
Configuration
State of the Art and New Challenges

Lothar Hotz1 and Thorsten Krebs2

1 HITeC c/o Fachbereich Informatik, Universität Hamburg
Hamburg, Germany, 22527

hotz@informatik.uni-hamburg.de
2 LKI, Fachbereich Informatik, Universität Hamburg

Hamburg, Germany, 22527
krebs@informatik.uni-hamburg.de

Abstract. In this paper, we give a survey on the AI-field Configuration.
Because configuration of software-intensive systems is currently seen as
a main challenge for knowledge-based configuration, this topic is empha-
sized. Main challenges related to this topic are next to others: software-
intensive applications, combining of configuration, modeling and evolu-
tion of software components, integration of knowledge-based configura-
tion with existing software engineering approaches, and representation
of software variability.

1 Introduction
In this paper, we give a detailed insight in currently seen applications and chal-
lenges of knowledge-based configuration (Section 2). In the field of configura-
tion, a focus is set to configuration of combined hardware/software systems (i.e.
software-intensive systems) where main topics are: modeling of software, mod-
eling of software states and state transitions, configuring in the context of prod-
uct lines, evolution, innovative configuration, planning aspects within the devel-
opment of software, configuring of software-supported processes (e.g. IT-based
business processes), configuration problems in combination with web services.

2 Knowledge-based Configuration

The configuration of technical systems is one of the most successful application
areas of knowledge-based systems [17]. The general task in this area is to as-
semble components (domain objects) for getting a description (a configuration)
of a product. The configuration process takes the probably large number of de-
pendencies between domain objects into account. This process is described by
means of procedural knowledge. Domain objects, dependencies and procedural
knowledge are modeled in the configuration model. Beside having a declarative
representation the mode is processed by reasoning mechanisms for deriving a
configuration. This is done by using logical languages where the semantics are
well-defined [32].



In this paper, we describe the current situation in the research area of config-
uration, by giving the basic methodology which is used in configuration systems
(Section 2.1), and new application areas which came up in the recent years
(Section 2.2). One area, which gives new challenges for configuration methods
is software configuration. The main difference of software configuration com-
pared to ”traditional” technical application areas is the evolving character of
constantly changing software products. The different challenges, requirements,
and problems raised by configuration of software-intensive products are a main
subject of the Planning, Scheduling and Configuration Workshop 2003 [22]. As
an overview, those topics are discussed in Section 2.3. In Section, 3 we summa-
rize the derived research topics Thus, despite of the contribution in [38] where
mainly knowledge-based configuration methods are presented, we focus on chal-
lenges and upcoming methodologies.

A frequently maintained collection of announcements concerning design and
configuration is available on the internet3. One main workshop on configuration
alternates between IJCAI and ECAI. Conferences and workshops concerning
software variability can be found at ICSE (International Conference on Software
Engineering), OOPSLA and ECOOP.

2.1 Methods, Applications and Tools in Knowledge-based
Configuration

Rule-based Configuration Early configuration applications were based on
rule-based configuration methods [31]. The probably most well-known rule-based
configuration system is XCON. It was a very successful tool for the configuration
of DEC computers but also was claimed to be not maintainable for large domains.
Because of deficiencies of such systems (see e.g. [17]), we do not further elaborate
on this topic.

Resource-based Configuration In resource-based configuration there is no
explicit representation of compositional relations between domain objects. Ex-
change of resources is used to abstract from the direct relations. Components
are selected because they supply abstract services that are needed by systems
or components of systems.

According to [20], two kinds of relationships between domain objects can be
distinguished. There are objects that consume resources and there are objects
that provide them. The configuration starts with consuming a resource (i.e. a lack
of this resource in the current partial configuration). During the configuration
process, it is tried to balance the consumption and provision of resources. The
configuration task is fulfilled when every resource consuming can be balanced
with an according resource provision. [33, 37] use the term functionality and
thereby emphasize the modeling of ”functions” while using resources.

Case-based Configuration A major part of human expertise is based on
past experiences. Case-based configuration provides a model for representing
3 http://www.cs.wpi.edu/Research/aidg/AIinD-announce.html



the experiences and using them for problem solving. The knowledge base in
case-based reasoning is a set of former cases. A reasonable definition of a case
is ”a contextualized piece of knowledge representing an experience” [35]. The
processing required to analyze the experience is delayed until the time the case
is retrieved for solving a new problem. However, at that time the problem is less
haunting, because it is only needed to understand how the differences between
the problem in the former case and the current problem affect the solution
proposed in the recalled experience. Thus, the solution proposed for the former
case is examined and applied to the current problem with suitable modifications.
Two types of cases that can be distinguished are: Normative cases capture the
typical situation that occurs more than once and in the same or a similar ways
(e.g. reference configurations). Special cases on the other hand represent ”out-
of-the-normal” situations (e.g. customer specific product extensions).

Constrained-based Configuration The constraint-based approach consists
of representing restrictions between objects and / or their properties with means
of constraints. The configuration problem is explicitly described within the model.
Conditions and coherence for the existence of possible system components in the
product solution and value assignments are specified in constraints. Description
of expert procedures is not necessarily part of the problem specification. This is
optional for interactive navigation within the configuration process [24].

Constraint-based problem solving includes a constraint solver in the configu-
ration process. Through constraint propagation, the value assignments of partic-
ipating objects and their properties are restricted and thus, the search space is
reduced. This has the impact of a more efficient configuration process and there-
fore provides a better performance for configuration systems. Constraint-based
approaches are able to include customer decisions in an incremental process for
generating a solution that is not only correct with respect to the configuration
goal, but that is also in line with the customer’s idea of a good product.

Structure-based Configuration In structure-based configuration, ontologies
are generated for representing the configuration knowledge [14]. Three central
knowledge types concerned with configuration tasks can be identified:

Conceptual Knowledge Objects in the application domain (domain objects) are
described by means of concepts. Concepts are represented through a name and
their properties (i.e. parameters and relations to other concepts). Taxonomic
structuring is achieved by specializations. Compositional structuring is described
by aggregation. Restrictions between multiple concepts and / or their properties
are expressed by means of constraints.

Procedural Knowledge Knowledge about the configuration process describes the
ordering and execution of configuration decisions, the focus on particular con-
cepts and conflict resolution methods.

Task Specification The task specification describes the configuration goal. This
specifies the demands a created configuration has to accomplish.



Hybrid Approaches When different kinds of configuration methods are com-
bined, this is called hybrid configuration (compare [38]). Hybrid systems aim
at the largest possible degree of flexibility by combining methods suitable for
different configuration tasks and domains. Those methods can be combined or-
thogonally because distinct aspects of the configuration process are handled by
the different methods. Thus, they are not contradictory. Especially for heteroge-
neous application domains where for example components and their relations are
used as well as resource consumption, structure- and resource-based approaches
can be used (compare [15, 29, 36]).

Tools and Applications Methods used in the area of configuration have well-
defined, system-independent semantics which are manifested in implementations
termed configuration systems. Such configuration systems for example guarantee
that the configuration model is well-defined and consistent.

A domain-specific configuration system can be obtained by implementing an
application user interface (UI) over the configuration model. Such an UI maps
the knowledge types and the inference process to interface artifacts that are
suitable for the supported domain. Configuration systems map the configuration
process to an operational computer supported process. As such, configuration
methods give a kernel technology for distinct application domains, but which
always needs an appropriate surrounding. The Drive Solution Designer (DSD)
[34] for example is a domain-dependent application of the tool EngCon.

In the following we give an overview over selected commercial configuration
tools [17, 24].

Cosmos is a resource-based configurator. It is suitable for modular systems
with only resource-based components. But when the configuration problem also
includes other (i.e. not only based on resources) components or in combination
with constraints that do not focus on balancing of resources, using Cosmos is
problematic. The ILOG Configurator is a powerful example for a constraint-
based configuration systems. It is a C++ library based on the ILOG Solver.
The ILOG Configurator provides the possibility of generating new components
at runtime. It is among other domains deployed for solving configuration prob-
lems in the telecommunication sector. Another configuration system based on a
constraint solver is Selectica. Next to a component taxonomy, constraints and
rules can be modeled for usage this tool. Internet Pricing and Configurator is
part of the customer relationship management (SAP) [18]. Configuration prob-
lems can be defined in a class hierarchy containing parameters and relations
between classes. Relations can be defined as procedures, rules and constraints.
The user is interactively included in the configuration process. The configuration
tools KONWERK [15] and EngCon [34] are examples for hybrid and structure-
oriented configurators respectively. They guide a user incrementally through the
configuration process in order to create a user-specific product configuration. A
flow of configuration steps can be modeled as procedural knowledge and used
to enhance the quality of possible solutions. This methodology is able to deal
with taxonomic relations, decompositions, component-specific parameters and



constraints between components and their properties. For EngCon, also the in-
tegration of a case-based approach is planned.

2.2 New Application Areas for Knowledge-based Configuration

Software-intensive Domains Car Periphery Supervision (CPS) systems mon-
itor the local environment of a car. CPS systems comprise a family of automotive
systems that are based on sensors installed around a vehicle. The measurement
and evaluation of sensor data enables different kinds of applications. These can
be grouped into safety-related applications like pre-crash detection, blind spot
detection and adaptive control of airbags and seat belt tensioners, and comfort-
related applications like parking assistance and adaptive cruise control [39]. Be-
cause of the wide variety of the involved components and the presence of distinct
customer wishes CPS becomes an interesting area for applying knowledge-based
configuration methods.

Nokia launches between 30 and 40 products every year [28]. Different chal-
lenges in coping with this market, put pressure on the development. Multiple
languages need different input methods, e.g. Western languages, Arabic, Chi-
nese, Thai or Hebrew. Next, the diversity of reused hardware components like
display or keypad is growing with every new generation of products. Selection
of features out of an high and increasing amount is hard to handle. A presented
solution is a client-server architecture: a server represents a basic service in a
product, while a client implements a feature.

Software Product Families The Linux Familiar project4 is a next generation
PDA operating system. In [42], a configuration modeling language aimed at
representing the structure of physical products is used to model and configure
a Linux Familiar system. In contrast to operating systems on PCs, in this case
resource limitations such as the available amount of memory have to be faced.

[2] address the possibility of applying techniques developed for configuring
mechanical and electronic products to configuring software. A mapping between
architecture description languages (ADLs) and configuration ontologies is pro-
posed. This shows that configuration languages can be used for representing
architectural knowledge. Furthermore, the possibility of applying configurator
tools developed for configuring mechanical and electronic products to represent-
ing and managing the variation points in a software product family is studied
in [2]. Capturing aspects of ADLs seems to require extending the configuration
ontology. These aspects include function binding and binding the connection
points of compound components with connection points in its inner parts and
the modeling of behavior.

Web-based Scenarios Web services have a huge potential in business appli-
cation integration. A configuration web service is currently being developed by
[10] in the research project CAWICOMS5. An ontology-based approach allows
4 http://handhelds.org/familiar
5 http://www.cawicoms.org



the advertisement of services and a configuration-specific protocol defines the
operational processes. Goal of the CAWICOMS project is to enable configura-
tion systems to deal simultaneously with configurations of multiple suppliers
over the web. Personalization techniques are applied to CAWICOMS, that per-
sonalize the interaction of customers, supporting individual needs during the
configuration task and the presentation of solutions [1]. Suggestions of suitable
choices assist the customer during the configuration process and provides the
information needed for making decisions.

The presentation of personalized web page content is addressed in [8]. In the
configuration process it is attempted to determine the optimal presentation of a
web page while taking into account the preferences of the web author as well as
viewer interaction with the browser. Preferences are encoded in CP-networks.

In [9] it is shown how to apply Semantic Web ontology representation lan-
guages for configuration knowledge representation and integration. A description
logic-based definition of a configuration problem is given and its equivalence with
corresponding consistency-based definitions is shown.

Differences between Hardware and Software Configuration According
to [6] the hard part of building software is the specification, design and testing of
the conceptual construct. Four major differences between ”traditional” technical
and software components can be seen, that make it hard to build, and thus to
configure, software systems:
Complexity Software entities are more complex than any other human construct,
because no two parts are alike. If they are, a subroutine can be called handling
the task of the two parts.

Conformity Complexity of software systems forces developers to design conform
interfaces.
Changeability Software is constantly subject to pressure for change. It can be
changed more easily than technical constructs because it is purely thought-stuff.
Invisibility Software is invisible. This makes it hard to geometrically abstract its
functionality - i.e. making it visible for design and implementation.

2.3 Challenges and Research Topics concerning Configuration of
Software-intensive Products

Representing Product Variability Because software is very flexible, it easily
varies and thus a large variability is present in software-intensive products. For
managing this, the knowledge about variability has to be structured accordingly.
Beside this, for configuring software-intensive products different kinds of aspects
have to be handled which all include variability and therefore are configurable
assets. E.g. customer requirements, features [12, 19], design of the product archi-
tecture, standard code artifacts, software and hardware components and their
relations and mappings in between (see e.g. [41]). The union of the components
functionality has to provide the desired functionality corresponding to the cus-
tomer requirements.



Because knowledge-based configuration methods are generic, i.e. domain-
independent, in principle they can be applicable for representing those aspects.
Thus, concept description, specialization and decomposition hierarchies, con-
straints, resources and cases can be used for describing variability aspects and re-
strictions (see e.g. [2] for architecture configuration). Furthermore compositional
relations can be used to express diverse types of relations like has-subfeatures,
or requires (see e.g. [13]).

The Product Derivation Process The process of configuring software-intensive
systems using different types of knowledge is complex. Not only the mapping be-
tween features and software components is of importance, but also the point in
time when a variability decision is made (binding time [4]). A distinction is made
e.g. between development time, compile time, and runtime.

In general, for representing aspects of binding time, knowledge-based con-
figuration techniques provide the representation of procedural knowledge with
phases and strategies [16]. In each phase a distinct kind of knowledge can be fo-
cussed. For example, first describe the desired features, compute by automated
configuring the relations between those and the mappings to software compo-
nents. Second, switch to a phase where those software components are further
configured and parameterized. However, if variability is bound later than at de-
velopment time, and if complex dependencies have to be considered, the total
configuration machinery has to be present in the application program. This might
not be feasible according to resource limitations or not adequate as a problem
solution.

Representing Functionality of Software Components When assembling
software components, the problem is to identify suitable components specify
their interfaces, and infer the overall state description of the aggregate. For the
last task the functionality of software components in terms of states and their
dependencies is important. Methods like state charts and automaton can possibly
be used for modeling [27]. Further on, techniques like simulating totally or partly
configured components should be considered.

The question how deep a functional modeling of software components should
be is domain-dependent. For some configuration application it might suffice to
represent functions only by names for referring to their behavior, which yields to
a finite number of behavior based configurations. By using behavior models for
function descriptions, an infinite number of configurations with different previ-
ously unknown behavior can be expressed. Criteria for deciding what approach
is applicable are still missing.

Combining Product Derivation and Product Development When using
knowledge-based configuration for configuring software-intensive systems an al-
ready existing development methodology has to be considered. This is due to the
fact, that the reuse and development process for software is not that separated
from the configuration process as this is the case for hardware configuration (see
Section 2.2). Thus, the product configuration process has to be coupled with the
product development and a configuration system. Moving from a more separating



approach where first a configuration model is specified and then configurations
are inferred by use of that model, to a more integrated approach where modeling
and configuring are interchanged. To support a product developer, one has to
combine all three tasks: modeling, configuring, and implementing, because all
those tasks have to be executed for realizing a specific product. First, a suit-
able product is configured for new customer requirements by using the already
existing knowledge (model). Then specific software modules, which are not yet
incorporated in the model have to be implemented. After that, those new mod-
ules have to be included in the model. How this can be supported during the
development phase, which is as a further difficulty probably distributed over
multiple developers, is an open issue. Furthermore, in Software Engineering the
development of a reusable platform and of customer specific products is highly
organized, sometimes standardized in processes like the Rational Unified Process
(RUP). If knowledge-based configuration technologies are used, they should fit
in those processes.

Mappings to Domain-specific Notations While reasoning techniques are
developed within knowledge-based configuration, notation is domain-specifically
developed in Software Engineering. Examples are given by the Unified Modeling
Language (UML) [3], or by more specific notations for features like FODA [25].
The general approach for handling such situations is by mapping knowledge-
based configuration aspects to those notations, which is e.g. done for UML in
[11].

Usage of the Configuration Model A further integration aspect is the usage
of the configuration model for tasks other than configuration itself. For example,
designing software components can be done with the configuration model for
identifying variation points in the software component, by first introducing those
points in the model, configuring some products and evaluating the configuration
result.

Combining Knowledge-based Configuration and SCM Techniques On
the technical side Software Configuration Management (SCM) systems already
handle dependencies of software components, mostly seen as files. Thus, the well
known versioning problem is solved by SCM systems. A main issue with SCM
systems is the missing of an abstract, declarative model of the source code being
configured [30]. Each task is done directly on source code and files. Knowledge-
based systems provide a more formal notion of consistency and completion than
SCM systems [29] and could give support in this issue. Further aspects are
discussed in [41].

Integration of two Research Communities In the area of Software Engi-
neering, the aspect of managing variability is seen as a main prerequisite for reuse
of software components [4]. Knowledge-based configuration on the other side of-
fers methods for configuring (which also could be called variability management)
in a domain-independent way. One distinction is that knowledge-based config-
uration is more related to configuration and variability management, i.e. how



to represent and using existing configurable assets (software, hardware compo-
nents, documents, test suites etc.). Other aspects like the developing, designing
and implementing software components, which allow a high degree of variabil-
ity, are more covered by Software Engineering methods (e.g. design patterns,
product families, meta programming, model-driven architecture). However, un-
derstanding each others similar topics is a further challenge and interdisciplinary
aspect. A project in this direction is the EU-project ConIPF (Configuration of
Industrial Product Families) [26], others are [40, 29].

Explainability For supporting transparency, traceability, and knowledge ac-
quisition, sophisticated explainability mechanisms should be developed. These
should include managing explanations concerning complex restrictions and al-
ternative configurations. Methods like assumption-based truth maintenance sys-
tems (ATMS) are already applied for configuration problems but not included
in existing tooling.

Quality Management and Cost Estimation Incorporating optimality meth-
ods is partly addressed in the research community but not included in existing
tooling. But those aspects, especially cost estimation of realizing configured prod-
ucts, probably containing not yet developed parts, are of major importance for
industrial realistic applications (see also [2]).

Integration of Configuration in Business Processes Aspects that are im-
portant for further moving configuration out of the research corner into industrial
realistic processes are the request of integrating the methods in existing envi-
ronments, i.e. not to develop stand-alone applications and using configuration
results (which are descriptions of products) as input for successive processes, like
logistics, planning, maintaining, diagnosing.

Knowledge Elicitation Because of the large variability, complex dependencies
and probably low maturity of existing software implementations (less modular-
ization, less documentation, less explicitness of variability [5]), it might be hard
to acquire the necessary configuration knowledge from experts like software de-
velopers. Thus, for software-intensive products, the process of getting and rep-
resenting the knowledge has to address those issues, e.g. by providing knowledge
acquisition tools for supporting the modeling process.

Evolution In traditional applications where knowledge-based systems are used
(e.g. aircrafts, drive systems, elevators, etc.) the manufacturing and development
of the components to be configured are final. This means, all components are
present, but have to be selected and parameterized by processing dependency
structures. Due to easy changeable artifacts in the software domain, a different
situation exists. During the engineering of customer-specific products, even when
existing software artifacts are reused, some changes on those artifacts have to
be implemented [26].

All kinds of configurable assets are subject of evolution: e.g. customer re-
quirements, features, software and hardware components. Currently a copy-and-
modify-approach often exists for dealing with evolution in system development.



New versions of components are created by copying code of similar systems and
modifying it. For this, knowing of the newest and / or all versions is necessary.
The selection of suitable versions for given requirements is done manually. An
individual development of customer specific products is realized. Developing the
devices for specific customer requirements is fast at first sight, but it becomes
slow and expansive in contrast to reuse of such devices.

For making use of knowledge-based configuration, a model of the configurable
assets has to be present for allowing logical inferences on the current partial
configuration. Thus, when evolving those assets, the suitable parts of the model
have to be evolved, too.

Besides handling such model changes in a consistent way, the current config-
uration process of a specific product should integrate evolution steps of certain
software artifacts in a coherent way [30, 21, 23, 7]. For supporting this, besides
model evolution, versioning of models, reconfiguration of existing configurations
and products [24], distributed configuration and cost estimations for realizing
configurations have to be taken into account.

3 Summary

In this paper, we give an overview of existing configuration methods and focus on
configuration of software-intensive systems. By looking at applications recently
developed, we reflect several challenges in the area of configuration of software-
intensive systems. For this applications, the main benefit provided by knowledge-
based configuration methodology is seen as the possibility to reason about soft-
ware components. Thus, research topics concerning configuration methods can
be derived when analyzing the challenges thrown by software-intensive systems
– e.g. explainability of configuration results, requirement modeling in the lan-
guage of customer wishes, uncertain reasoning, distributed configuration, general
decomposition relations for modeling diverse knowledge types, functional and
behavior aspects, integration in the overall production process, quality man-
agement, cost estimations of the product to be configured and integration of
configuration in business processes.

References

1. L. Ardissono, A. Felfernig, G. Friedrich, A. Goy, D. Jannach, M. Meyer, R. Schäfer,
W. Schütz, and M. Zanker, ‘Customizing the Interaction with the User in Online
Configuration Systems’, in Proc. of the Configuration Workshop on 15th Euro-
pean Conference on Artificial Intelligence (ECAI-2002), pp. 119–124, Lyon, France,
(July 21-26 2002).

2. T. Asikainen, T. Soininen, and T. Männistö, ‘Towards Managing Variability us-
ing Software Product Family Architecture Models and Product Configurators’, in
Proc. of Software Variability Management Workshop, pp. 84–93, Groningen, The
Netherlands, (February 13-14 2003).

3. G. Booch, J. Rumbaugh, and I. Jacobson, The Unified Modeling Language User
Guide, Addison-Wesley, October 1998.



4. J. Bosch, Design & Use of Software Architectures: Adopting and Evolving a Product
Line Approach, Addison-Wesley, May 2000.

5. J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl, ‘Variability
Issues in Software Product Lines’, in Proc. of the Fourth International Workshop
on Product Family Engineering(PFE-4), Bilbao, Spain, (October 3-5 2001).

6. Frederick P. Brooks, ‘No Silver Bullet: Essence and Accidents of Software Engi-
neering’, Computer, Vol 20, No. 4, 10–19, (April 1987).

7. D.C. Brown and Chandrasekaran B., Design Problem Solving Knowledge Structures
and Conrtol Strategies, Pitman Publishing, London, 1989.

8. C. Domshlak, S. Genaim, and R. Brafman, ‘Preference-based Configuration of
Web Page Content’, in Proc. ECAI-Workshop Configuration, pp. 19–22, Berlin,
Germany, (August 21-22 2000).

9. A. Felfernig, G. Friedrich, D. Jannach, M. Stumptner, and M. Zanker, ‘A Joint
Foundation for Configuration in the Semantic Web’, in Proc. of the Configuration
Workshop on 15th European Conference on Artificial Intelligence (ECAI-2002),
pp. 89–94, Lyon, France, (July 21-26 2002).

10. A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker, ‘Semantic Configuration
Web Services in the CAWICOMS Project’, in Proc. of the Configuration Workshop
on 15th European Conference on Artificial Intelligence (ECAI-2002), pp. 82–88,
Lyon, France, (July 21-26 2002).

11. A. Felfernig, G. E. Friedrich, and D. Jannach, ‘UML as Domain Specific Lan-
guage for the Construction of Knowledge-based Configuration Systems’, Interna-
tional Journal of Software Engineering and Knowledge Engineering, 10(4), 449–
469, (2000).

12. A. Ferber, J. Haag, and J. Savolainen, ‘Feature Interaction and Dependencies:
Modeling Features for Re-engineering a Legascy Product Line’, in Proc. of 2nd
Software Product Line Conference (SPLC-2), Lecture Notes in Computer Science,
pp. 235–256, San Diego, CA, USA, (August 19-23 2002). Springer Verlag.

13. L. Geyer, ‘Configuring Product Families using Design Spaces’, Integrated Design
and Process Technology (IDPT-2002), (June 2002).

14. T. Gruber, ‘Towards Principles for the Design of Ontologies used for Knowledge
Sharing’, International Journal of Human-Computer Studies, 44, 907–928, (1995).

15. A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
16. A. Günter and R. Cunis, ‘Flexible Control in Expert Systems for Construction

Tasks’, Journal Applied Intelligence, 2(4), 369–385, (1992).
17. A. Günter and C. Kühn, ‘Knowledge-based Configuration - Survey and Future Di-

rections’, in XPS-99: Knowledge Based Systems, Proceedings 5th Biannual German
Conference on Knowledge Based Systems, ed., F. Puppe, Springer Lecture Notes
in Artificial Intelligence 1570, Würzburg, (March 3-5 1999).

18. A. Haag, ‘Sales Configuration in Business Processes’, IEEE Intelligent Systems,
(July/August 1998).

19. A. Hein, M. Schlick, and R. Vinga-Martins, ‘Applying Feature Models in Indus-
trial Settings’, in Software product lines - Experience and research directions, ed.,
Donohoe P., pp. 47–70. Kluwer Academic Publishers, (2000).

20. M. Heinrich and E. Jüngst, ‘A Resource-based Paradigm for the Configuring of
Technical Systems from Modular Components’, in Proc. of 7th IEEE Conf. on Arti-
ficial Intelligence for Applications (CAIA’91), pp. 257–264, Miami Beach, Florida,
USA, (February 24-28 1991).

21. L. Hotz, A. Günter, and T. Krebs, ‘A Knowledge-based Product Derivation Pro-
cess and some Ideas how to Integrate Product Development (position paper)’, in



Proc. of Software Variability Management Workshop, pp. 136–140, Groningen, The
Netherlands, (February 13-14 2003).

22. L. Hotz, T. Krebs, J. Sauer, and J. Köhler, 17th Workshop, New Results in Plan-
ning, Scheduling and Configuration (PuK2003), LKI, Univeristy of Hamburg, Ham-
burg, Germany, 2003.

23. L. Hotz and T. Vietze, ‘Innovatives Konfigurieren in technischen Domänen’, in
Proceedings: S. Biundo und W. Tank (Hrsg.): PuK-95 - Beiträge zum 9. Workshop
Planen und Konfigurieren, Kaiserslautern, Germany, (February 28 - March 1 1995).
DFKI Saarbrücken.

24. U. John, Konfiguration and Rekonfiguration mittels Constraint-basierter Model-
lierung, Infix, St. Augustin, 2002. In German.

25. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ‘Feature-oriented Do-
main Analysis (FODA) Feasibility Study’, Technical Report CMU/SEI-90-TR-021,
(1990).

26. T. Krebs, L. Hotz, and A. Günter, ‘Knowledge-based Configuration for Config-
uring Combined Hardware/Software Systems’, in Proc. of 16. Workshop, Planen,
Scheduling und Konfigurieren, Entwerfen (PuK2002), ed., J. Sauer, Freiburg, Ger-
many, (October, 10-11 2002).

27. C. Kühn, ‘Modeling Structure and Behaviour for Knowledge Based Soft-
ware Configuration’, in 14th Workshop, New Results in Planning, Schedul-
ing and Design (PuK2000), ed., http://www-is.informatik.uni olden-
burg.de/sauer/puk2000/paper.html, (2000).

28. A. Maccari and A. Heie, ‘Managing Infinite Variability’, in Proc. of Software Vari-
ability Management Workshop, pp. 28–34, Groningen, The Netherlands, (February
13-14 2003).

29. T. Männistö, T. Soininen, and R. Sulonen, ‘Modeling Configurable Products and
Software Product Families’, in Proc. of the International Joint Conference on Arti-
ficial Intelligence (IJCAI-2001) - Workshop on Configuration, Seattle, USA, (Au-
gust, 6th 2001).

30. T. Männistö and R. Sulonen, ‘Evolution of Schema and Individuals of Configurable
Products’, in Proc. of ECDM’99 - Workshop on Evolution and Change in Data
Management, Versailles, France, (November 15-18 1999). Springer Verlag.

31. J. McDermott, ‘R1: A Rule-based Configurer of Computer Systems’, Artificial
Intelligence Journal, 19, 39–88, (1982).

32. R. Möller, C. Schröder, and C. Lutz, ‘Analyzing Configuration Systems
with Description Logics: a Case Study’, in http://kogs-www.informatik.uni-
hamburg.de/~moeller/publications.html, University of Hamburg, (1997).

33. B. Neumann, Ein Ansatz zur Wissensbasierten Auftragsprüfung für technische An-
lagen des Breitengeschäfts, Ph.D. dissertation, Universität Duisburg, 1990.

34. K.C. Ranze, T. Scholz, T. Wagner, A. Günter, O. Herzog, O. Hollmann,
C. Schlieder, and V. Arlt, ‘A Structure-based Configuration Tool: Drive Solution
Designer DSD’, 14. Conf. Innovative Applications of AI, (2002).

35. M. Sasikumar, ‘Case-based Reasoning for Software Reuse’, in Knowledge
Based Computer Systems-Research and Applications (International Conference on
Knowledge-Based Computer Systems), pp. 31–42, Bombai, India, (December 12-15
1996). Narosa Publishing House, London.

36. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a General Ontol-
ogy of Configuration’, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (1998), 12, 357–372, (1998).

37. B.M. Stein, Functional Models in Configuration Systems, Ph.D. dissertation, Uni-
versität Paderborn, 1995.



38. M. Stumptner, ‘An Overview of Knowledge-based Configuration’, AI Communica-
tions, 10(2), 111–126, (1997).

39. S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, ‘A Case Study in Applying
a Product Line Approach for Car Periphery Supervision Systems’, in Proceedings of
In-Vehicle Software 2001 (SP-1587), pp. 43–55, Detroit, Michigan, USA, (March,
5-8 2001).

40. J. Tiihonen, T. Lehtonen, T. Soininen, A. Pulkkinen, R. Sulonen, and A. Ri-
itahuhta, ‘Modelling Configurable Product Families’, in Proc. of the 4th WDK
Workshop on Product Structuring, Delft, The Netherlands, (October 1998).

41. A. van der Hoek, D. Heimbigner, and L.W. Wolf, ‘Does Configuration Manage-
ment Research Have a Future?’, in Proceedings of the 5th Inter. Conf. on Software
Configuration Management, LNCS 1005, Berlin, (1995). Springer-Verlag.

42. K. Ylinen, T. Männistö, and T. Soininen, ‘Configuring Software Products with
Traditional Methods - Case Linux Familiar’, in Proc. of 15th European Conference
on Artificial Intelligence (Configuration Workshop), pp. 5–10, Lyon, France, (July
21-26 2002).


