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Abstract. In this paper, we present a reasoning-driven architecture and its real-
ization through configurators. By providing metamodels that formally describe a
knowledge-representation language, reasoning on domain models is enables, i.e.
reasoning on the metalevel. One main realization mean for a reasoning-driven ar-
chitecture is the mapping between conceptual descriptions used in domain models
and instance descriptions on the metalevel. This aspect is focussed in the follow-
ing sections.

1 Introduction

For knowledge-based tasks, like constructing or diagnosing a specific car periphery
system, a strict separation is made into domain model, consisting of concepts, which
covers the knowledge of a certain domain and a system model, consisting of instances,
which covers the knowledge of a concrete system or product of the domain. Con-
cepts represent sets of instances and instances represent individual objects in a real
world application. The domain model and the system models are represented with a
knowledge-modeling language which again is interpreted, because of a defined seman-
tic, through a knowledge-based system. Examples are a terminology box (TBox) as a
domain model representing e.g. knowledge about an animal domain; and an assertional
box (ABox) as a system model representing e.g. a specific animal. Such systems provide
reasoning methods for concepts and/or instances. For example, rule-based systems pro-
vide inferences on instances, i.e. monotonic inferences, if the knowledge-representation
language is based on the Rule Interchange Format RIF BLD [1] or non-monotonic
inferences if it is based on the Rule Interchange Format RIF PRD [2]. Description
Logic reasoners like PELLET or RACER provide TBox reasoning on concepts (like
concept subsumption) and ABox services on instances (like instance checking) (see
www.w3.org/Submission/owl11-tractable/ or [3]).

Configurators, like [4] or [5], provide consistency checks on the configurator knowl-
edge base representing the domain model (also called configuration model), i.e. on con-
cept descriptions, and model construction facilities on instances for creating systems
models (also called configurations) [6, 7]. For this task, configurators typically combine
a broad range of inference mechanisms like constraint solving, rule-based inference,
taxonomical reasoning, and search mechanisms.

Originally, configuration systems are applied to the task of configuring physical sys-
tems like ranger drilling machines [8], drive systems [9], railway interlocking stations



[10], elevators [11], or computer systems [12]. Because of the general applicability
of knowledge-based systems and especially configurators also domains beyond pure
hardware can be handled, like configuring services [13, 14], configuring in e-commerce
environments [15], configuration in software product lines [16], constraint-based model
parsing [17], or scene interpretation [18].

Following this line of generality, in [19] a first insight is provided, how configura-
tion systems can be applied to itself, i.e. how they can infer about concept descriptions
and instance descriptions of a domain. The basic application behind is to formally in-
fer about the knowledge itself, i.e. to enable knowledge reflection. Thus, to formalize
the knowledge engineering process. A main mean for enabling such applications is
given by considering concepts as instances which enables instance-related inference
techniques to be applied to concepts. A prerequisite is the ability of representing con-
cepts of a domain as instances of a metamodel. If the metamodel is represented with a
knowledge-representation language inferences on concept descriptions, i.e. on the do-
main model are enabled. In [19] such an inference-enabling metamodel is provided
for the configuration language CDL (Component Description Language) [20]. Simi-
larly, the Ontology Definition Metamodel (ODM) [21] for the Web Ontology Language
OWL provides a metamodel for a knowledge-representation language. However, ODM
is not represented with a knowledge-based representation language but with the Unified
Modeling Language [22]. Thus, ODM is not considered here as an inference-enabling
metamodel.

In this paper, as a further step in the direction of a reasoning-driven architecture
(see Section 2), we provide a realization of such an architecture with configurators and
analyze the mapping between concepts and instances in principal (see Section 3).

2 The Reasoning-Driven Architecture
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Fig. 1. Model-Driven Architecture View

For defining the Reasoning-Driven Architecture (RDA), we borrow the notion of
layers from the Model-Driven Architecture (MDA) [23–25, 22]. In MDA, the main task
is to specify modeling facilities that can be used for defining models (metamodeling),
see for example [22]: “A metamodel is a model that defines the language for expressing
a model”. MDA provides four layers for modeling (see Figure 1, MDA view for three
of them): M2 is the language layer represented by a metamodel, which is realized by
(or is a instance-of) a metametamodel located on the M3 layer. The language is used
for creating a model of a specific system on the M1 layer. The system model represents
a system which is located in the reality (M0 layer not shown in the figure for brevity)
[26]. Please note, that each layer contains elements which are instances of classes of
the layer above. Typically a specific implementation in a tool ensures that a system



model on M1 conforms to a metamodel on M2 and a metamodel on M2 conforms to
a metametamodel on M3.

Following [27], we distinguish in Figure 2 between a linguistic and an ontologi-
cal instance-of relation. Additionally, we explicitly name the internal implementation
instance-of relation as such, which is a simple UML type-instance relation in [27]. The
linguistic instance-of relation is originated in the notion of classes and objects known
from programming languages.
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Fig. 2. Atkinsons Metamodeling and semantic system view. The MDA view is refined when ap-
plying CDL with its domain and system model on R1 (R1DC , R1SI ).

In the Reasoning-Driven Architecture, the realization of each layer is a knowledge-
based system consisting of a knowledge model and separated inference methods used
for reasoning about the layer below it. For the RDA approach, we use R1, R2, R3 which
roughly correspond to M1, M2, M3 in MDA, respectively. Ri stands for “Reasoning
Layer i” (see Figure 2, semantic system view). We separate R1 in several reasoning
layers, because for knowledge-based systems one single model on this layer is not suf-
ficient. This is due to the in the Introduction already mentioned separation of domain
model and system model. R1 consists of a domain model specified with concepts and
constraints (denoted by R1DC ) represented with a knowledge modeling language (e.g.
Web Ontology Language (OWL) and a rule description with the Rule Interchange For-
mat (RIF) [2]) and knowledge instances (denoted R1SI ) representing the system model.
Furthermore, corresponding reasoning facilities of the knowledge modeling language
allow to reason about entities on layer R1 (see Figure 2, semantic system view).

In Figure 3, the semantic system view is applied to CDL. In this case, the imple-
mentation instance-of relation is provided through the instantiation protocol of the un-
derlying implementation language Common Lisp and its Common Lisp Object System
(CLOS) [28, 29] (classes are instances of the predefined metaclass standard-class).
Beside the instance layer, Figure 3 depicts concept definitions (define-concept) of
CDL and their linguistic instance-of macroexpansion to defclass of CLOS. The on-
tological instance-of relation represents relationships between knowledge elements, in
CDL between concepts and instances. Here, the inference techniques of CDL, as there
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Fig. 3. Component Description Language View

are mainly taxonomical reasoning and constraint processing, are used for infering about
concepts and instances on R1DC and R1SI . Thus, the RDA is similar to the metamodel-
ing foundation in [27] except it provides reasoning techniques on domain and system
models.

3 Knowledge Reflection Servers

For realizing the RDA, we introduce Knowledge Reflection Servers (KRS). Each server
is realized with the typical concept/instance scheme. Hence, each server can be realized
with a typical knowledge-based system like Description Logic systems or rule-based
systems. In our case, such servers consist of multiple copies of the CDL view for repre-
senting and reason about distinct types of metaknowledge on different layers. Because
each of these servers is realized with same knowledge-based facilities, i.e. CDL con-
cepts and instances, we do not extend CDL with the notion of a metaclass, which has
instances that act as classes and can again have instances (e.g. like OWL Full [30] or
like MDA/UML implementations with stereotypes [27]). Through a mapping between
those servers, concepts on one server are identified with instances of the next higher
server. This mapping is a one-to-one (i.e. straight forward) mapping and based on a
metaknowledge model [19] (see Figure 6, CDL-Server view).

In RDA, this instantiation facility is used for supporting the step from the configu-
ration language to the domain model. By applying the configuration system to a domain
model that contains every model of a language, i.e. by applying it to a metaknowledge
model (the Meta-CDL [19]), the configuration of a domain model for any specific do-
main is supported. An example of a part of the metaknowledge model is given through
the concept concept-m (see Figure 6, CDL-Server view, R1MC and Figure 5 b). This
concept represents all concepts of the layer R1DC , with all their facets, like supercon-
cepts, relations, and parameters. A knowledge modeling language like CDL can be
expressed with a knowledge modeling language like CDL because of the general appli-
cability of the language constructs of CDL, which are based on logic [31].

For illustrating reasoning on metalayers and the one-to-one mapping, we take a bio-
logical classification as an example for multiple layers.1 Figure 4 presents an extract of

1 In [32], a detailed discussion of alternative modeling for biological classification is supplied.



the traditional biological classification of organisms established by Carolus Linnaeus.
Each biological rank joins organisms according to shared physical and genetic charac-
teristics. We conceive of a rank as knowledge about the next layer. The main ranks are
kingdom, phylum, class, order, genus, species, and breed, which again are divided into
categories. Each category unifies organisms with certain characteristics.
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Fig. 4. Biological Classification represented with several layers. Figure inspired by [27].

For instance, the Mammal class includes organisms with glands only, thus, a down-
ward specialisation from Mammal to its subcategories is depicted in Figure 4. For clarity
reasons, only extracts of ranks and categories are given, for example the rank of king-
dom contains more than the category animal2. The ranks are representing an additional
layer (BioClM ) above the domain model of the biological classification. The categories
of the ranks form the domain model layer (BioClD) and each of them is an instance
of the correspondent rank. The system model layer (BioClS) is covering specific indi-
viduals, e.g. Tux the penguin. By the given classification, the need for multiple layers
becomes directly evident: It is understandable that a King Penguin is an instance of
Breed. But it would be improper to denote Tux as a Breed, which would hold if King
Penguin would be a specialization of Breed.

In Figure 5, we give an example for the one-to-one mapping of concepts of to in-
stances. As usual, a domain is modelled by some knowledge-representation language.
In Figure 5 (a) this is provided in CDL, however, similar concepts can be expressed with
OWL. The concept Mammal is defined to be a specialization of Chordate and has a re-
lation has-differences which describes a species with its differentiating character-
istics. For a mammal, there should be exactly 6 characteristics where Hair and Fur are

2 Among others it contains plants, bacteria, and fungi.



optional and the other characteristics Glands, MiddleEarBones, and WarmBlooded

are of the indicated numbers. Additionally, the concept Class-m of the metamodel
BioClM is indicated. Figure 5 (b) gives a part of the metamodel and of Meta-CDL. The
domain independent part consists of a description of a concept, i.e. concept-m defines
what a concepts has, namely beside others a superconcept (has-superconcept-m)
and relations (has-relations-m) (see also [19]). By adding domain specific con-
cepts like Kingdom-m, Phylum-m, and Class-m Meta-CDL is extended to BioClM .
Instances of concepts of BioClM represent concept descriptions of the domain model.
Because the Meta-CDL exactly reflects the modeling possibilities that are used for the
domain model, a straight forward mapping can be realized that maps the concepts of the
domain (here Mammal) to appropriate instances of the concepts of the metamodel (see
Figure 5 c), where Some-m and relation-descriptor-m are further concepts of the
metamodel). By doing so, these instances can be subject of reasoning on the metalayer,
e.g. a domain-specific constraint on the metalayer can check combinations of biolog-
ical classes for having specific characteristics by comparing their differences models.
Thus, with this constraint it is specified that a biological class should have a unique
combination of characteristics. On BioClD, these kinds of constraints may be hard
to define, because they are typically not related to one specific concept but to several.
Still, such constraints are usually part of some modeling guidelines, e.g. for biological
classification such documents state that the definitions of biological classes should be
unique.

Each layer described above is realized through a Knowledge Reflection Server in
Figure 6. Each server monitors the layer below it and consists of the appropriate model
and a configuration system which interprets the model. This has the advantage of using
declarative models at each metalayer as well as the possibility to apply inference tech-
niques like e.g. constraint programming at the metalayer. For example, a KRS mon-
itors the activities during the construction of the domain model BioClD, i.e. during
the domain representation phase. If e.g. a concept c of the domain is defined with
define-concept the KRS on R1M is informed. Furthermore, a KRS

– supplies services like check-knowledge-base, add-conceptual-constraint,
– creates appropriate instances of metaconcepts of the Meta-CDL, e.g. concept-m or
conceptual-constraint-m,

– uses constraint propagation for checking the consistency rules,
– applies the typical model configuration process for completing the configuration,

e.g. adds mandatory parts,
– checks consistency of created domain specific concepts, e.g. of BioClD,
– monitors the reasoning process, e.g. for evaluating reasoning performance, and

thus, makes reasoning explicit,
– can create and use explanations,
– may solve conflicts that occur during the domain representation phase,
– may apply domain-specific metaknowledge, e.g. “ensuring specific differentiating

characteristics of biological classes” with metacontraints.

CDL consists of the modeling facilities concepts and constraints. Defined con-
straints enable checks of every combination of classes for having specific properties
by comparing their models. Thus, with a constraint on BioClM (see Figure 4) it might



(define-concept :name Mammal
:specialization-of Chordate
:has-differences
((:type Characteristic :min 6 :max 6) 
:>
(:type Glands :min 1 :max 1)

a) (define-concept :name concept-m
:specialization-of named-domain-object-m
:has-superconcept-m 
(:type concept-m :min 0 :max 1)
:has-relations-m 
(:type relation-descriptor-m :min 0 :max inf)

b)

(:type Glands :min 1 :max 1)
(:type Hair :min 0 :max 1)
(:type Fur :min 0 :max 1)
(:type MiddleEarBones :min 3 :max 3)
(:type WarmBlooded :min 1 :max 1))

:metaconcept Class-m)

(:type relation-descriptor-m :min 0 :max inf)
…)

(define-concept :name Kingdom-m
:specialization-of concept-m)

(define-concept :name Phylum-m
:specialization-of Kingdom-m):specialization-of Kingdom-m)

(define-concept :name Class-m
:specialization-of Phylum-m)

(make-individual :name Mammal :instance-of Class-m
:has-relations-m has-differences

c)

one-to-one mapping

:has-superconcept-m Chordate)

(make-individual :name has-differences :instance-of relation-descriptor-m
:has-left-side-m (Some-1)
:has-right-side-m (Some-2 Some-3 Some-4 Some-5 Some-6))

(make-individual :name Some-1 :instance-of Some-m :some-of Characteristic
:lower-bound 6 :upper-bound 6)

(make-individual :name Some-1 :instance-of Some-m :some-of Glands
:lower-bound 1 :upper-bound 1)

(make-individual :name Some-1 :instance-of Some-m :some-of Hair
:lower-bound 0 :upper-bound 1)

used for PuK

…
(make-individual :name Chordate :instance-of concept-m)

(make-individual :name Characterisitc :instance-of concept-m)

(make-individual :name Glands :instance-of concept-m)
…

used for PuK

Fig. 5. Mapping of a concept description in CDL (a) by using a metamodel (b, also in CDL) to
appropriate instances (c).

be specified what characteristics a biological class should have, also classes of different
phylums are tested.

4 Discussion

Main properties of the Reasoning-Driven Architecture realized with the Knowledge
Reflection Servers (KRS) as described in the previous sections are:

1. the introduction of a model on one layer that represents the knowledge facilities
used on the layer below it (i.e. metaknowledge models).

2. the use of existing knowledge-based systems with their reasoning facilities on each
layer, especially on metalayers. This enables reflection about knowledge.

3. the mapping of concepts of one layer to instances of the next higher layer. This ap-
proach has the potential of using more tractable instance-related inference methods
instead of concept reasoning.
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Fig. 6. Reasoning-Driven Architecture, CDL-Server view

4. the support of declarative knowledge modeling on several metalayers. This enables
the modeling of knowledge and metaknowledge at the same time. Metaknowledge
is typically specified in modeling guidelines. Thus, the described approach enables
the modeling of modeling guidelines.

The use of reasoning methods in RDA is achieved by using a knowledge-representa-
tion language on a metalayer, i.e. not using e.g. the Meta Object Facility (MOF) of
MDA [33], which is based on UML, for a metalayer. Other knowledge-representation
languages like the Web Ontology Language (OWL) [30] could also be considered for
being used on the layers. However, CDL is quite expressive, e.g. also constraints can
be expressed on each layer. For realizing the KRS, even more important for us was the
possibility to add server technologies to the knowledge-representation language CDL.
However, by replacing the Meta-CDL with a metamodel for OWL (e.g. the Ontology
Definition Metamodel (ODM) [21]) one could use RDA for scrutinizing the construc-
tion of domain models written in OWL.

[34, 35] and [36] present also approaches that include semantics on the metalayer,
similar as the Meta-CDL metamodel does. By doing so, reasoning methods on each
layer as well as the capability to define domain-specific extensions on the metalayer is
in principal enabled. By introducing a configurator which allows the definition of proce-
dural knowledge for controlling the used reasoning techniques, in our approach the re-
alization of metastrategies on the metalayers can be considered. However, in [35] a new
metamodeling language, called Nivel, is proposed, and by translating it to the knowl-
edge representation language (weight constraint rule language, WCRL) a semantics is
given. In our approach, on each layer the same knowledge representation language is



used, i.e. CDL. By specifiying CDL consistency rules in Meta-CDL, the semantics of
CDL is declaratively modeled.

5 Conclusion

This paper presents a technology for using knowledge-based systems on diverse meta-
layers. Main ingredients for this task are models about knowledge (metamodels). Through
a metamodel a straight forward mapping of concepts of an application domain to in-
stances on the metalayer can be provided. By mapping those concepts to instances, on
the metalayer instance-based reasoning methods can be applied to concepts. By com-
bining several layers a Reasoning-Driven Architecture is provided. It enables reasoning
facilities on each metalayer, opposed to the Model-Driven Architecture which focusses
on transformations. The Reasoning-Driven Architecture is realized through a hierarchy
of Knowledge Reflection Servers based on configuration systems. Future work will in-
clude metastrategies for conducting reasoning methods on the metalayers, a complete
implementation of the servers, and a inference-enabling metamodel for OWL.
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34. Asikainen, T., Männistö, T.: A Metamodelling Approach to Configuration Knowledge Rep-

resentation. In: Proc. of the Configuration Workshop on 22th European Conference on Arti-
ficial Intelligence (IJCAI-2009), Pasadena, California (2009)
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