be configured at install-time,
others at startup-time, and still others at run-time. More-
over, thebinding time[7] of variability is usually fixed and
cannot be altered, e.g., binding a run-time variation point at
installation-time.

A typical scenario is a system that supports bundling of
a selection of packages from a package repository. Config-
uration of the packages with file system layout information
is done after package selection and distribution. However,
it might be desirable to configure packagesbeforebundling,
for example, for mass deployment on machines with a stan-
dardized file system layout. Such alternative orders for
making variability decisions typically require a completely
different set-up.

Configuration mechanisms The realization of variability
decisions can be achieved using a wide variety ofconfigu-
ration mechanisms. For example, conditional compilation
allows us to choose a particular variant during compila-
tion by identifying whether or not a piece of code should
be compiled. Likewise, we can transform existing code
to introduce particular behavior. Source tree composition
on the other hand, allows us to include or exclude partic-
ular (source) components [9]. For more late-time variabil-
ity we can use object-oriented techniques like inheritance
and abstract-coupling combined with a factory object and
a parameter file that defines the correct variant to use. Al-
ternatively, we can use run-time discovery and binding of
(distributed) objects in platforms such as Corba. In prac-
tice, there is a significant distance between variability on a
conceptual level (features, variation points) and the config-
uration mechanisms actually used.

Configuration interface A software system with vari-
ability provides aconfiguration interface, through which
variability decisions are made. Ideally this interface pro-
vides a view to the system that corresponds to variability at

the conceptual level (i.e., the feature model). However, the
underlying mechanisms are usually reflected in the inter-
face to such an extent that the high-level view is obscured
by low-level mechanisms. Since variability decisions are
realized through many different configuration mechanisms,
which are closely tied to moments in the timeline, variabil-
ity appears to be treated in an ad-hoc fashion. A particular
mechanism is chosen arbitrarily, or for technical reasons,
rather than for support of an appropriate configuration in-
terface. As a result configuration is not transparent, but de-
termined by the time of configuration.

Implementation of timeline variability Another issue
of current practice and mechanisms is that changing the
timing-characteristics of a variation point involves a lot of
work, typically because the implementation of the varia-
tion point is scattered across many different artifacts (source
code files, build files, et cetera). For example, allowing
“pre-binding” of run-time variation points during installa-
tion (e.g. making a partially parameterized version of an
X Window System server configuration) may involve a lot
of work in different parts of the system. Finally, the con-
sequences of a particular choice, e.g., in terms of perfor-
mance, resource overhead, or maintainability, are often un-
clear or not considered. As a consequence, potential tech-
niques to optimize the software at a particular binding time
may not be fully used.

Contribution In this paper we demonstrate the problem
of timeline variability and the configuration issues related to
variability in general. The central idea is to provide a gen-
eral formal model of variability that can cope with timeline
aspects. Such a model can be annotated withactionsto per-
form configuration transitions depending on the configura-
tion state of the system (i.e., the “moment” on the timeline).
From such a model we can generically derive configuration
interfaces that close the current gap between variability at
the conceptual and implementation levels.

Outline In section 2 we provide some concrete examples
of timeline variability and their impact on the developers
and users of a system. In section 3 we describe a general
model of feature models. We describe in section 4 how
configuration interfaces can be obtained generically from
the feature models by annotating the models with actions.
We discuss related work in section 5. Concluding remarks
and directions for future work are given in section 6.

2. Motivating Examples

In this section we show some examples of variability in
real systems. In particular we are interested in the impact of



variability on configuration of the system, and in the pres-
ence and implementation oftimeline variability—the phe-
nomenon that certain features may be selected atseveral
different moments on the timeline.

The Linux kernel The Linux kernel provides the basis
for several variants of the GNU/Linux operating system.
The Linux kernel was originally implemented as a tradi-
tional monolithic kernel. In this situation all device drivers
are statically linked into the kernel image file. Conditional
defines and makefile manipulation are used to selectively
include or exclude drivers and other features.

The disadvantage of this approach is that it closes a large
number of variation points at build-time. Hence, the ker-
nel was retro-fitted with amodulesystem. A set of source
files constituting a module can be compiled into an object
file and linked statically into the kernel image, or compiled
into an object file that is stored separately and may be dy-
namically loaded into a running kernel. Modules may refer
to symbols exported by other modules. A tool exists to au-
tomatically determine the resulting dependencies to ensure
that modules are loaded in the right order.

The implementation of the variation points realized
through the module system is for the most part straight-
forward. For example, operations on files are implemented
through dispatch through a function pointer; this is a fea-
ture of standard C. However, these function pointers must
at some point beregistered. That is, they must be made
known to the system, and this presents difficulties. Slightly
simplified, every module exports an initialization function
f which must be called during kernel initialization, in the
case of statically linked modules, or at module load-time, in
the case of dynamically loaded modules.

For dynamically loaded modules, obtaining the address
of f is a matter of looking it up in the module’s symbol ta-
ble at load-time. For statically linked modules, the problem
is harder, since the C language does not provide a mech-
anism to iterate over a set of function names that are not
statically known. For example, we have no way of calling
every function calledinit_module() that is linked into
the executable image. This problem is solved by emitting
these addresses in a specially designatedsectionof the exe-
cutable image, which can then be iterated over at run-time.
The point here is not to show the details of the implementa-
tion of timeline variability in the Linux, but rather to show
that it is non-obvious and quite different at each point on
the timeline. In this case, we achieve timeline variability
of module activation at build-time and run-time, through a
combination of preprocessor, compiler, and linker magic.

Another issue is how variability appears to the user. A
problem with systems that allow configurability at different
moments on the timeline is that the configuration interface
tends to be different at each conceptual moment. For exam-

ple in the case of the Linux kernel, modules are added at
build-time through an interactive tool that allows variation
points to be bound through a textual or graphical user inter-
face based on a feature model of the kernel. On the other
hand, at run-time the interface is more primitive: adding
a module happens through commands such asmodprobe
which simply takes the name of a module to be loaded.

The Apache web server The Apachehttpd server is
a freely available web server. In order to support various
kinds of dynamic content generation, authentication, etc.,
the server provides a module system. Modules can be linked
statically at build-time, or dynamically at startup-time. Dy-
namically loaded modules can be compiled inside or outside
the Apache source tree.

Apache faces the same problem as the Linux kernel: how
to register a variable set of modules (that is, how to make
statically included modules known to the core system)? The
solution used by the Apache developers is to have the con-
figuration script generate a C source file containing a list of
pointers to the module definition structures. Note that this
solution is again, in a sense, outside of the C language; we
need togenerateC code (a process external to the language
proper) in order to deal with these open variation points.
Registering a module at startup-time happens by loading the
module and lookup up a fixed name in its symbol table.

Configuration is quite different at build-time and startup-
time. At build-time, modules are selected by specifying the
list of desired modules to an Autoconf configuration script
(which constructs the build files). If modules are added
later, at startup-time, they must be added to a configuration
file (httpd.conf ).

Issues The aforementioned examples demonstrate the two
main issues in implementing timeline variability. First, we
tend to havea different configuration interface per config-
uration moment, even when some features can be bound at
several moments during the life-cycle (thus presenting an
inconsistent interface to the user).

Second,implementations techniques aread hoc. This is
almost necessarily so, because the underlying languages do
not offer the required support. Providing a variation point
either at build-timeor at run-time is not hard, but provid-
ing it at both tends to require some hackery. Consider, for
example, a binary variation point that is bound at run-time,
implemented in C. This might be implemented as follows:

if (feature) f() else g();

Moving this variation point to build-time is not hard ei-
ther using conditional compilation:

#if FEATURE
f()

#else



g()
#endif

But to allow for this feature to be bound both at build-
time and run-time, we would need, e.g.,:

#if FEATURE_BOUND_AT_BUILD_TIME
#if FEATURE

f()
#else

g()
#endif
#else

if (feature) f() else g()
#endif

which is inelegant: not only do we need two different im-
plementation mechanisms, but binding the feature will tend
to happen through different configuration interfaces, and the
corresponding implementation is difficult to understand.

3. Feature models and time

The main problem in timeline variability is that every
stage in the life-cycle tends to present a different configura-
tion interface to the user. This is particularly annoying for
variation points that have several binding times. In order to
generalize system configuration, we propose that a generic
configuration interface is parameterized with a formalized
feature model.

In approaches such as FODA [10] or FDL [6] feature
models are described as graph-like structures, where the
edges between features denote certain relationships (such
as alternatives, exclusion, and so on). The model therefore
describes a set ofvalid configurations that satisfy all con-
straints on the feature space. Apart from being used dur-
ing analysis and design, such models can also be used to
drive the configuration process directly. For example, the
CML2 [14] language was designed to drive the configura-
tion process of the Linux kernel (and other systems) on the
basis of a formal feature model of the system.

However, these models provides astaticview of the con-
figuration space: a configuration is either valid or it is not;
no timeline aspects are taken into account. In order to model
timeline aspects, it is necessary to take into account that
some feature selections, i.e., bindings of variation points,
are valid only on certain points on the configuration time-
line. That is, we should not place constraints on configura-
tions but on transitions between configurations.

Formally, a feature model for a system with a statically
fixed set1 of variation points has the following elements:

1It is possible for the set of variation points to be dynamic, e.g., load-
able modules may add their own variability. For simplicity we do not take
this possibility into account here.

• A set of named variation pointsP and, for each varia-
tion pointp ∈ P , the set of named statesSp.

• A configurationC is an assignment of states to varia-
tion points, that is, a functionP → ∪p∈P Sp.

• An initial configurationc0 ∈ C.

• A relationT ⊆ C × C expressing valid configuration
transitions; i.e., it constrains configurations. As noted
above, it is not sufficient merely to describe valid con-
figurations, since not every valid configuration can be
transformed into any other valid configuration. How-
ever, the set of valid configurations is the transitive clo-
sure of{c0} under theT relation.

Note that static feature models such as FODA, FDL, and
CML can be transcoded into this model; they are just differ-
ent ways of expressing the valid-transition relationT . In-
deed, the main problem in making this approach useful is
to find a suitable way to specifyT . Note that this is just an
usability issue; the model is as described above.

It may be argued that implementation restrictions should
not appear in the feature model. However, they are required
to generate configuration systems. In addition, we can iden-
tify several types of constraints. First, there are constraints
that are inherent to the problem domain; these arise from the
domain analysis. Second, some constraints result from im-
plementation restrictions. This may well be the largest set in
typical systems. Finally, some constraints are not forced by
the domain or implementation, but rather are added by some
stakeholder. An example would be a system administrator
who restricts some end-user configurability. The specifi-
cation language for the feature model should allow these
constraints to be specified separately.

Example An example may be useful. We shall encode a
very small subset of the variant space of the Apache web
server using the formalism given above.

What is the set of variation pointsP and the associated
sets of states for each variation point? An example of a
simple variation point in this model isdebug to enable or
disable emission of debug information (with stateson and
off , respectively). This variation point can only be bound
at build-time. More relevant to timeline variability is
Apache’s module support. For example, we have variation
points such asmod_cgi (also with stateson andoff ) to
enable or disable support for CGI scripts, respectively. Re-
calling the discussing of modules in Apache in section 2,
such features can always be bound at build-time, but they
can only be changed at startup-time when support for dy-
namic loading of modules is enabled. This is also a vari-
ation point, of course, which we denote asmod_dso (for
dynamic shared objects).



In order for our approach to work we need to encode in
the valid-transition relationT that the state ofmod_cgi
can be changed up to build-time, but up to startup-time only
if mod_dso is set toon . Hence, we need to be able to
distinguish the point on the timeline that we are at. To
do this we introduce apseudo variation pointtime with
statesinitial , built , andrunning , denoting the de-
ployment points at which the source has been obtained, the
system has been built, and the system has been started.

Note that there is nothing particularly special about
time , except that it does not denote a real (i.e., concep-
tual) variation point; i.e., this is quite general: any aspect
of the deployment state (such as an installation path) can be
stored in the configuration.

Using time we can fill inT , which describes the set of
valid transitions. Hence, we have to deal withtwo config-
urations: the configurationc1 we are coming from, and the
configurationc2 that we are going to. For anyc1 andc2,
(c1, c2) ∈ T if and only if the following hold:

(1) c1.time ≤ c2.time
(2) c1.time ≥ built → c1.debug = c2.debug
(3) c1.time ≥ built → c1.mod dso = c2.mod dso
(4) c1.time ≥ built ∧ c1.mod dso = off

→ c1.mod cgi = c2.mod cgi
(5) c1.time ≥ running

→ c1.mod cgi = c2.mod cgi

(The ordering ontime is initial ≤ built ≤
running ). Condition(1) encodes that time is monoton-
ically non-decreasing. Conditions(2) and(3) specify that
thedebug andmod_dso variation point can never change
after the system has been built. On the other hand, condi-
tion (4) says thatmod_cgi cannot change if, additionally,
support for dynamic loading is disabled. Hence,mod_cgi
canchange after build-time if DSO support is enabled. Fi-
nally, condition(5) restricts this a bit: CGI support cannot
be changed after the system has been started.

4. From models to configuration interfaces

The construction of a formal feature model as discussed
in the previous section is valuable in itself because it enables
analysis of both conceptualand implementation-defined
variability in a system. The real strength of a formal model,
however, is that it allows the automatic generation of config-
uration interfaces. The intent is that using the feature model
we can drive a generic configuration tool calledTraCE(for
Transparent Configuration Environment). The idea is out-
lined in figure 1. At each point in time we maintain the
configuration state corresponding to the state of the sys-
tem. Starting with an initial system (e.g., the source code
distribution of Apache), the user can make modification to
the configuration through the TraCE user interface, which

Initial Built Running

model

time

TraCE

configuration
interface configure httpd.conf

actions ./configure; 
make

generate httpd.conf;
apachectl start

Figure 1. Sketch of the TraCE system operat-
ing on a feature model for Apache.

presents a visualization of the feature model. Such modi-
fications are actualized upon the system by TraCE. For ex-
ample, in the Apache example, the transition from initial
to built stage is performed by configuring the source with
the right parameters (depending on the selected variation
points) and building it.

More precisely, given acurrent configurationc ∈ C,
the user can modifyc by changing the states of variation
points, yielding atargetconfigurationc′ ∈ C. We associate
with each valid transitiont ∈ T some imperative action
that should be performed torealize the configuration tran-
sition. Hence, if(c, c′) ∈ T , the configurationc′ can be
realized by executing the associated action. Note that ac-
tions are associated with transitions, and so configurations
may be realized in different ways depending on the configu-
ration we are coming from. This is necessary for supporting
timeline variability, since the binding of variation points can
proceed through different implementation points depending
on the time, or on the state of other variation points.

A problem here is that while(c, c′) may not be a
valid transition, there may be a sequence of transitions
(c, c1), (c1, c2), . . . , (cn, c′) ∈ T that realizes the desired
transition. Finding a path in the transition space is com-
putationally prohibitive. We can side-step this problem by
requiring that the user always specifies transitions that are
in T . This is not unreasonable if the developer of the fea-
ture model ensures thatT is (more or less) transitive, that
is, (c1, c2) ∈ T ∧ (c2, c3) ∈ T → (c1, c3) ∈ T .

5. Related work

Variability is an emerging area of research. The first
attempts to handle variability in a disciplined way are the
feature-modeling formalisms originally developed in [10].
These models are directed at domain analysis, however, and
are not directly used for implementation. Rather, such mod-



els suggest where in the system the implementor should
construct variation points to deal with anticipated or unan-
ticipated variants. In [16] another feature modeling is ad-
dressed, which uses feature logic to reason about collec-
tions of components and their properties. Basic support for
timeline variability is addressed in [13]. They use partial
evaluation techniques of components parameters to choose
between compile-time and run-time variability. Variability
mechanisms are described in [7]. They introduce the notion
of variability binding time (i.e., the moment in time where a
variability point is bound) but binding time is not explicitly
modeled nor transparently handled. Feature binding cannot
be rolled back in product instances to change parts of its
functionality. Variation management in software product
lines is discussed in [12]. They discuss variation during the
life-time of a product line rather than during the deployment
time of a product instance.

Several techniques have been developed to realize vari-
ability at compile-time, such as Frame Technology [8],
Mixin layers [15], and aspect-oriented programming [11].
None of these explicitly model variability. GenVoca is
another compile-time variability mechanism [1]. Feature
modeling in combination with GenVoca is briefly addressed
in [3] but timeline variability is not considered.

6. Conclusion

We have discussed some of the issues in timeline vari-
ability. We suggest that the problem of inconsistent con-
figuration interfaces can be solved through formal feature
models that encode timeline aspects and that these can be
used to generically drive the configuration process.

We are currently implementing a prototype of TraCE.
There are several important issues that must be addressed.
First, we need a language (or interface) that allows the ef-
ficient formulation of feature models, as well as the asso-
ciation of actions to transitions. Second, there are user in-
terface issues. For instance, how do we present the feature
space to the user? In formalisms such as CML2 or FDL the
presentation structure is more-or-less obvious (due to the
use of an essentially tree-like model structure). In TraCE
we need to automatically derive an appropriate presentation
structure from the feature model.

The other main problem in timeline variability—
implementation techniques—deserves study; e.g., language
mechanisms and programming techniques that allow easier
binding at several moments must be investigated.
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Abstract

Software product line is a collection of productsthat
share a commonsetof featuresand allows for controlled
variations. Thecommonassetsacrossall theproductscan
be captured as a referencearchitecture referred to as the
ProductLineArchitecture(PLA).PLA is a configurablear-
chitecture. It can accommodatevariabilities in the hot-
spotsprovided in the design. The interactionsamongthe
assetsplay the key role in designingthe architectural in-
stancesfor productswith specificrequirements.In this pa-
per wediscusshowcomponentinteractionsandtheresult-
ing patternsof interactionscanserveaspowerfulvariabil-
ity managementmechanismsin PLA design.

Keywords: ProductLine Architecture, Patterns,Com-
ponents,Connectors

1. Introduction

ProductLine Architecture(PLA) is a designfor a fam-
ily of applications.PLAs attemptto capitalizethe domain
expertiseof companiesandfacilitatelarge-scalereusein a
systematicway. Theintentof aPLA is to amortizetheeffort
of developmentfor similar products.So, it is very impor-
tant to plan the designstagesof PLAs. Also, the up-front
investmentin thedevelopmentof PLA is high comparedto
singleproductdevelopment.Hence,enoughcareshouldbe
takento seethatthearchitectureis capableof addressingthe
developmentof a largenumberof productswith lessdevel-
opmenteffort. PLAs shouldalsobe capableof addressing
easyevolutionof assets.

Whena PLA is built for thefirst time, intensive domain
engineeringis neededto capturetherequirements,reusable
assetsandvariations. After this, the reusableassetscould
be identifiedandsubsequentgenerationof thearchitecture

canfollow abottom-upapproachin composingtheseassets
to give theproductinstances.

It is advisableto have a generic,configurablearchitec-
tural model for a PLA, that is capableof generatingindi-
vidual architecturalinstances,providedwith requiredspec-
ifications.This architecturalmodelshouldbecomposedof
abstractionsin theform of patterns.Thevariabilitiesin the
individualarchitecturesandtheir interactionsshouldalsobe
capturedin theform of patterns.

In this paperwe discusshow the interactionsbetween
the reusablecomponentscanserve aspowerful vehicle in
handlingvariability in productlines. We believe thatsince
theinteractionscandictatethesemanticsof customizingthe
participatingcomponents,they canserve asmorepowerful
variabilityhandlingmechanisms.Also, thepatternsof these
interactionscanbecapturedasreusableartifactsin variabil-
ity design.

The paperis organizedasfollows. Section2 discusses
importanceof abstractionsandinteractionsin PLA design.
Section3 explains connectorsas variability management
mechanismsin PLAs. Section4 detailsinteractionpatterns
in PLA design.Section5 discussessomerelatedwork. Sec-
tion 6 concludesthepaperandgivessomepointersto future
work.

2. Importance of abstractions and their inter-
actions in PLA design

Derivation of genericarchitectureis always basedon
successfulabstractionsand their interactions. Theseab-
stractionsenableus to have a conceptualmodelof the en-
tire architecture.Interactionscandictatethecustomization
of theseabstractions.A first-classexplicit representationof
the PLA and its assetsenableus to placethe entire soft-
warein aconceptualcontext [2]. Sucharepresentationalso
enablesthedesignandredesignof thereusableassetseasy



sincethe unwieldy interfacesof the componentsaremini-
mizedin abstractions.Abstractionsmake thesystemmore
comprehensibleandinteractionsbetweentwo abstractions
can dictate the behavioral semanticsbetweenthe two of
them.

2.1. Abstractions in the form of components and
connectors

It may not be possibleto arrive at a uniform architec-
ture,which containstheminutedetailsof all thecandidate
architectures.So, an abstractionwhich doesnot show up
the differencesamongthe individual architecturesis to be
consideredasthegenericabstraction.This formstherefer-
encearchitecturefor thePLA. At ahighlevel, theseabstrac-
tionscanbeviewedascomponentswhich arethecomputa-
tionalelementsandconnectorwhich governtheinteraction
betweentwo components[16].

Alternativesandoptionscanbebuilt into thegenericar-
chitecturebasedon variability analysis.Optionsandalter-
nativesrefinethis genericabstractionby meansof thecon-
nectorsemanticsthat is usedto connectthe variablepart
with the fixed part of the design. Connectorscanmediate
betweenthe two participatingcomponentsin dictatingthe
variability in thedesign.Soweseethemaspowerful mech-
anismsin handlingvariability in productlines.

Initial stepin arriving at theabstractionsis to definethe
productcontext in which this abstractionoperates.For ex-
ample,if thereis a productline for designingcontrol pro-
gramfor variousembeddedsystems,thehardwarein which
the embeddedsystemoperatesforms the context abstrac-
tion. Next stepis to find theabstractionsthemselves.These
will facilitate the componentsas instancesof the abstrac-
tions. Theseinstancesin turn will have provision for vari-
abilities. Thesestepscan be performediteratively by as-
sessingthe suitability of the abstractionsin realizing the
genericarchitecture,allowing for controlledvariationsin
it. Boundingthescopeof theproductline, thatis, therange
of productscoveredby theproductline, is alsoanimportant
activity in theinitial phases.

On carefullyexaminingtheproductlines,it canbeseen
that variance,optionality andconflictsarethe threetrans-
formationaspectsin their design.This basicideashouldbe
guiding the identificationof the componentsand their in-
teractions.While analyzingvariabilities,we shouldnot be
concentratingonabstractionswhichareveryprimitive,that
is, thosewhich have direct implementationmechanismsin
thelanguage.For theseabstractions,varianceis thekey de-
sign force. So, future evolution of assetsmaynot beeasy.
Thebestapproachwould be to startfrom the domaincon-
ceptsandthencomeup with domainabstractions.This en-
ablesthe managementof abstractionseasyin termsof the
domainevolution.

For easiermanagementandevolution, componentscan
be groupedinto variouslogical layers,eachlayer address-
ing onespecificfunctionality. Thecorefunctionalityof the
genericarchitecturewill beavailable,whichdifferentprod-
uctscanrefinein orderto have their designatedfunctional-
ity.

2.2. Features aspects and concerns

A featureis somethingespeciallynoticeable,a promi-
nentpartof detail [18]. In the context of software,feature
will beany partor aspectof a specificationwhich theuser
perceivesashaving a self containedfunctionalrole [8]. For
the userof a softwareit couldmeanonething, for the de-
veloper, it could meana different thing. For example,in
order to have a problemdomainfeatureimplemented,the
developerwill beusingmorethanonefeaturein thesolution
domain.Featureswill bemanifestedin programsasprovid-
ing certainservicesor attainingsomequality attributes. If
a featureis implementedacrossseveral componentsin the
system,it is calleda cross-cuttingfeature.Aspect-Oriented
Programming(AOP)[10] communitycallssuchfeaturesas
aspects.

Thedomainabstractionswill beaddressingthebasicfea-
turesin the product line architecture. It is very rare that
the featuresstandin isolation. Oncethe abstractionsare
identifiedasarchitecturalentities,globalpropertiesthatare
desirablefor the systemcan emerge from the individual
functionalitiesandthe interactionsthat exist amongthem.
It is equally important to ensurethat undesirableinterac-
tionsdonot resultfrom thefeatureswhichareusedto com-
posethe system. We believe that the interconnectedfea-
tureshave to be identifiedin the early architecturaldesign
stagesitself andthensubsequentlybe refinedto program-
ming level aspects.UseCaseMaps(UCM)[3] seemto be
a goodchoiceat the architecturallevel for modelingcross
cuttingfeatures[11].

Adequatedocumentationmechanismfor definingmap-
ping from featurespaceto solution spaceis very critical
for PLAs. This will help in the traceability of require-
ments.FeatureSolution(FS)Graphis usedin [11] to con-
nectquality requirementswith solutionsat anarchitectural
level. Featuresmay sometimesbe non-functionalrequire-
mentsof software. Useof designpatterns[7] assolutions
for attainingcertainquality attributeslike flexibility , exten-
sibility etc. is anexample.

3. Connectors as variability management
mechanisms

Connectorscanbe viewed asmorepowerful variability
handlingmechanisms.They have thecapabilityto achieve
variouscompositionpatternsfor componentsthatgenerate



a specific architecturalinstance. We view connectorsto
be more powerful than componentsin modelingvariabil-
ity becausethey have thepotentialto dictatechangesin all
participatingcomponentswhereasacomponentcanbecus-
tomizedonly in its context. Achievingvariabilityusingcon-
nectorsis not merelythroughthe syntacticcompositionof
theparticipatingcomponents,but alsodictatedby thecon-
nectorsemantics.

Therearetwo levels of modelingvariability usingcon-
nectors.At first level, connectorsemanticscandecideupon
thevariableassetsin theform of components,thatarecho-
sento composetheproductarchitecture.At thenext level,
within a componentit canaddressthesecondlevel of vari-
ability. It is to benotedthatthis is possibleonly for awhite
box component,whosecodeis availablefor anoutsideen-
tity to modify.

On carefullyexaminingtheproductlines it canbeseen
that variance,optionality andconflictsarethe threetrans-
formationaspectsin their design.Interactionsbetweenvar-
iouscomponentsfor eachof theseaspectscanbeachieved
by properlydesignedconnectors.Varianceandoptionality
will mostly be addressedby the choiceof specificcompo-
nents. Conflicts can be capturedin the form of violation
of contractsby thecomponentsthatareparticipatingin the
composition.Sayfor example,therearetwo featureswhich
cannot co-exist in a product,connectorsemanticsshould
capturethatasa conflict.

The instantiationof a productline architecturefrom ex-
istingassetsby meansof automaticcompositionof assetsis
gainingimportancenow-a-days.Givenaparticularrequire-
mentspecification,a highly customizedandoptimizedin-
termediateor endproductcanbemanufacturedon demand
from elementaryreusableimplementationcomponentsby
meansof configurationknowledge using generative pro-
grammingtechniques[13]. The configurationpatternscan
becapturedasreusableartifacts.

For arriving at fundamentaldesigndecisionsandtrade-
off analysisat early stagesin the designof architecture
of productlines, architecturalpatterns[5, 9] canbe used.
Thesearecollection of high-level designdecisionswhich
arealreadymadeandreused.They provide guidelineson
how to connectcomponentsandconnectorstogether. Archi-
tecturalpatternsbasicallyprovide thefollowing. Thefunc-
tionality of componentsat runtime, topological layout of
componentsaspertheir relationsatruntime,asetof seman-
tic guidelines,asetof connectorsproviding communication
andco-ordinationor co-operationamongcomponents.

4. Role of component interaction patterns in
PLA design

Researchcommunityhasaddressedthe useof patterns
for attainingstructuralvariability [1] basedon mandatory,

alternative andoptional featurepropertiesas identifiedby
FeatureOrientedDomain Analysis (FODA) [14]. Only
structuralpatternshavebeenaddressedin this work. Based
on whethera variablefeatureis optional,mandatoryor al-
ternative a patterncanbe chosento staticallyplugging in
thevariability.

Thefeaturesthatdictatethevariationsmayinteractwith
oneanother. So, it is unlikely that the variationsarecon-
finedto a specificpartof thedesign.Theanalysisfor cap-
turing the commonalityandvariability shouldconcentrate
on thecommonpatternsof occurrenceof variabilities.The
interactionsof intendedvariability in the architecturemay
not only be dictatedstatically. The assetsmay have inter-
actionsat the time of compositionalso. Theseinteraction
patterns,asdictatedby theconnectorsemanticsformsakey
role in dictatingthecompositionof reusableassets.In PLA
design,becauseof the probableinter-relationshipbetween
featuresandtheir realizationmechanisms,interactionpat-
ternsplay a vital role. So,it is not enoughthatwe concen-
trateon the staticallyboundvariabilities. We have to con-
centrateon the configurationpatternsof componentsthat
areresultingfrom thecomposition.Thesepatternsserveas
reusabledesignsolutionsfor thekind of variability they are
addressing.

PLAs areintendedto be long-liveddesigns.So,a con-
ceptualabstractionof the entire PLA is an important re-
quirementfor its success. This abstractioncan be cap-
turedasinteractionpatternsfor realizingthe candidatear-
chitectures. Use of interactionpatternsis many-fold. In
theautomaticgenerationof productline architectures,these
patternsdictatethe desirableandundesirableforms of in-
teractionswhile composingarchitecturesfrom existing as-
sets.Knowledgeof standardizedinteractionpatternsenable
the learningof the architectureeasier. While modifying
reusableassets,thedependency betweenassetsis very im-
portant. This dependency cannot be capturedfully by the
staticbehavior of the system.Dependency betweenassets
will bedictatedduringcompositionaswell asrun time. So
variability will bedecidedbasedonall thesedependencies.

4.1. Patterns in architectural and design level

Abstractsolutionsto recurringproblemsareavailablein
theform of patternsatvaryinglevelsof granularity[5, 7, 9].
Thesesolutions addressthe functional as well as non-
functionalrequirementsof thearchitecture.Thesepatterns
canbeusedto makefundamentaldesigntrade-offs in thear-
chitecturedesign.They alsofacilitatetheevolutionof PLA
easier. Evolution takesplacewhennew featuresareadded
andexisting featuresareenhanced.Thoughthis activity is
costly, it is unavoidablein successfulapplicationssincere-
quirementschange.[6] suggestthe useof designpatterns
and domainspecificlanguagesfor achieving extensibility



in productlines.
Designpatterns[7] like strategy, abstractfactory, medi-

ator andstatesupportvariants. In optionality transforma-
tion, in someproductscertaincomponentscanbeomitted.
Strategy andproxypatternscanbeusedfor this. For resolv-
ing conflictsbetweenPLA andindividualproducts,adapter,
proxyandmediatorpatternscanbeused.

Patternsare capableof providing trade-off analysisin
casealternatedesignsexist. A methodologyfor designof a
framework for productlinesbasedonapatternorientedap-
proachis availablein [20]. This work usesa setof metrics
suggestedin [4] usinganabstractmodelof patterncalleda
patterngraph.

Whendesignpatternsareusedto modelvariabilitiesin
productlines,we takesinglevariableaspectsinto consider-
ation. Most of the patternsaddressvariability issues.The
importantpoint hereis that the variabilitiesshouldnot be
treatedin isolation. Therehasto be a mechanismbridg-
ing the gapbetweenrequirementmodelingof variabilities
andtheir designthroughimplementation.FeatureSolution
Graphhasbeensuggestedasameansto indicatetherelation
betweenfeature(problem)spaceandsolutionspace.

It is notonly adequateto representthevariabilities,their
traceabilityis important.Undesirableinteractionsin thede-
signusingpatternsareto becapturedandsuchpatterncom-
binationscannot beusedin modelingthesolutions.

Previous researchin software variability has identified
variation points [12] as points where variability is to be
pluggedin. But we believe that thetreatmentof variability
shouldbe startedright from the analysisphasesprecisely
in the hot-spotsidentified during the analysisand design
stages.Variableaspectscanbedesignedeitherin thecom-
ponentsor connectors.Therearedifferentwaysof achiev-
ing variability. In somecases,it may be possibleto attain
variability staticallyboundto theprogramat compiletime.
Anotheralternative is to havedynamicbehavior pluggedin
to thesystemby meansof run time customizationof com-
ponents.Variability couldalsobeachievedat composition
time. An importantreusableartifact in the last two cases
will bethedynamicconfigurationor thepatternof interac-
tions,thatthesystemhasduringthebehavioral change.

5. Related work

[17] initiatedPLAsin earlyin 1969.Information-hiding
principle by Parnasencodesa module’s commonalitiesas
its interface and variabilities as a module’s secrets[19].
RSEB(Reuse-drivenSoftware EngineeringBusiness) [12]
addressesdevelopmentof applicationproductfamiliestak-
ing into accounttheir organizationalandtechnicalissues.
RSEB andFODA [14] are integratedin FeatuRSEB[15].
This reuse-orientedmodel servesas a catalogto link use
cases,variationpoints,reusablecomponentsandconfigured

applications.In [6], a casestudyusingGenVocaapproach
hasbeendiscussedto achieveextensibilityof productlines.
Themethodthatwe envisagediffers from all theseworks,
in thatwegiveimportanceto thearchitecturalaspectsof the
productline by concentratingon theinteractionsamongthe
reusableassets.This approachthushelpsin the automatic
generationof architecturalinstances.

6. Conclusions and future work

A robust softwarearchitectureis critical for any prod-
uct line. In this paperwe have discussedthe importance
of interactionsbetweencomponentsmodeledin theform of
a softwareconnectorin dictatingthe variability in product
line architectures.A connectoris a morepowerful mecha-
nismto achieve variability becauseit canbeenrichedwith
the semanticsto customizeboth participatingcomponents
in thecomposition.This canresultin a configurablearchi-
tecturemodel for a PLA. The configurationpatternsthus
resultedcan also be usedas reusableartifactsfor model-
ing variability. Capturingthedependency betweenassetsin
the form of patternswill guidethe evolution process.The
dependenciesmay sometimesbe simple usagedependen-
ciesor sometimesthis maybecomplex behavioral patterns
composedfrom independentfeatures.

As part of our future work, we plan to addressthe is-
sueof interactionbetweenpatternsin moredetail for, we
believe thataddressingdesignreusein theform of patterns
andcodereusein theform of componentswill beapromis-
ing stepin largescalesoftwaredevelopment.
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Abstract 
 
System families have to address the problems inherent in 
software artifacts due to the demand for variability, 
which is necessary to support the needs of different users 
or to enable functionality in diverse environments and 
constraints. The possible features of a software product-
line may vary according to the needs of particular market 
segments and purposes.  In this paper an overview of 
describing software variability with means of feature 
modeling is presented. The role of feature modeling 
within basic activities in the software development 
process is shown. Different leading feature modeling 
notations are compared and basic elements, feature types 
and relationships between the features are discussed. 
Further extensions as modeling features with UML and 
employing fuzzy logic in feature diagrams are also 
mentioned.  
 
 
1. Motivation 
 

An understanding of the concepts may be gained by 
listing their properties, which may be further described 
with features and dimensions. Features portray the 
qualitative properties of concepts, while dimensions 
present their quantitative properties. The value range of 
the dimension may be continuous (as integer numbers) or 
discrete (e.g., given as large, middle, small, etc.). The 
values of dimensions may be ordered or not (i.e., like the 
attributes). 

A set of dimensions may be used to characterize a 
number of concepts, each of them represented by a group 
of values, with one value for each dimension. A similar 
report is given by listings of feature values for a specific 
member of the software family in the form of product and 
feature matrix [1]. The basic role of feature modeling in 
developing software families as product-lines is depicted 
in Figure1. 

There is no standard notation for feature diagrams 
available. The most widely accepted notation is the 
notation for purposes of the Generative Programming 
(GP) introduced by Czarnecki and Eisenecker [2].  

Section 2 of this paper contains the meaning of the 
feature notion, feature model and comparison of some 

leading notations applied in feature diagrams i.e.: FODA , 
FORM, FeatuRSEB, GP and Jan Bosch’s notation. 
Section 3 summarizes the feature types and relationships 
for feature diagrams. The last section contains the 
conclusion of the work. 
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Fig.1 Role of features in basic activities in developing 
system families [12]. 
 
 
2. Feature modeling 
2.1.  Feature notion 
 

It is important to remark that the feature notion in this 
paper (as also in domain modeling) has a somewhat 
different meaning then the UML-feature defined as a 
property, e.g., an operation or an attribute, that is 
encapsulated within another entity, such as an interface, a 
class, or a data type [10]. 

According to Feature-oriented Domain Analysis 
(FODA) [7] the feature is the property of a system which 
directly affects end-users: "Feature: A prominent or 
distinctive and user-visible aspect, quality, or 
characteristic of a software system or systems.” 
Application features have been largely classified 
according to [7] into: Capabilities (functional, 
operational, presentation features), Operating 
Environments, and Domain Technology Implementation 
Techniques. Functional features are basic services 



provided by the applications from the end-user’s 
perspective. Operational features show from the user’s 
perspective their interactions with the applications. 
Presentation features are related to the way information is 
presented to the users. Operating Environments are the 
environments in which the applications are used and 
operated.   

For purposes of Generative Programming (GP) 
Czarnecki and Eisenecker [2] define the feature notion as 
“property of a domain concept, which is relevant to some 
domain stakeholder and is used to discriminate between 
concept instances”.  

FODA definition has been extended in FORM-method 
[8] - the features are considered within the domain 
analysis to differentiate a specific application from other 
related ones and are the “application features” 
characterizing specific applications from the end-user’s 
perspective and may be classified into the following 
categories [9]: 

1. Capability features: 
• Service,  
• Operation,  
• Nonfunctional characteristics. 

2. Domain technology features: 
• Domain method,  
• Standard,  
• Law. 

3. Operating environment features: 
• Hardware,  
• Software. 

4. Implementation technique features: 
• Design decision,  
• Communication,  
• ADT. 

J. Bosch defines feature as a “logical unit of behaviour 
that is specified by a set of functional and quality 
requirements” [1]. 

 
2.2.  FODA feature diagrams 
 

The feature models first introduced in FODA to 
represent a configuration aspect of reusable software 
comprise: 

• Feature diagram,  
• Composition rules (relationships for optional and   

alternative features), 
• Issues and decisions (logical basis of features),  
• System feature catalogue.  

FODA feature models are the means to describe 
mandatory, optional, and alternative properties of 
concepts within a domain. The most significant part of a 
feature model is the feature diagram that forms a tree 
(graphical AND/OR hierarchical features) and captures 

the relationships among features. The root of the tree 
represents the concept being described and the remaining 
nodes denote features and their sub-features. A feature is 
mandatory unless an empty circle is attached to its node, 
indicating an optional feature. An arc spanning two or 
more edges of the feature nodes depicts a set of the 
alternative features (see Table 1). Alternative features in 
FODA are considered as specializations of a more general 
feature (i.e. category). The term alternative feature 
indicates that no more than one specialization can be 
made for a system. The parent node of a feature node is 
either the concept node or another feature or a sub-feature 
node, respectively. Direct features of a concept and sub-
features (i.e., features having other features as their 
parents) are distinguished. Direct features of a software 
system may be mandatory, alternative, or optional with 
respect to all applications within the domain. A sub-
feature may be mandatory, alternative, or optional with 
respect to only the applications, which also enclose its 
parent feature. If the parent of the feature is not included 
in the description of the system, its direct and indirect 
sub-features are unreachable. Reachable mandatory 
features must be always included in every system 
instance, while an optional feature may be included or 
not, and an alternative feature replaces another feature 
when included. In FODA, selected optional and 
alternative features are highlighted in the feature diagram 
for a specific system with the boxes around the name of 
the selected feature.  

External composition rules describe additional 
dependencies between the features contained in a feature 
diagram: the features may be described as “Mutual 
exclusive With” or “Mandatory With” other features. 
Supplementary information, such as the explanation of 
the logical basis of the features (trade-offs, rationales), as 
well as system feature catalogue (i.e., the register of 
existing systems and their features), etc., are further parts 
of the exterior feature definition. 

 
2.3. Feature Diagram Notation in Generative 
Programming (GP) and other methods 
 

The most popular GP-feature diagram notation differs 
in some details from the FODA notation and extends it 
slightly (with Or-features) – see Table 1. Besides a “one-
of-many”-choice for the strong alternative group, there is 
an additional kind of feature, so-called Or-features, i.e., 
an “n-of-many”- (nonempty) choice within an alternative 
or-features group. In the GP-feature diagram notation, 
each feature name is contained within a box. This makes 
the presentation of selected options or alternative 
branches for concrete systems (as in FODA) impossible. 

In addition to the features listed above, in Table 1, 
there are two further feature kinds used in GP [2]: open 



features and premature features. The open features are 
indicated by enclosing the feature name in brackets i.e.: [a 
Feature]. The open feature is often an arbitrary extendible 
XOR-Group. The premature features are marked with 
partially dashed lines (at right and bottom) in the feature 
name-box. Premature features may be used in situations 
when the feature is premature, i.e., its use in the feature 
diagram is still not sure and/or the sub-features of 
premature features will be later modeled in detail. 
Premature features are used also in situations when the 
feature in the instance of the notion will be specified in 
detail later.  

The FORM method was developed upon the FODA 
method by Kang et. al. [8]. In the notation the nodes 
symbols are the same as in FODA, but all feature names 
are depicted in boxes - as in GP. There is only   strong 
alternative available, as in FODA (see Table 1).  The 
differentiated feature relationships are composition and 
generalization/ specialization, as also “Implemented By”.  
The first two are available in other methods - composition 
explicit, generalization and specialization (also implicit), 
but the third one is new. “Implemented By” indicates, that 
a feature is necessary to implement another feature [8]. 

In FeatuRSEB [4] the UML based notation is 
introduced for creating feature graphs. The two types of 
alternative (XOR and OR) are consonant with the 
enhanced notion of RSEB-variation point. In RSEB [5] 
the variation point was defined as a point, where a 
variation may occur. The notion has been further 
developed in FeatuRSEB and additionally précised in [2]. 
The binding time (see Section 2.4) maintained in FODA 
and GP as external description has been integrated in 
FeatuRSEB- feature model. In FeatuRSEB there are only 
two possible binding time attributes for variation points: 
reuse time (XOR) and use time (OR). The overview of 
modeling features with UML is given in [11]. 

Jan Bosch uses another feature diagram notation. The 
notation is as e.g. used in [13], and it is slightly different 
than in FeatuRSEB (see Table 1). The symbols for the 
feature nodes are the same as in FODA and feature names 
are depicted in boxes as in GP. In alternative the empty 
edges (as in GP) are presented by empty triangles (and 
filled arcs - by filled triangles) – see Table 1. The external 
features are introduced as a novel construct. The 
indication of the binding time is not new, but in 
comparison to FeatuRSEB more binding times are 
possible (e.g., compile time). 

There are also some further significant extensions to 
feature diagram notation (not included in Table 1), such 
as the description of the feature cardinalities, and also 
arrows indicating the feature associations introduced by 
Hein et al. [6].  

 
 

2.4. Information associated with a feature 
 

There is some further descriptive information 
associated with each concept or feature, such as: 

• Semantic descriptions (e.g., models in 
appropriate formalisms, traceability links), 

• Category of feature: concrete, abstract, aspect, 
etc. 

• Rationale (reasons and trade-offs in choosing a 
feature), 

• Stakeholder and client programs (interested in 
the feature), 

• Responsible people/organizations demand (for 
the feature), 

• Exemplar systems (including the feature), 
• Constraints and default dependency rules (hard 

constraints: excludes and requires; weak 
constraints: default values), 

• Binding times, availability sites, binding sites 
(when, where, by whom the feature is 
available/may be bound), 

• Binding modes (e.g., static, dynamic, reversible), 
• Open/closed attribute (extensible/non-extensible 

alternative features’ group), 
• Priority (relevance to the project). 

It is not required to attach all possible information 
(which may include much more items than described 
above) to the portrayed features. Which information 
should be attached to the feature depends on the concrete 
domain, the project and the stakeholders.  

The optional features as well as the features included 
within the alternative and strict alternative groups are 
referred to as the variable features. The most relevant 
information for managing variability purposes is the 
binding time for the variable features. 
 
2.5. Use of Feature Weights for Variable Features 
 

Each variable feature in a feature diagram may be 
annotated with a weight symbolizing, e.g., a priority of 
the variant. There are situations in which it is meaningful 
to annotate variable features with priorities: 

• Domain scoping and domain definition 
(typicality rates of variable features based on the 
analysis of known exemplar systems and the target 
application areas),  

• Feature modeling within domain analysis 
(features’ relevance to the project), 

• Domain implementation scoping (decisions 
about which features will be implemented first). 

Eisenecker, et al. give an example on the use of 
priorities for features - not in the feature diagram but 
within a table containing necessary additional information  



Table 1. Comparison of feature diagram notations. 

 

for each considered feature [3]. The priorities signify 
features as very important (++), important (+), less 
important (-) and minor (--).  

Identical feature sets may be prioritized in different 
ways for specific customer groups. The principle how 
some variable features may be described on the basis of 
fuzzy logic is introduced and discussed in [12]. 

 

3. Feature types and relationships 
Table 1 contains a comparison of feature types for 

significant feature modeling methods as: 
• FODA,  
• FORM,  
• Generative Programming (GP),  
• FeatuRSEB, and  
• Jan Bosch’s notation.  

In Table 1 the following feature node types are 
distinguished: 

• Mandatory  (all methods),   
• Optional  (all methods),     
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• Alternative  (in all methods),   
• OR-Features (GP only);  (also  FeatuRSEB and 

Jan Bosch’s notation - see below). 
In addition, in FeatuRSEB there are two feature types 

described as “variation points”: 
• Variation point (OR) and   
• Variation point (XOR). 

These are not “new” feature types, different than listed 
above, but are merely describing the fact, that they are 
parent of the alternative features (XOR) or OR-features 
(OR).  The only difference is that first mentioned - 
variation point (OR)- is also “use time bound” in 
FeatuRSEB. The binding time information constrained to 
this one time (i.e., use time) is not sufficient, because 
there are many other times, to which the feature may be 
bound. This kind of information is described in section 
2.4 as additional information contained within the feature 
model.  

In Jan Bosch’s notation the OR-specialization and 
XOR- specialization are the same as OR-features (OR-
specialization) and the strong alternative (XOR- 
specialization) respectively. Jan Bosch has introduced a 
new kind, so called “external feature” (that may also be 
implemented by external features). This kind of feature 



does not fit into the usual classification (listed above), 
where an alternative, or optional feature may also be an 
external feature. 

The basic relationships between the features are: 
• Generalization/ Specialization  (all methods)   
• Aggregation (Composition) (in all methods)   
• “Implemented By” (FORM only) 
• Required and Mutex – described in external 

composition rules. 
“Implemented By” (only in FORM) means that a feature 
is necessary to implement another feature. This kind of 
information is described as “required “ relationship in 
FODA and other methods.  
 
4. Conclusion 

Specific requirements define the set of conditions or 
capabilities that must be met by the system or a system 
component to satisfy a contract, standard or other 
formally imposed document or description. A conceptual 
characteristic (e.g., system, component, etc.,) is a feature 
visible to the stakeholder (e.g., users, customers, 
developers, managers, etc.) and which is used to describe 
and distinguish system family members.  Some features 
relate to characteristics visible to the end-user, while 
others relate more to the structure of a system and system 
capabilities, including also non-functional requirements.  

  The feature model indicates the intention of the 
described concept. The set of instances described by a 
feature model is the extension of the concept.  The 
features are not equal objects - one feature may be part of 
(different) objects, as also another feature may cover 
several objects introducing crosscutting aspects into 
software artifacts.  

There is no standard notation for feature diagrams 
available, the composition rules are maintained separately 
from the feature diagram. In the paper the most known 
notations have been compared, and feature types and 
relationships presented. The presented notations differ 
only slightly from each other. The basic relationships 
between the features contained in all methods, such as 
generalization and specialization, and aggregation 
(composition), make modeling features with UML-means 
possible. 
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Abstract 
 

This paper describes how variability is handled in 
multiple-view models of software product lines, which are 
depicted using the Unified Modeling Language notation 
(UML). A multiple-view model for a software product line 
is an object-oriented domain model which defines the 
different aspects of a software product line, namely the 
use case model, static model, collaboration model, 
statechart model, and feature model, including the 
commonality and variability. The relationships between 
the different views are described. The integration of 
multiple views is achieved by considering relationships 
among the views in a multiple view meta-model, so that 
consistency between multiple views is maintained as the 
multiple-view model evolves.  Finally, tool support for the 
approach is described. 

 
1. Introduction 
 

Several domain engineering methods [1, 2, 8, 11, 12, 
13, 14, 17, 19] address modeling commonality and 
variability in a software product line. Previous papers [5, 
6] described how multiple views of software product lines 
could be modeled using the UML notation [3, 4, 16]. This 
paper extends the multiple view modeling approach by 
describing how the different views and variability in 
those views relate to each other, the underlying meta-
model of the multiple views, and tool support for the 
multiple view modeling approach. 

Multiple view modeling of software product lines face 
greater challenges than single systems, namely how to 
model commonality and variability. Furthermore, it is 
important to define how the multiple views relate to each 
other, for example how variability in one view of the 
product line relates to variability in a different view. This 
paper describes the multiple views of software product 
lines developed using an object-oriented UML based 
domain modeling method.  

A multiple-view model captures different aspects of a 
software product line, for functional modeling, static 
modeling, and dynamic modeling.  Using the UML 
notation, the functional view is represented through a use 
case model in the requirements phase, a static model view 

through a class model, and a dynamic model view 
through a collaboration model and a statechart model. 
While these views address both single systems and 
product lines, there is, in addition, a feature model view, 
which specifically addresses modeling variability in 
software product lines. In order to explicitly define the 
relationships among the multiple views, the paper 
describes the underlying meta-model of the multiple 
views.   
 
2. Variability in Multiple-View Model 
Approach of Software Product Lines 
 
A multiple-view model for a software product line defines 
the different characteristics of a software family [21], 
including the commonality and variability among the 
members of the family. A multiple-view model is 
represented using the UML notation [4] through the use 
case model, static model, collaboration model, statechart 
model and feature model views. 

For software product lines, it is important to address 
how variability is modeled in each of the different views. 
A multiple-view model is modified at specific locations 
referred to as variation points, which is addressed by  

- Variation points in a use case model [11]  
- Abstract classes and hot spots [15] in a static model  
- Feature modeling [12] and feature dependencies [5] 

in a feature model  
These software reuse concepts are used to deal with 

variability in the multiple-view model. In addition, 
alternative decision concepts from single systems are 
used to model product line variability in collaboration 
models and statechart models of a software product line: 

- Alternative branches and message sequences in a 
collaboration model [4], which are only enabled if an 
optional or variant feature is selected.  

- Alternative branches and state transitions in a 
statechart model [10], which are only enabled if an 
optional or variant feature is selected.  

It is important for the multiple views of software 
product lines to be consistent with each other. In addition, 
it is essential that as one view is modified at a variation 
point, the other views are also modified at their variation 
points so that consistency is maintained.  



  

2.1. Variation Points in Use Case Models 
 

The functional requirements of a system are defined in 
terms of use cases and actors [11]. An actor is a user type. 
A use case describes the sequence of interactions between 
the actor and the system, considered as a black box. 

In order to capture the commonality and variability of 
a software product line, use cases are categorized as a 
kernel, optional or variant use cases. Kernel use cases are 
those use cases required by all members of the product 
line. Optional use cases are those use cases required by 
some but not all members of the product line. Some use 
cases may be variant, that is different versions of the use 
case are required by different members of the product 
line. The variant use cases are often mutually exclusive 
[5].  The use case categorization is depicted using the 
UML stereotype notation, e.g., <<kernel>>. 

Variability in a use case model can take place within a 
use case at variation points [11], which are one or more 
locations at which a change in a use case could occur. For 
a use case model, a use case may extend or include 
another use case at a variation point. The “extend” 
relationship models a variation of requirements through 
alternative paths that a base use case might take if 
appropriate conditions hold. In the extend relationship, 
the variation point is called an extension point [16]. The 
“include” relationship models the variation by reusing a 
common use case used by several other use cases. To 
model use case variability in product lines, the concept of 
a feature condition is introduced, which is used to 
represent an optional feature of the product line. For a 
given member of the product line, the feature condition is 
true if the feature is selected. 

Fig. 1 depicts variation points of the Move Part to 
WorkStation use case in the factory automation product 
line [5]. In this example, Move Part to WorkStation use 
case is a kernel use case. Store and Retrieve Part is an 
optional use case, which extends the kernel use case if the 
feature condition [system has storage] is true. If system 
has storage (that is, the feature condition is true), Store 
and Retrieve Part extends the Move Part to WorkStation 
use case at extension points -- Store Part and Retrieve 
Part. 
 
2.2. Alternative Message Sequences in 
Collaboration Models 
 
In software product lines, once the use cases have been 
determined and categorized as kernel, optional, or variant, 
the collaboration diagrams can be developed [5, 6]. 
Objects in a product line collaboration model can be 
categorized according to two orthogonal perspectives, the 
product line perspective and the application perspective 
such as  <<optional, coordinator>>. As with product line 
use cases, an object can be categorized as a kernel, 

optional or variant object to describe commonality and 
variability of objects in product lines. From an application 
perspective, an object is categorized depending on the 
role it plays such as control, algorithm, entity, or 
interface.  

Variability in a collaboration model can be depicted by 
using an alternative message sequence, which represents a 
conditional path consisting of objects and messages. A 
use case can extend a base use case under certain 
conditions. This change in the use case model requires a 
change in the corresponding collaboration model through 
an alternative message sequence. Execution of the 
alternative sequence is guarded by a feature condition. 

Fig. 2 depicts a collaboration model for the Move Part 
to Workstation use case. This diagram shows the system 
with and without an automated storage and retrieval 
system. If the system does not have a storage capability, 
there are four kernel objects involved in the collaboration 
and one external object. The base message sequence (B1 
to B5) depicts the interactions among these objects.  

If the system does have a storage capability, 
corresponding to the Store and Retrieve Part optional use 
case, optional objects Automated Store and Retrieval 
System (ASRS) Handler and ASRS Forklift Truck (shaded 
in gray) are added to the system. The feature condition 
[system has storage] is used to identify if the system has 
storage. If the feature condition is true, i.e., the specific 
product line member supports this feature, then the 
branch on the collaboration diagram, which is guarded by 
the feature condition, can be taken. 

M ove  P art to  
W o rk station

exte nsio n  po ints
re trieve  p art, 

s to re  part

S to re  an d  
R etrieve Part

«extend »

[Sy stem  ha s sto ra g e]

«ke rn e l»

«o p tio nal»

 
Fig. 1. Variation Points in the Move Part to 

WorkStation use case 
 
2.3. Alternative State Transitions in Statechart 
Models  
 

A statechart [10] is developed for each state dependent 
object in the collaboration model, including kernel, 
optional, and variant objects. Each state dependent object 
in a collaboration diagram is specified by means of a 
statechart. Since there can be variants of a control object, 
each variant is modeled using its own statechart.   

Variability in statechart models is represented through 
an alternative state transition point at which an alternative 
state transition is triggered if the appropriate condition is 
satisfied. Each statechart diagram describes each state 
dependent use case whose corresponding collaboration 



  

diagram contains state dependent control objects. As a 
state dependent use case evolves, the corresponding 
statechart model can capture the change in use case 
behavior by using an alternative state transition. 

Fig. 3 depicts a statechart model for Part Agent with 
Storage object in Move Part to Workstation use case, in 
which alternative state transitions are shaded in gray. If 
the system has storage (that is, a feature condition is true), 
then a transition could be made to these states (providing 
other events and conditions are satisfied). This feature 
condition corresponds to those depicted on Figs. 1 and 2. 

<<kernel, 
control>>

:Flexible Workstation
Controller 

<<variant, 
control>>

:Part Agent
with Storage

<<kernel,
coordinator>>

:AGV Dispatcher 

A10, B3: 
Part Arrived

A11, B4: Part Arrived

<<optional,
coordinator>>

:ASRS Handler

A1 [System has storage]:
Retrieve Part

A9 ASRS Stand 
Available

A2: Retrieve Part A3: Part Retrieved

A4: Part Retrieved

A12, B5: 
Part Placed 
on Input Stand

A7: Part Removed 
From ASRS

A6, B2: 
Move Part

A5: 
Move Part

A8: Part Off ASRS Stand

B1:
Move Part 

<<kernel, 
algorithm>>

:Part Scheduler

A0, B0:WS Available

<<external system>>
:ASRS

Forklift Truck
<<external system>>

:AGV

 
 

Fig. 2. An alternative message sequence in a 
collaboration model for move part to workstation use 

case 

Unfinished 
Part

Operation Info/
Check WS

Part Moving 
to Workstation

B0: WS Available[Part is Available on Output Stand]/
B1: Move Part

Part Arrived/
Part Placed on Input Stand

Waiting for Available 
Workstation

WS Unavailable

WS Available[Part is Available on Output Stand]/  
B1: Move Part

Part Retrieving

A4: Part Retrieved/
A5: Move Part

Part at 
ASRS Stand

A0: WS Available [System Has Storage &
Part is Unavailable on Output Stand]/

A1: Retrieve Part

WS Available [System Has Storage &
Part is Unavailable on Output Stand]/

A1: Retrieve Part

A8: Part Off ASRS Stand/
A9: ASRS Stand Available

 
Fig. 3. An alternative state transition in a statechart 

model for part agent with storage 
 
2.4. Abstract Classes and Hot Spots in Static 
Models 
 

Variability in class models can be addressed through 
abstract classes and hot spots [15]. An abstract class is a 
class with no instance because it declares at least one 
abstract operation. Each subclass of the same abstract 

class can have a different implementation of the abstract 
operation. A hot spot is a place where class adaptation 
takes place. Some operations of classes can be 
implemented or replaced by the subclasses using the 
inheritance mechanism. Such operations are called hot 
spots, which provide the flexibility that makes class 
models capable of evolving. 

Fig. 4 depicts a hot spot in Part Agent for flexible 
manufacturing systems. Flexible manufacturing systems 
can be extended to flexible manufacturing with storage 
systems. The Part Agent class in flexible manufacturing 
systems provides an operation, receiveWorkstationStatus 
(in workstationStatus), for the Part Agent with Storage 
class in flexible manufacturing with storage systems. This 
operation is a hot spot that is modified in Part Agent with 
Storage class to handle storing a part in the ASRS and 
retrieving it from storage. 

«kernel, control» 
Part Agent

«variant, control»
Part Agent with Storage

startPart()
receivePartComplete(in partComplete)
receiveWorkstationStatus(in workstationStatus) {hot spot}
receivePartArrived(in partArrived)
receiveOffOutputStand(in offOutputStand)

receiveWorkstationStatus(in workstationStatus) {modified}
receivePartOffASRSStand(in partOffASRSStand) {extended}
receivePartRetrieved(in partRetrieved) {extended}
receivePartStored(in partStored) {extended}

[System has storage]

  
Fig. 4. A hot spot in part agent class 

 
2.5. Feature Dependencies in Feature Models 
 

A feature [12] is an end-user functional requirement, 
which is used to identify reusable requirements of a 
software product line [9]. A feature is categorized as a 
kernel, optional, or variant feature to capture 
commonality and variability of a software product line.  

Variability in feature models [5] can be captured  
through dependencies among features. Each feature is 
supported by one or more use cases. In an evolution of 
the use case model, an alternative use case can extend a 
base use case under certain conditions. The use case 
dependency corresponds to a dependency between the 
features. Each feature is also supported by one or more 
classes. As a class model evolves at a hot spot, one class 
can be specialized from another class where the two 
classes support different features, respectively. This 
relationship between the two classes corresponds to a 
dependency between these two features.  

Fig. 5 depicts a feature dependency based on a class 
relationship. The Flexible Manufacturing kernel feature is 
supported by the classes Part Scheduler, Part Agent, 



  

Flexible Workstation Controller, and AGV Dispatcher. 
The Store and Retrieve optional feature is supported by 
the classes ASRS Handler and Part Agent with Storage. 
The feature dependency between the features is reflected 
in the inheritance dependency between the Part Agent 
with Storage and Part Agent classes.  

«kernel, 
algorithm»     

Part 
Scheduler

«kernel,
control» 

Part Agent

1..*Sends Part To1Check WS 11

«optional, 
coordinator» 

ASRS 
Handler

«kernel, 
coordinator » 

AGV 
Dispatcher

Moves Part

1

1

Requests 
Parts From 11

«kernel feature»
Flexible

Manufacturing 

«optional feature»
Store and Retrieve 

«kernel, control» 
Flexible 

Workstation 
Controller 

«variant, 
control» 

Part Agent 
with Storage

[System has storage]
[System has storage]

 
Fig. 5. A feature dependency based on class 

relationship 
 

3. Multiple-View Meta-Model of Software 
Product Lines 
 

A multiple-view meta-model describes how a product 
line view relates semantically to other views, which were 
informally described in the previous section. A meta-
model is a model that defines the meta-classes, their 
attributes, and relationships for each view of the multiple-
view model. A software product line development phase 
can contain several views, each of which is decomposed 
into meta-classes. A user-defined multiple-view model is 
an instance of the meta-model. A multiple-view meta-
model is represented using a class diagram in the UML 
notation. 

Fig. 6 depicts the underlying relationships among 
multiple views in the development phases of a software 
product line. The views in each phase are: 

Requirements Modeling phase: 
- Use case model: This model presents the functional 

requirements of a multiple-view model in terms of 
actors and use cases. 

Analysis Modeling phase: 
- Class model: This model addresses the static 

structural aspects of a multiple-view model through 
classes. 

- Statechart model: This model captures the dynamic 
aspects of a multiple-view model by describing 
states and transitions. 

- Collaboration model: This model addresses the 
dynamic aspects of a multiple-view model by 
describing objects and their message 
communication. 

-  Feature model: This model captures the 
commonality and variability of a software product 
line by means of features and their dependencies.  

     Design Modeling phase: 
- Consolidated collaboration model: This model 

synthesizes all the collaboration diagrams developed 
for the use cases.  

- Subsystem architecture model: Based on the 
consolidated collaboration model, this model 
addresses the structural relationships between 
subsystems.  

- Task architecture model: This model addresses the 
subsystems decomposition into tasks (active 
objects) and passive objects.  

- Refined class model: This model addresses the 
design of classes by determining the operations and 
attributes of each class. 
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Refined to Integrated
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Instantiates
objects for Decomposed into Abstracted into
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<<phase>>
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Modeling

<<phase>>
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Generates actions and activities for 

<<view>>
Feature 
Model 

Supported by 

Supported by

Behavior 
described by

Behavior described by 

Maps to
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Fig. 6. High-level relationships between multiple views 

for a software product line 
 

Each of the multiple views has relationships with 
other views within the same phase, part of which is as 
follows:  
- The behavior of an object in the collaboration model 

is described by a statechart diagram in the statechart 
model. 

- The statechart model generates actions and activities 
for the collaboration model.  

- The collaboration model generates events for the 
statechart model.  

- A feature in the feature model is supported by 
classes in the class model. For example, the Flexible 
Manufacturing feature (Fig. 5) is supported by four 
kernel classes. As the system has storage, the 
Storage and Retrieve feature (Fig. 5) is supported 



  

by the classes ASRS Handler and Part Agent with 
Storage. 

A view has relationships with another view in different 
phases, part of which is as follows: 

- A use case in the use case model is realized by one 
or more collaboration diagrams in the collaboration 
model.  

- The state dependent behavior of a use case in the 
use case model is described by a statechart diagram 
in the statechart model.  

- A feature in the feature model is supported by use 
cases in the use case model. 

- If there is a use case dependency between two use 
cases that support two different features 
respectively, the use case dependency between the 
use cases maps to a feature dependency between the 
two features. 

Each view in Fig.6 is decomposed into meta-classes. 
The meta-model for the each view and its meta-class 
attributes are described in [18, 20]. 

Consistency checking rules are defined based on the 
relationships among meta-classes in the meta-model. The 
rules resolve inconsistencies between multiple views in 
the same phase or in different phases, and define 
allowable mapping between multiple views in different 
phases. To maintain consistency in the multiple-view 
model, rules defined at the meta-level must be observed at 
the multiple-view model level. Consistency checking is 
used to determine whether the multiple-view model 
follows the rules defined in the multiple-view meta-
model. 

As an example of consistency checking, there is a 
relationship between Class in the class model and Feature 
in the feature model (Fig. 6), which is “each optional 
class in the class model supports only one optional feature 
in the feature model.” The optional class “Part Agent with 
Storage” supports the optional feature “Store and 
Retrieve” in the multiple-view model (Fig. 5) where “Part 
Agent with Storage” class and “Store and Retrieve” 
feature are respectively instances of Class and Feature 
meta-classes in the multiple-view meta-model. For the 
multiple-view model to remain consistent, this meta-level 
relationship must be maintained between instances of 
those meta-classes, that is, “Part Agent with Storage” 
class and “Store and Retrieve” feature. Consistency 
checking confirms that each optional class in the class 
model supports only one optional feature in the feature 
model.  

  
4. Tool Support for Multiple-View Modeling 
Approach 
 

In order to support the multiple-view meta-modeling 
approach, a proof-of-concept prototype, the Product Line 
UML Based Software Engineering Environment 
(PLUSEE) has been developed, which built on experience 
gained in previous research [7, 8]. A domain model 
addressing the multiple views of a software product line 
is developed and checked for consistency among the 
multiple views. 

There are two different versions of the PLUSEE 
prototype, using Rational Rose and Rational Rose RT 
CASE Tools respectively as the interface to this 
prototype. Fig. 7 depicts this proof-of-concept prototype. 
A domain engineer captures a multiple-view domain 
model consisting of use case, collaboration, class, 
statechart, and feature models through the Rose tools, 
which save the model information in a Rose MDL file. 
From this MDL file, the domain model relations extractor 
extracts domain relations, which correspond to the meta-
classes in the meta-model. Through the domain relations 
extractor, a multiple-view model maps to domain model 
relational tables. Using these tables, the consistency 
checker checks for consistency of the multiple-view 
model by executing the consistency checking rules 
described in Section 4. After the domain engineer has 
produced a consistent multiple-view model, an executable 
model is developed using Rose Real-Time. The Rose RT 
executable model is based on message communication 
between active classes, which execute statecharts. 
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Fig. 7. Product Line UML Based Software 

Engineering Environment (PLUSEE) 
 
5. Conclusions 
 

This paper has described how variability is handled in 
a multiple-view modeling approach for software product 
lines. The approach integrates the multiple views by 
defining relationships among the different views using a 
multiple-view meta-model. To support this approach, a 
proof-of concept tool was developed. 



  

The meta-model depicts life cycle phases, views 
within each phase, and meta-classes within each view. 
The relationships between the different views are 
described. Consistency checking rules are defined based 
on the relationships among meta-classes in the meta-
model. 

An important advantage of the multiple-view modeling 
approach is that it permits the evolution of software 
product lines by explicitly modeling the variation points 
in each view where evolution can take place and by 
defining the relationships between these variation points.     
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Abstract 
 
Effective design of product platform architecture is a 

prerequisite for a flexible product family development.  In 
platform designs, managing points of variability is critical 
to facilitate effective proliferation of product variety.  
Selecting an appropriate mechanism to incorporate 
variation points is considered to be crucial in achieving 
the capability of the product platform to change 
depending on variability needs. We suggest that the 
capture of structured knowledge about the selection and 
use of variability implementation mechanisms to handle 
different types of variability would play a key role in 
guiding further variability implementation.   We discuss 
the use of a knowledge management system that can be 
used to capture variability mechanism related knowledge. 
Using scenarios from a case study, we illustrate the use of 
this system in capturing structured knowledge about 
variability scenarios, specifically describing the choice of 
the variability implementation mechanism.   

 

1. Introduction 
Customers expect products to be specifically tailored 

to suit to their needs and at no extra cost.  Product family 
engineering facilitates proliferation of variety by 
exploiting the commonality and variability among the 
variety of products demanded by the customers in a 
particular domain [1].  Flexible design and development 
of product families highly depend on effective variability 
management.  Product variety can be achieved by careful 
design and development of a flexible product platform 
and then plugging in different components depending on 
the customer-specific requirements.  Variation points are 
incorporated into these product platforms so as to delay 
design decisions to later phases of the development life 
cycle.  These design decisions ultimately depend on 
variable requirements.  Selecting an appropriate 
mechanism to incorporate such variation points is 

considered to be crucial in achieving variety in the 
product family.  Svahnberg et al. [2] warn that many 
factors affect the introduction of variability into a 
software product family.  Here, we propose the use of a 
knowledge management system to capture structured 
knowledge related to variability mechanism selection and 
implementation.  We argue that such a capture would 
facilitate effective mechanism selection for future 
variability scenarios. 

2. Software Product Families 
A product family is a set of products that share 

certain common aspects and have predicted variabilities.  
A software product family is defined as a set of software-
intensive systems sharing a common, managed set of 
features that satisfy specific needs of a particular market 
segment or mission [3]. Products are clustered as a family 
based on their commonality, as it is easier to analyze, 
design and manage the family as a related set of elements 
rather than concentrating on each member of the family 
separately [4]. 

2.1. Variability 
Variability refers to the ability of the system to 

change depending on customer specific requirements.  
Variation points are specific locations in design artifacts 
where the behavior of the system can be changed [5].  It is 
defined using differentiation index, which measures 
where differentiation occurs within the process flow [6].  
Coplien et al. [7] describe variability as an assumption 
that is true for some elements in a set of objects, or an 
attribute with different values for at least two different 
elements from the set of objects.  Identification of the 
points of variability is crucial in proliferating variety from 
a single service platform.  These variations are triggered 
by customer-specific requirements that could indicate 
changes in the environment or lead to algorithmic changes 
in the domain [8].  Bachmann et al. [9] argue that the 
existence of a collection of alternatives that provide a list 
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of potential solutions to the development team, is a cause 
for variability.  Feature-based recognition of variability, 
proposed by Lee et al [8], suggests that variability should 
be analyzed in terms of product/service features.  Since it 
is highly difficult to elicit all variable requirements 
completely from the customer, the platform should be 
designed in such a manner so as to accommodate changes 
necessitated by evolving requirements.  The use of 
appropriate variability mechanism plays a crucial role in 
effective application engineering. 

3. Implementing Variability in Product 
Families 

Process-oriented issues associated with the design 
and development of product families play a key role in 
addressing variability concerns.  Cugola et al. [4] argue 
that following a process that lends itself to the 
anticipation and identification of all possible family 
members during the early phases of the development life 
cycle would be an ideal method for product family 
development.  A wide variety of possible options for 
finishing the development of a family of products 
demands the capture of changes that have been planned 
and those that have been anticipated [9].   Bachmann et al. 
[9] categorize and describe variability at the architectural 
level, and prescribe architectural solutions for the various 
types of variations.  Keepence et al. [10] provide a 
pattern-oriented solution to model variability in product 
families.  They suggest the use of design patterns to 
model discriminants. 

3.1. Variability Realization Mechanisms 
Past research has discussed the use of a variety of 

mechanisms to realize variability.  Anastasopoulos and 
Gacek [11] identify various implementation approaches 
and discuss the problems and advantages in using these 
approaches.  They enumerate the use of common object-
oriented techniques like aggregation and inheritance, and 
other techniques like dynamic link libraries and 
conditional compilation, in handling variability.  They 
emphasize that identifying a suitable approach is a critical 
issue in implementing variability. 

Svahnberg et al. [2] have emphasized the importance 
of the suitability of variability mechanism to a specific 
variation need.  They advance a taxonomy of variability 
realization techniques.  They describe the various factors 
that need consideration in the process of choosing an 
appropriate mechanism.  Here we propose a model that 
structures the knowledge related to variability 

implementation mechanism.  Also, we illustrate the 
instantiation of this model in our prototype system for 
specific scenarios from a case study. 

4. Knowledge Support for Variability 
Mechanism Selection 

Through a case study, we have developed a model 
that identifies certain factors that play a critical role in the 
choice of variability mechanism and how they are related 
to each other.  We argue that when a developer is in the 
process of selecting a variability mechanism, these factors 
can be used to guide him/her in documenting the various 
aspects related to the choice of mechanism.  Such 
documentation can be used to provide with heuristics in 
selection of mechanisms for future variability scenarios. 

The knowledge model that represents the various 
elements related to variability mechanism selection is 
shown in Figure 1.  Variability, which is the capability of 
our system to handle changes depending on customer-
specific requirements, is driven by the feature model.  
Such variability is implemented by specific variability 
realization mechanisms.  Use of specific mechanism is 
constrained by factors like support provided by the 
programming language to be used and performance.   

We have developed a knowledge management 
system to support the process of variability realization 
mechanism selection.  This system supports capture and 
use of knowledge structured according to the model 
shown in Figure 1.  In the sections below, we describe the 
capabilities of the prototype system and illustrate its use 
in a specific scenario drawn from our case study. 

4.1. Illustrating the Use of our KMS 
The knowledge management system can be used by 

designers to document the use of realization mechanisms 
to implement variability. The underlying model that is 
used to structure the knowledge capture can be tailored 
according to project specific needs.  Here, we use an 
example from a case study to illustrate the capture of 
knowledge related to variability mechanism selection.  
We have conducted a case study with an organization that 
is involved in the development of a family of warehouse 
management systems.  Figure 2 shows a specific scenario 
associated with the selection of a design pattern, viz., the 
strategy pattern to be used to realize the variability in 
material handling.  Since the model underlying the 
knowledge capture can be tailored, we can also represent 
a feature model and link specific features to variability 
mechanisms used. 
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Figure 1: Conceptual Model: Knowledge related to Mechanism Selection 

(Oval shape indicates attributes of the rectangles to which the ovals are linked) 
 
The warehouse management system (WMS) has the 

capability to interact with a material handling system 
(MHS).  Material handling requires equipment to be 
stored in specific locations in the bays/aisles.  Different 
customers use different methods to handle their 
equipment.  Some customers use a completely automated 
robotic system that should be commanded from the 
material-handling module in WMS while some might use 
a simpler system.  The activities required for these 
different systems and the algorithms used to direct the 
semi or completely automated equipment handling 
systems vary considerably.  The rest of the material 
handling system should remain independent of the 
equipment handling system that handles the location and 
storage processes.  Hence, the designers chose to use the 
strategy pattern here in order to allow variation of the 
processes and algorithms independent of the rest of the 
material handling system.  Strategy pattern is used when 
there is a need for algorithms to vary independent of the 
clients that use the algorithm [12].  The intent of the 
strategy pattern is to define a family of algorithms, 
encapsulate each one and make them interchangeable.  A 
common interface supports algorithms used by specific 
clients.  These algorithms are implemented differently for 
different clients in Concrete sub-classes.  This is a very 
appropriate pattern to be used here, as different 

algorithms might be suitable for different types of 
equipment handling depending on the customer-specific 
requirements.  Further, new types of material storage 
handling that a new customer might request can be easily 
accommodated with this design. 

This particular scenario is captured by instantiating 
the conceptual model shown in Figure 1.  Our system is 
capable of supporting feature models.  Specific parts of a 
feature model can then be linked to particular mechanism 
use and related justifications.  Here, a section of the 
feature model for the WMS is shown. Alternative material 
handling systems varying in the levels of automation are 
shown to trigger the need for variability.  Various 
variability attributes are also captured.  For instance, the 
degree of variation attribute describes that the variability 
is in the scale of automation, providing the commonly 
used number of levels.  Variability type is shown to be 
alternative, which means the choice of a particular level 
of automation could result in some components being 
replaced by others.  The feature under consideration, viz., 
communication with the material handling system, is 
described as a mandatory feature, as this is one of the 
features that identifies the system, i.e., it is very essential 
for the WMS. 
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Figure 2: Selecting the Strategy design pattern to handle different types of material handling systems 

Our knowledge management system can also be used 
to represent links between these knowledge elements 
capture and the design artifacts that are related to these.  
In the above example, a particular UML class diagram has 
the strategy pattern implemented to realize the variability 
in material handling system communication.  Our system 
provides the interface to access the various elements in 
UML models developed using Rational Rose.  Through 
this interface we can link any knowledge element to any 
design element from a UML model.  We are currently 
working on extending the prototype system with the 
capability of using the heuristics gained from such 
knowledge captures to guide future variability mechanism 
selection based on the various attribute values of features 
and variability. 

5. Discussion 
In this paper, we have discussed the use of a 

knowledge management system in capturing knowledge 

about variability mechanism selection.  This prototype 
can be used to capture various factors that are considered 
while deciding on a mechanism to implement variability.  
Such a capture would be valuable in deriving heuristics to 
guide future mechanism selection.  Explicit capture of 
factors affecting the choice of a variability mechanism 
would bring forth any constraints or conflicts in 
mechanism selection.  Close integration of our prototype 
system with work process and productivity tools like 
Rational Rose, Microsoft office suite, and Groove, a 
communication/collaboration tool tend to reduce the 
overhead in switching from their work environment to 
capture knowledge and link it to appropriate design 
artifacts. 
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Abstract 
 

Model-driven techniques for the development of 
component-based real-time software are available. These 
techniques have also been integrated with formal 
methods, thus providing the developer with the degree of 
confidence that is needed when dealing with real-time, 
safety-critical applications. 

Here we report an initial discussion concerning the 
applicability of such techniques to the management of 
variability. 
 
1. Introduction 
 

Real-time software is often safety-critical. This 
suggests that formal methods are used (especially in the 
specification phase) in order to guarantee that the 
development has a sound base. Another consequence of 
the criticality of real-time software is that the 
development process tends to be quite expensive (for 
instance, due to the need for extensive testing). It is 
therefore desirable to be able to reuse as much as possible 
the code already developed and tested. For this purpose 
component based development is a promising technique. 

A problem –which occurs particularly often for real-
time embedded software– is that the same software is 
used in different contexts, because the user needs evolve 
in time, but also because different users have different 
needs at the same time. In both these cases, in order to be 
able to manage the variations in an effective and 
economic way we tend to modularize the system in order 
to have a stable core and some additional components that 
can vary from version to version of the system. 

Here we discuss how to adapt the techniques that were 
developed for the development of non varying (or slowly 
varying) software to the development and evolution of 
software which is subject to variability. 

Best practices in software development call for precise 
modeling of user needs and consequently for rigorous 

specifications of the system to be developed. In order to 
verify and validate specifications, several methods have 
been proposed, including model checking. This 
techniques requires that specifications are written in a 
suitable formal language. Since formal languages are not 
very easy to use, in past years we developed a technique 
that allows the user to write the specifications of the 
system as a UML model, and then translates this model 
into a formal notation, thus enabling the application of 
formal methods. For this purpose we defined an extension 
of UML, called UML+ [2][5][6]. In order to make the 
specifications more modular (hence easier to manage), to 
allow an incremental approach to specification 
verification, and to facilitate the transition to the 
implementation phase, UML+ models can be structured in 
terms of components (or capsules [7]). A component-
oriented version of UML+ is also available [8]. 

A possible process that exploits the UML+ notation 
and tools is depicted in Figure 1. The idea is that the 
specifications are written in UML+ and then they are 
verified by means of a set of tools that can be applied to 
models derived from the UML specifications. It is 
interesting to note that the verification of specifications 
requires that the environment where the system operates 
must be modeled as well. This can also be done by means 
of UML+. In Figure 1 we stress the need for verifying the 
specifications in several different ways (including 
simulation). This need descends from the nature of real-
time software, which is often safety-critical. However it is 
well-known that errors in the specifications are likely to 
be very expensive, thus the possibility of verifying UML+ 
models contributes also to keep the cost of development 
under control. 
 
2. Supporting variability 
 

The UML+ notation and process were originally 
conceived to support development of real-time software 
without considering variability issues. Therefore it is 
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Figure 1. The specification process exploiting UML+. 

 
interesting to discuss the applicability of UML+ in 

managing software variations. 
We consider first the notation, and then the process in 

its two main phases: specification and 
design/implementation. 

 
2.1. Notation 

 
The first question we have to answer concerns the 

notation: is UML+ adequate to support variability? In 
order to answer this question we observe that with our 
notation the component (or capsule) is the elementary unit 
of the model. Thus most variations can be represented in 
terms of components. In other words, it is possible to 
define a taxonomy of variations where differences 
between two versions of a system are described in terms 
of components. For instance, here is a preliminary list of 
possible variations: 
• Component A is replaced by component A’, having 

the same interface. In general this means that A and 
A’ behave differently under some respect. 

• A component B is removed from the model. This 
typically means that the components that were 
previously connected with B change their behavior 
accordingly. 

• Two components that are connected together change 
the way they communicate. This generally means 
that they also change their behavior. 

• … 
A taxonomy of variations is needed in order to make 

the management of variations easier. E.g., it will be 
possible to identify variations patterns, and thus to define 
suitable management criteria for each pattern. 

In general the UML+ notation proved to be flexible 
enough to represent all the variations we spotted so far. 

 
2.2. Process: specification phase 

 
When dealing with variations the analyst will 

generally build a new specification on the basis of: 
• New requirements. 
• Existing specifications (i.e., compositions of 

components), generally associated with a set of 
proved properties. 

• Fragments of specifications, possibly single 
components or small compositions of components, 
generally associated with a set of proved properties. 
These are particularly interesting, because they can 
help in building specifications incrementally. In fact, 
when using such a fragments in a bigger 
composition it is generally not necessary to include a 
detailed description of every single component 
belonging to the fragment: often an abstract 
description of the fragment (featuring the properties 
that have been proven) is sufficient, and makes the 
resulting specification smaller and easier to verify. 

In any case, it is likely that the resulting specification 
will have large parts in common with the existing 
specification, but in general it will feature some new 
components, some modification in the system structure or 
in the communications among components, etc.
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Figure 2. The specification variation process exploiting UML+. 
 

In general the new specification can be verified against 
user requirements by means of the set of formal 
techniques mentioned in the previous section. The 
specification process is synthetically described in Figure 
2. Note that in Figure 2 it is explicitly represented that 
there is a part of the model  (the core) which is common 
to several systems and a part which is specific of the 
considered system. 
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Figure 3. Verification of the properties of the 
core. 
 

As already mentioned, it is interesting to note that the 
verification approach can be incremental. In fact the core 
can be thoroughly verified (as depicted in Figure 3), and a 
more abstract version of it can then be used to specify the 
variations (as depicted in Figure 4). Of course, the larger 
the core (that is, the smaller the variations) the more 
efficient can be the verification. This approach is 
effective under several respects, especially: 
• The core of the system is explored in depth, thus 

increasing the probability of finding possible errors 
in the more critical part of the system. 

• The abstract description of the common part 
contributes to avoid the state explosion problem, 
which affects some of the verification techniques 
employed, namely model checking. 
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Figure 4. Verification of the properties of a 
system exploiting the knowledge of the 
properties of the core (which are represented in 
an abstract way). 
 

 In order to support the process described above we do 
not need specific notations or tools: UML+ and the 
associated tools can be used also in the incremental 
development process. Nevertheless, in order to make the 
process efficient, some support to process management is 
needed. In particular, we need a configuration 
management system that is able to treat the variability 
concepts. It is also important to be able to manage
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Figure 3. Variability and verifiability. 

 
traceability relations between requirements, specification 
fragments, and components. Examples of such relations 
are: dependencies among components, usage relations, 
property associations, etc. The support system should 
integrate CM and traceability management, and should be 
able to treat the information at different granularity levels. 
For instance a single requirement could be associated 
with an aggregation of components, or vice versa a set of 
related requirements could rely on a single component. 
 
2.3. Process: design and implementation phases 
 

In the implementation phase it is crucial to provide the 
developers with a tool that verifies the consistency of the 
implementation with its formal specifications. 

The main problem here is that the syntax and 
semantics of the design/implementation models 
(asynchronous models) usually differ from the 
specification models (synchronous models). In order to 
guarantee that the implementation preserves the 
specifications’ properties we have to formalize the 
mapping between the notations used in the two phases. 
This formalization is in progress. 

Components simplify the problem. A component, in 
our approach, is described by a model (containing Timed 
Statecharts [9] in specifications, and standard UML [1] 
statecharts in implementation) and the requirements the 

component must satisfy (typically expressed in some sort 
of logic language). The latter are often referred to as 
“abstract specifications”. 

Model checkers verify that the specifications model 
satisfies the specifications requirements. The idea is to 
extract the implementation requirements from the 
specification model: if it is possible to verify that the 
actual implementation model satisfies the implementation 
requirements, as a consequence it is  proved that the 
system verifies the specifications requirements. For 
bigger projects these proofs can be repeated for every 
design step or refinement. 

Variability increases the complexity of the process. In 
fact we have to consider refinements at different levels. 
The component approach helps to limit the scope of the 
verifications. For instance, if we modify the model of a 
component while maintaining the requirements 
unchanged, the rest of the systems will not be affected: 
we will have to consider only the implementation 
refinements dependent on the change (down 
propagation). On the contrary, if we modify the abstract 
specification of a component, we will have to verify that 
every component or system using the changed component 
still satisfies its requirements: if so the change will not 
propagate further, otherwise we can iterate the process 
(up propagation). 
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Figure 5 describes the complete process (with only 
two levels of refinement: specifications and 
implementation). 

It is quite clear that the transition between two levels 
of representation is a delicate step. We are currently 
exploring different ways to maintain the needed 
properties in the passage: 
• Black box approach. The model of a component 

specifies it completely. We are able to verify 
properties on a model. We would like to 
(automatically) verify if a model is a refinement of a 
more general one. Bisimulation theories should help 
us to verify whether a model is a refinement of 
another (or just the same model). 

• Model-properties approach. A model can be 
completely characterized by the properties it 
verifies. If it is possible to generate the 
characterizing properties from a model, it would be 
possible to check the refined model with the 
properties of the previous one. 

• Guided refinement/change approach. We could 
demonstrate and verify that under specific 
refinement operations the properties are maintained. 
We could also demonstrate and verify that under 
specific change operations some properties are 
maintained, and other are modified in a predictable 
way; thus we won’t need to verify the changed 
component against all the properties, but only on the 
properties we can’t predict. 

These approaches are not mutually exclusive; on the 
contrary, together they can successfully deal with 
different aspects of the process. In the analysis phases 
formal bisimulation is the preferred solution. On the 
contrary in the passage from specification to 
implementation the guided refinement seems the only 
plausible approach, since it appears to be extremely 
difficult to apply bisimulation  to models expressed in 
different formalisms. Moreover, the design and 
programming languages are usually more expressive than 
those used in analysis, and are not exhaustively verifiable;  
in other words, no model checkers are available, the 
properties cannot be verified, but only proved manually. 
 
3. Conclusions 
 

The development of real-time software can profitably 
exploit well-established techniques like model-based 
(more precisely, UML-based development), formal 
methods, component-based development.  

The management of variability in real-time software 
can also benefit of the mentioned techniques. 
Nevertheless, several issues need to be explored. 

In this paper we sketched our approach to this 
problem. Discussion is open, and the research agenda for 
the problems mentioned throughout the paper is still in a 
draft state. 
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