
Software Case Similarity Measure
ReDSeeDS project

Deliverable D4.2, version 1.0, 31.07.2007



IST-2006-033596
ReDSeeDS
Requirements Driven
Software Development System
www.redseeds.eu

Infovide S.A., Poland

Warsaw University of Technology, Poland

Hamburger Informatik Technologie Center e.V., Germany

University of Koblenz-Landau, Germany

University of Latvia, Latvia

Vienna University of Technology, Austria

Fraunhofer IESE, Germany

Algoritmu sistemos, UAB, Lithuania

Cybersoft IT Ltd., Turkey

PRO DV Software AG, Germany

Heriot-Watt University, United Kingdom

Software Case Similarity Measure
ReDSeeDS project

Workpackage WP4
Task T4.2
Document number D4.2
Document type Deliverable
Title Software Case Similarity Measure
Subtitle ReDSeeDS project
Author(s) Katharina Wolter, Thorsten Krebs, Daniel Bildhauer, Markus Nick,

Lothar Hotz
Internal Reviewer(s) Albert Ambroziewicz, Jacek Bojarski, Wiktor Nowakowski, Tomasz

Straszak, Kizito Ssamula Mukasa, Robert Pooley
Internal Acceptance Project Board
Location https://svn.redseeds.eu/svn/redseeds/1_DeliverablesSpace/WP4_-

Technologies_for_reusable_cases/D4.2.00/ReDSeeDS_D4.2_Soft-
ware_Case_Similarity_Measure_Definition.tex

Version 1.0
Status Final
Distribution Public

The information in this document is provided as is and no guarantee or warranty is given that the information is fit
for any particular purpose. The user thereof uses the information at its sole risk and liability.

31.07.2007



Software Case Similarity Measure – D4.2
History of changes

ver. 1.0
31.07.2007

History of changes

Date Ver. Author(s) Change description
13.06.2007 0.01 Katharina Wolter (UH) Document creation and proposition of

TOC

18.06.2007 0.02 Markus Nick (Fraunhofer) First content for Sections 3.2 and 4.1

19.06.2007 0.03 Katharina Wolter (UH) Similarity measure requirements

21.06.2007 0.04 Katharina Wolter (UH) Further similarity measure requirements
and figures

27.06.2007 0.05 Katharina Wolter (UH) First content and figures for Section 4.1,
further similarity measure requirements

29.06.2007 0.06 Katharina Wolter (UH) Added content and figures for Section 4.1

01.07.2007 0.07 Thorsten Krebs (UH) First contents for Section 3.3

03.07.2007 0.08 Katharina Wolter (UH) Content and figure for Chapter 2

04.07.2007 0.08 Daniel Bildhauer (UKo) First content for Section 3.4

04.07.2007 0.09 Katharina Wolter (UH) Introduction for Chapter 3

06.07.2007 0.10 Markus Nick (Fraunhofer) Section 3.1, Update of Section 3.2

09.07.2007 0.11 Katharina Wolter (UH) First content for Section 4.3

10.07.2007 0.12 Katharina Wolter (UH) Restructuring: split Chapter 4 in Chapter
4-6

11.07.2007 0.13 Thorsten Krebs (UH) Reading & commenting plus more input
for Section 3.3

11.07.2007 0.14 Daniel Bildhauer (UKo) Initial content for section 4.4 and 4.6

11.07.2007 0.15 Katharina Wolter (UH) Improved Chapter 4 and 5

13.07.2007 0.16 Katharina Wolter (UH) Content for Section 5.4

17.07.2007 0.17 Thorsten Krebs (UH) Filled Section 6.3

17.07.2007 0.18 Markus Nick (IESE) Global similarity measure

17.07.2007 0.19 Katharina Wolter (UH) Added content for Section 5.4

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page III



Software Case Similarity Measure – D4.2
History of changes

ver. 1.0
31.07.2007

Date Ver. Author(s) Change description
18.07.2007 0.20 Thorsten Krebs (UH) Additional input (incl. figures) for the ex-

ample in Section 6.3

18.07.2007 0.21 Katharina Wolter (UH) Additional content for Sections 5.4, 3.1

19.07.2007 0.22 Katharina Wolter (UH) Initial content for Section 6.1, small cor-
rections and references in Chapter 3

19.07.2007 0.23 Daniel Bildhauer (UKo) Initial content for sections 6.5 and 7.1.4

19.07.2007 0.24 Markus Nick (IESE) Textual similarity measures, some general
information on IR and CBR in Chapter 3

20.07.2007 0.25 Daniel Bildhauer (UKo) More content for section 7.1.4, some
cleanups

20.07.2007 0.26 Katharina Wolter (UH) First content for Sec. 6.2 and Chap. 1,
add. content for Sec. 3.1 and Chap. 4

23.07.2007 0.27 Daniel Bildhauer (UKo) Refactoring of section 7.1.4 and 6.5

24.07.2007 0.28 Katharina Wolter (UH) Content for Conclusion, add. content for
Chap. 1

25.07.2007 0.29 Katharina Wolter (UH) Add. content for Chap. 1 and Sec. 6.2,
restructuring of Chap. 7, small corrections
in Chap.4

25.07.2007 0.30 Lothar Hotz (UH) Added content for Chapter 7

26.07.2007 0.31 Katharina Wolter (UH) Restructuring of Sec. 5.5 and small cor-
rections

26.07.2007 0.32 Katharina Wolter (UH) Restructuring of Chap.6, add. content for
6.6, small corrections

27.07.2007 0.33 Katharina Wolter (UH) Added Summary

27.07.2007 0.34 Katharina Wolter (UH) Small additions in Summary and Sec. 6.6
corrections in Chap. 4+5

28.07.2007 0.35 Katharina Wolter (UH) Completing Sec. 6.6, improvements and
additions in Chap. 4, 5, Conclusion and
Sec. 6.2, added section about WordNet

29.07.2007 0.36 Katharina Wolter (UH) Completed figure captions, additions in
Sec. 6.1, figure improvements

30.07.2007 0.37 Thorsten Krebs (UH) Unification of terms

30.07.2007 0.38 Katharina Wolter (UH) Corrections & improvements in whole
document

31.07.2007 0.38 Katharina Wolter (UH) Improved figures

31.07.2007 1.00 Katharina Wolter (UH) Finalisation

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IV



Software Case Similarity Measure – D4.2
Summary

ver. 1.0
31.07.2007

Summary

The ReDSeeDS project is about requirements-driven software development. The major goal
is to enable reuse on the basis of requirements specifications. One pre-condition for reaching
this goal is the retrieval of requirements specifications that can be reused in the current software
development project. The software case similarity measure described in this deliverable enables
this retrieval.

The requirements engineer defines in a query the characteristics of software artefacts that might
be reused in the current project. These artefacts are specified using the software case language
(SCL) and stored in a fact repository. The software case similarity measure determines all
software cases stored in the fact repository that are similar to a given query.

Conventional requirements specifications are often written in natural language. For such docu-
ments a similarity measure would usually only rely on lexicographic term matching. Due to the
ambiguity of natural language this has significant disadvantages. Similar requirements specifi-
cations are only retrieved if the same words are used in both specifications. However, the same
meaning can be expressed using different words, e.g. synonyms may be used. Furthermore, the
same words may have a different meaning in some requirements specifications. This leads to
the retrieval of requirements specifications that are not relevant for the current situation.

In ReDSeeDS, requirements specifications are written using the Requirements Specification
Language (RSL). Taking advantage of the features of RSL the similarity measure can be more
effective. RSL provides constrained and unconstrained language facilities for requirement de-
scription as well as conceptual modelling in combination with thesaurus features. The ability
to map words to a common terminology solves the ambiguity problem of natural language.

In order to use the features of RSL to full capacity the similarity measure combines approaches
from different research areas. The parts of specifications containing unconstraint language can
be evaluated using measures from the field of Information Retrieval. Conceptual models can be
compared more effectively using approaches from other research domains, like e.g. structural

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page V



Software Case Similarity Measure – D4.2
Summary

ver. 1.0
31.07.2007

Case-Based Reasoning, Description Logic and Graph-based similarity. Specific algorithms for
determining the similarity of two terms contained in a conceptual hierarchy or thesaurus can be
applied.

Our concept is based on a detailed definition of the requirements on the similarity measure. The
approaches combined in the similarity measure are introduced in detail and compared regarding
their applicability in RSL requirements specifications. The similarity measure described in this
deliverable provides a conceptual framework that will be implemented during Work Package 5
(Development of the ReDSeeDSD system prototype). The effectiveness and efficiency of the
described similarity measure will be evaluated in experiments.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VI



Software Case Similarity Measure – D4.2
Table of contents

ver. 1.0
31.07.2007

Table of contents

History of changes III

Summary V

Table of contents VII

1 Scope, Conventions, Guidelines 1
1.1 Document Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related work and relations to other documents . . . . . . . . . . . . . . . . . . 1
1.3 Document Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Usage Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Introduction 5

3 Existing Similarity Measures 7
3.1 Similarity in Information Retrieval . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 WordNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Similarity in Case-based Reasoning . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Similarity in Description Logic combined with Case-based Reasoning . . . . . 12

3.4.1 Combining Description Logics with Case-based Reasoning . . . . . . . 14
3.4.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Graph-based Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.1 General principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5.2 Structural similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5.3 Local similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.4 A combined approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 RSL Requirements Models 20
4.1 Requirements Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Sentence List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 Constraint Language Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Activity Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VII



Software Case Similarity Measure – D4.2
Table of contents

ver. 1.0
31.07.2007

4.5 Interaction Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.6 Domain Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.7 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Similarity Measure Requirements 29
5.1 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 RSL Entities to be compared . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Results of the Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.4 Constraints on Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . 33
5.5 Detailed Requirements - RSL entities to be compared . . . . . . . . . . . . . . 34

5.5.1 Requirements Specification . . . . . . . . . . . . . . . . . . . . . . . . 35
5.5.2 Requirement Representation . . . . . . . . . . . . . . . . . . . . . . . 36
5.5.3 Sentences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.4 Domain Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.5 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Similarity Measures 41
6.1 Comparison of similarity measures . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Global Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.3 Textual Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.1 Similarity using Set-of-Words Measure . . . . . . . . . . . . . . . . . 47
6.3.2 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3.3 Similarity using a Set-of-Sentences Measure . . . . . . . . . . . . . . . 49
6.3.4 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.4 Description Logic-based Similarity Measures . . . . . . . . . . . . . . . . . . 50
6.4.1 Algorithms for Similarity Measures for Conceptual Structures . . . . . 50
6.4.2 Known Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.5 Graph-Based Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.1 SiDiff Metamodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.5.2 The SiDiff Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.6 Applicability of Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . 60
6.6.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.6.2 Domain Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.6.3 Requirements Specification . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Similarity Measures - Design Considerations 71
7.1 Textual Similarity Measures - Design Considerations . . . . . . . . . . . . . . 71
7.2 Description Logic Similarity Measures - Design Considerations . . . . . . . . . 72

7.2.1 Selection of a Description Logic Inference Tool . . . . . . . . . . . . . 72

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page VIII



Software Case Similarity Measure – D4.2
Table of contents

ver. 1.0
31.07.2007

7.2.2 Interface between RSL and DL’s Internal Representation . . . . . . . . 73
7.2.3 Representation of Software Cases in DL . . . . . . . . . . . . . . . . . 77
7.2.4 Representation of Queries in DL . . . . . . . . . . . . . . . . . . . . . 77
7.2.5 Services of DL used for Retrieval . . . . . . . . . . . . . . . . . . . . 78
7.2.6 Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Graph-based similarity - Design Considerations . . . . . . . . . . . . . . . . . 80
7.3.1 The SiDiff Tool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.2 Similarity Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

8 Conclusion 82

Bibliography 84

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page IX



Software Case Similarity Measure – D4.2
Scope, Conventions, Guidelines

ver. 1.0
31.07.2007

Chapter 1

Scope, Conventions, Guidelines

1.1 Document Scope

This document provides a concept for the ReDSeeDS similarity measure that will be imple-
mented in the ReDSeeDS Engine. The similarity measure provides the functionality of retriev-
ing software cases that are similar to a particular query. This query is specified in the Software
Case Query Language (SCQL). The software cases are written in the software case language
(SCL) and are stored in the fact repository.

The conceptual idea of the ReDSeeDS similarity measure is based on a detailed definition of
requirements to be met by the measure. The measure combines similarity approaches from dif-
ferent research areas in order to cope with the different aspects of requirements models. Graph-
based similarity and Description Logic are used to compare the structural parts of requirements
models. Similarity measures from Information Retrieval and Case-based Reasoning are used to
compare the textual parts of requirements models.

1.2 Related work and relations to other documents

The results described in this deliverable are based on the work from different research areas.
Main results from these research areas and related work are introduced in respective sections in
Chapter 3.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 1



Software Case Similarity Measure – D4.2
Scope, Conventions, Guidelines

ver. 1.0
31.07.2007

Since this deliverable describes the similarity measure for ReDSeeDS software cases, it is based
on the software case language (SCL) - the language used for representing software cases. This
language is described in the following deliverables:

• D2.4.1: Requirements Specification Language Definition,

• D3.1: Software Case Meta-Model Definition,

• D3.2.1: Reuse-oriented Modelling and Transformation Language.

The similarity measure is mainly based on the requirements model contained in a software case.
Thus, D2.4.1 is the most important input for this deliverable.

The RSL metamodel, which was defined in D2.4.1 has been adapted during Task T3.2. These
modifications did not change the language from a user’s perspective. However, for the simi-
larity measure these modifications are relevant since the similarity measure defines which RSL
classes need to be compared. For this reason the latest version of the RSL metamodel (so called
ToolReadyRSL) was another important input for this task (see Deliverable D3.2.1).

The similarity measure described in this document is closely connected with the Software Case
Query Language defined in Deliverable D4.1 (Software Case Query Language Definition) since
the similarity measure is one main basis for the query language next to the software cases
stored in the fact repository. Some of the similarity measure requirements (see Chapter 5) have
implications for the query language.

The results of this deliverable provide input for Work Package 5, mainly Task T5.2 (Specifica-
tion of user requirements for the ReDSeeDS Engine prototype) and Task T5.5 (Implementing
the ReDSeeDS Engine prototype - Second iteration).

1.3 Document Structure

This deliverable is structured as follows: Chapter 2 illustrates the context in which the simi-
larity measure is to be integrated and introduces important terms that are used throughout this
deliverable.

Chapter 3 provides a brief overview of similarity definitions form different research areas. The
described similarity approaches compare different types of artefacts and provide a similarity

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 2



Software Case Similarity Measure – D4.2
Scope, Conventions, Guidelines

ver. 1.0
31.07.2007

value. Some approaches also provide additional information, for example which parts of the
artefact are similar and which parts are different.

Chapter 4 introduces the structure of RSL requirements models as background knowledge for
the following chapters. This introduction concentrates on RSL entities relevant for the similarity
measure.

Chapter 5 describes the requirements for the similarity measures in detail.

Chapter 6 presents a concept for the ReDSeeDS similarity measure. The chapter states how the
similarity approaches described in Chapter 3 may be applied in order to compute the similarity
of ReDSeeDS software cases.

Chapter 7 describes aspects that need to be considered when implementing the similarity mea-
sures.

Finally, Chapter 8 provides a summary of the main results.

1.4 Usage Guidelines

This deliverable should be used as a book that guides the reader through the basic similarity
approaches described in literature, the requirements the software case similarity measure in
ReDSeeDS must meet and the concepts behind this similarity measure. Thus, this deliverable
mainly addresses Work Package 5 members who will integrate the requirements on the simi-
larity measure in D5.2 (ReDSeeDS Prototype User Requirements Specification) and will im-
plement them in Task 5.5 (Implementing the ReDSeeDS Engine Prototype - Second iteration).
Since this deliverable mainly addresses ReDSeeDS members it is expected that the reader is
familiar with the basic concepts of the software case language (SCL). Nevertheless, Chapter
4 provides a very brief overview of the major elements of the requirements specification lan-
guage (RSL). This is reasonable due to the adaptations of the RSL metamodel in the tool-ready
version.

Readers that are familiar with one of the similarity approaches introduced in Chapter 3 may
skip the related section.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 3



Software Case Similarity Measure – D4.2
Scope, Conventions, Guidelines

ver. 1.0
31.07.2007

1.5 Conventions

The following notation conventions are used in this deliverable:

• sans-serif font is used for names of classes, attributes and associations, e.g. Requirement

• if a class name is used in description of package other than the one it is included in, it
is preceded with package name and a double colon (“::”), e.g. RequirementsSpecifica-

tions::Requirement

• bold/italics font is used for emphasised text, e.g. Abstract syntax

• typewriter font is used for examples, e.g. Customer

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 4



Software Case Similarity Measure – D4.2
Introduction

ver. 1.0
31.07.2007

Chapter 2

Introduction

The main objective of Workpackage 4 is developing technologies that enable the reuse of cases.
This deliverable provides the background for implementing a similarity measure for seeking
similar cases and is thus a major input for Task 5.4 & 5.5 (Implementing the ReDSeeDS Engine
prototype).

A software case in the context of ReDSeeDS is a set of artefacts that are produced during the
development of a software product together with all their interconnections. A software case
contains a requirements model, an architectural model, several subsystem models, the code and
transformational information, and potentially other development artefacts. All these artefacts
shall be described using the ReDSeeDS Software Case Specification Language (SCL).

Software cases can vary in size. Firstly, because software products vary in size and secondly,
because the artefacts that constitute a software case can also describe parts of a software product
only. The requirements model of one software case may describe only one specific aspect of a
software product while another requirements model specifies an entire product.

The part of SCL that describes requirements is called Requirements Specification Language
(RSL). Since the similarity measure mainly evaluates the requirements models of software
cases, RSL is of special importance for this deliverable. The requirements part of software
cases consists of a requirements specification and a domain specification, together called re-

quirements model. The requirements specification consists of requirements and requirements
representations. The domain specification describes main entities of the application domain
using a conceptual model and phrases. The conceptual model represents entities form the ap-
plication domain using object-oriented principles (generalisation, aggregation, association with

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 5



Software Case Similarity Measure – D4.2
Introduction

ver. 1.0
31.07.2007

multiplicities) while the phrases offer textual information similar to a software case specific
glossary.

The fact repository contains all information about the artefacts that constitute the software cases.
Additionally, the fact repository contains general knowledge e.g. the Terminology, an overall
"dictionary" on which all domain specifications are mapped. Figure 2.1 shows the fact reposi-
tory with software cases of different size and their relation to the general knowledge.

Fact Repository

General Knowledge
C

ase 4

C
ase 3 C

ase 2

C
ase 1

TransformationsRequirements
Model

Architectural
Model

Detailed
Design Code

Figure 2.1: The fact repository consists of software cases and general knowledge.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 6



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

Chapter 3

Existing Similarity Measures

Measures that capture similarity of artefacts have been developed in many research commu-
nities and for different types of artefacts. In the following we briefly introduce some of these
approaches. This introduction is restricted to approaches that are relevant for comparing RSL
requirements models.

RSL requirements models can contain different types of requirements representations: textual
representation (natural and controlled language), graphical representations and even images
(screenshots). The Similarity of textual documents to a given query is the main topic of In-

formation Retrieval (see Section 3.1). Some Information Retrieval approaches apply thesauri
or semantic lexicons. Section 3.2 introduces WordNet, a semantic lexicon that is based on the
concept of synonym sets that group synonymic words. Case-based reasoning (CBR) examines
the similarity of so-called cases that store past experiences. Different case representations are
distinguished [BBMW99]. For RSL specifications Textual CBR and Structural CBR are rele-
vant (see Section 3.3). Conceptual representation of queries and cases may be addressed with a
description-logic based approach. Section 3.4 describes how knowledge representation mech-
anisms known from description logics can help in defining queries and measuring similarity
between a query and cases. Since graph-based representations play an important role in RSL,
similarity of graphs is introduced in Section 3.5.

RSL also contains elements that contain visual information like screenshots or icons. Identify-
ing screenshots with similar structure of user interface elements would require content-based
image retrieval or even image understanding. Whether such approaches would actually im-
prove the similarity measure for software cases is questionable. Since they are out of scope of
ReDSeeDS they are not discussed in the following.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 7



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

3.1 Similarity in Information Retrieval

Information Retrieval (IR) addresses the search of relevant documents [GF04] in (large) docu-
ment collections. Some views also include the representation, storage and organization of in-
formation items [BYRN99, SM83]. A major application domain of IR methods are web search
engines.

Information Retrieval distinguishes mainly four types of models: boolean [GF04], vector space
[GF04], probabilistic [GF04], and inference network models [GF04]. The boolean models offer
a pure matching without any ranking by relevance / similarity. The three most used models in
IR research are the other three models [Sin01].

IR system are typically installed for searching in large document collections. This has the
consequence that indexing is done offline [SM83]. Thus, those documents not yet indexed will
not be found by the retrieval. This behavior might conflict with the expectations of a user who
expects that documents stored in a system are immediately available for retrieval.

Similarity in the different IR models is determined as follows [BYRN99, Sin01]:

Boolean models Pure matching without relevance / similarity ranking.

Vector space models Each document and query is represented as a vector of terms. The simi-
larity (also called document score) is calculated between a query vector and a document
vector, which is usually a value between 0 (no similarity) and 1 (identical). For each
document vector and term, a document-specific weight is assigned to a term (see term

weighting below). The document score is then used for ranking the documents.

Probabilistic models These models estimate the probability of the relevance of the documents
for a query. This probability is then used for ranking the documents.

Inference network model The document retrieval is modeled as an inference process in an
inference network. In its simplest implementation, a document instantiates a term with
a certain strength, and the credit from multiple terms is accumulated given a query to
compute the equivalent of a numeric score for the document.

For the so-called term weighting, the following measures are usually combined: term frequency
(number of occurrences of term in document), document frequency (number of documents that
contain the term) and document length. The state of the art in term weighting are the Okapi
weighting and the pivoted normalization weighting [Sin01]. However, real differences are only

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 8



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

experienced with large collections (i.e., > several 10,000 documents). Thus, some "basic" IR
methods should do for ReDSeeDS.

Terms that occur too often as well as rare terms are considered as useless for distinguishing
between documents and are therefore usually ignored in IR models / techniques. However, for
a system like the ReDSeeDS engine, this could become a critical issue: If a word from the
domain vocabulary was not part of the index, relevant software cases would not be found if this
word were a part of the query.

The effectiveness of Information Retrieval methods is usually evaluated using the following two
measures [GF04]:

Recall Ratio of the number of relevant documents retrieved to the total number of relevant
documents.

Precision Ratio of the number of relevant documents retrieved to the total number retrieved.

[LBSBW98] mentions two problems not solved by traditional IR methods:

Ambiguity Problem The term vectors representing two documents may be very similar but
the actual meaning of the documents is not.

Paraphrase Problem The vector of terms representing two documents is not similar but the
actual meaning is.

The authors stress the importance of domain knowledge to solve these problems. Examples for
such domain knowledge are thesauri or a sematic lexicon as discussed in the next section.

3.2 WordNet

WordNet1 is a semantic lexicon that was developed at the Cognitive Science Laboratory at
Princeton University [MBF+90]. WordNet is based on the concept of synonym sets (called
synsets) that group synonymic words or sequences of words (like "computer mouse") of the
English language. WordNet contains nouns, verbs, adjectives and adverbs. Amongst others

1see: http://wordnet.princeton.edu/

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 9



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

the following semantic relations connect synsets: hypernyms / hyponyms (is-a, is-a invers) and
holonym / meronym (part-of, part-of invers). For each synset WordNet provides definitions
or example sentences. Words with different meanings participate in several synsets. For such
words a frequency score describes which meanings are more common and which are used rather
infrequently.

WordNet is freely available for download and can also be accessed with any Web Browser2.
Several APIs are available for download (Java, .NET etc.) and several similarity measures
for synset pairs have been published based on WordNet. [PPM04] gives an overview of such
measures, which are all freely available as Perl packages.

How WordNet can be applied for solving the paraphrase and ambiguity problem is a matter of
current research [VVR+05, LYM05]. [Kur04] describes in detail how the vector space model
described in Section 3.1 can be extended by application of WordNet or other semantic lexicons.

WordNet has been applied in combination with Case-based Reasoning approaches (see next
section) for retrieval of UML class diagrams [Gom04, GPP+04].

3.3 Similarity in Case-based Reasoning

Case-based reasoning (CBR) [Kol93, AP94, BBG+99] is the process of solving new problems
based on the solutions of similar past problems. A car mechanic who fixes an engine by re-
calling another car that exhibited similar symptoms is using case-based reasoning. A lawyer
who advocates a particular outcome in a trial based on legal precedents or a judge who creates
case law is also using case-based reasoning. And a software engineer who is reusing existing
software artifacts is also using case-based reasoning.

It has been argued that case-based reasoning is not only a computer-based reasoning method,
but also a pervasive behavior in everyday human problem solving. CBR can be brought to an
organizational level and then used as a principle for knowledge management [TA98, TA97].
How to link recording and reusing experiences to business processes is subject to the field of
Experience Management [NAB07].

Application areas of case-based reasoning are broad: classification, diagnosis, and decision
support tasks as well as planning, configuration, and design tasks [ABS96]. With this, CBR

2see: http://wordnet.princeton.edu/perl/webwn

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 10



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

has been used for product recommendation, fault diagnosis of technical systems, help desks,
medical diagnosis support, medical treatment planning support, software reuse, etc.

Case-Based Reasoning (CBR) distinguishes three different approaches [BBMW99]: Structured
CBR, Textual CBR, Conversational CBR.

• The Structured CBR approach uses attribute-value pair representations. Such cases can be
found in well-structured domains. Similarity measures are specified per attribute (local
similarity) and as a "‘summarizing"’ global similarity measure that combines the local
similarities. More advanced representations are object-oriented (e.g, REFSENO [TG98]
and CBR-Works (tecinno / empolis GmbH)). However, Nick [Nic05] has shown that for
context-based retrieval as required for software artifacts [BR91], a flat attribute-value
similarity model with multiple views is sufficient for a context-based retrieval on software
artifacts.

• The Textual CBR approach runs on textual documents rather than structured cases. From
a pure users’ view, this is very similar to Information-Retrieval approaches. However,
internally, Textual CBR makes use of domain-specific vocabulary and similarity measures
[LHK98], while Information Retrieval builds upon general heuristics and statistics for this
purpose.

• Conversational CBR has mainly been used for call-center applications. It represents cases
as trees of question-answer pairs. For these reasons, it is considered irrelevant for ReD-
SeeDS.

Today, Structured CBR and Textual CBR are combined in one approach (e.g., CBR-based tool
e:IAS Enterprise from empolis3). This allows us to give some structure to documents and let
local similarity measures benefit from Textual CBR similarity measures. Similarity measures
in Case-Based Reasoning are usually normalized, i.e., a similarity is a value ∈ [0..1] where 1
means a full / exact match and 0 means no similarity.

In general, any similarity for a finite set of values can be specified using a value range×
value range table. However, for data types with larger value ranges, this is obviously not really
practical. Thus, CBR research has developed a number of (local) similarity measures for the
following datatypes in Structured CBR.

Typical local similarity measures in Structured CBR exist for: Boolean, Integer, Real, String /
Symbol. For Symbols, there is also a taxonomic similarity [Ber98, TG98].

3www.empolis.com

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 11



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

Also at the level of local similarity measures are similarity measures associated with type con-
structors: Set and Interval [TG98].

Typical global similarity measures - for combining these local similarity measures - are

• weighted normalized sum

Figure 3.1: Similarity in Case-Based Reasoning

• euclidic sum

The euclidic sum calculates the euclidic distance in a mathematical / geometrical sense. How-
ever, this requires numeric attributes. Thus, the distance measure is usually generalized as
a weighted normalized sum. Since ReDSeeDS’ attributes are mainly text / word-based, the
weighted normalized sum is the choice for ReDSeeDS.

For consists-of or part-of hierarchies, e.g., in object-oriented representations, global
similarity measures can be combined: global similarities for parts are local similarities for the
compound structure. For a normalized weighted sum, this could obviously be easily mapped to
a flat representation.

Nick [Nic05] described how to implement context-based retrieval with a standard Structured
CBR system.

3.4 Similarity in Description Logic combined with Case-based Reasoning

Description Logics (DLs) (also known as terminological knowledge representation systems or
concept languages) have been developed from semantic networks [Qui69], frame-based lan-
guages [Min74] and the concept language KL-ONE [BS85]. In general, the knowledge base
constitutes a logical theory and description logic systems allow us to compute whether a model
of the domain concerned exists. Such knowledge representation is well-suited for reasoning

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 12



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

about terminological knowledge, ontologies and configuration of technical systems. One of the
best-known applications of description logics is the Semantic Web.

In the following we give a brief introduction of description logics and their knowledge rep-
resentation facilities. After that we discuss computing similarity measures in DL systems.
For a detailed introduction of description logics we refer the interested reader to, for exam-
ple, [BCM+03].

Introduction

Basic representation facilities are concepts and roles. Concepts gather common properties of
a set of objects and roles are binary relations on concepts. Terminological knowledge (TBox)
and assertional knowledge (ABox) are distinguished. The terminological knowledge represents
a terminology of the relevant domain by using concepts while the assertional knowledge repre-
sents concrete situations as instances (also called individuals). Complex knowledge structures
can be constructed by combining concepts and roles using conjunction, disjunction and nega-
tion, by using existential and universal quantification, value restrictions and number restrictions
or by defining inverse roles, transitive roles and concrete domains.

To make clearer the inferences a DL system offers, let us consider a classic example from
the description logic literature: the terminological knowledge contains the concepts human,
man, male and female. The concept human specifies a role gender with possible fillers
male and female. The concept man specializes the gender role with the filler male. The
assertional knowledge contains John as an instance of the concept human.

Basic inference services of description logics systems are listed in the following:

Automatic computation of concept subsumption : The description logic system automati-
cally infers a concept’s position in the taxonomy based on the roles this concept specifies.
The description logic system infers that the human concept subsumes the man concept
(man⊆ human).

Consistency checking of a concept with regard to the TBox : The description logic system
can automatically detect if a concept definition is inconsistent with the rest of the termi-
nological knowledge. A concept is assumed to be consistent when it allows the creation
of at least one instance. For example, it is not allowed to specify the same role twice with
different fillers.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 13



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

Consistency checking of the ABox with regard to the TBox : The description logic system
can automatically detect whether assertional knowledge is consistent with the termino-
logical knowledge on which it is based. Any instance in the ABox is an instance of a
concept definition in the TBox. For example, it is not allowed for any instance of concept
human that defines the gender role to specify a filler other than male or female.

Deduction of new facts from existing facts : John is defined as an instance of the concept
human. John additionally specifies a role gender with filler male. The DL system
now automatically infers that John is not only a human but also a man.

3.4.1 Combining Description Logics with Case-based Reasoning

Case Representation

The fact repository contains all cases represented by concepts in the TBox. This means that
every software case of the fact repository is represented by a concept. The concept software
case specifies the roles requirements, architecture, design, code and trans-
formations. The fillers of these roles are concepts representing the RSL and SCL classes,
respectively. When a new software case is stored in the fact repository, a new concept, for
example Case-1, is created in the TBox and the requirements, architecture, design and code
are represented by a set of concepts that are specified as fillers in the corresponding roles of the
Case-1 concept.

A query is specified as an instance of the case concept, potentially containing a set of roles
defining the requirements, architecture, design and code. The DL system automatically recog-
nises the most specific concept of which the case instance is an instance. Similar cases can be
easily recognised now because they are located close to each other in the taxonomy.

When a new case is stored in the fact repository, a new case concept is created in the TBox.
The distinction between the fact repository and the case that represents the current development
is thus reflected by distinguishing the fact repository, which is represented in the terminological
knowledge, and the currently developed case, which is represented in the assertional knowledge.
This view of knowledge representation is quite natural since concepts describe objects from
which multiple instances can be created: this means that cases from the fact repository describe
cases that can be retrieved and instantiated for future development.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 14



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

Similarity

Computing the similarity of two concept definitions in description logic systems involves the
conceptual structure, that is both concept placement in the taxonomy and roles that a concept de-
fines. We distinguish between distance-based similarity and role-based similarity [GCGADA99]:

Distance-based similarity Exploiting the taxonomic structure, a typical way to evaluate simi-
larity of two concepts is to determine the distance between the concepts in the taxonomic
structure. The semantic interpretation of the distance is: the shorter the path between the
two compared concepts is the more similar they are. This intensional approach relies on
the assumption that links in the taxonomy represent uniform distances. Another possi-
bility to compute similarity of two concepts is the extensional approach: comparing the
number of their common instances. The semantic interpretation of the number of com-
mon instances is: the more common instances both concepts share, the more similar they
are. This approach relies on the assumption that all concepts in the taxonomy are evenly
populated with instances.

Role-based similarity The basic idea of role-based similarity is that two concepts are more
similar when their subgraphs, based on specified roles, are more similar. When comparing
roles their most important aspect is their fillers: concepts or concrete domains that specify
the value of a role. When comparing two concepts, the function of role-based similarity
is recursively applied. The recursion terminates when comparing concepts without roles,
whose similarity is given by the concept-based similarity function. Cyclic roles have to
be taken into account during implementation. When comparing two concrete domains,
standard mechanisms known from mathematics can be used. Concrete domains that are
typically used in description logics are strings, integer and real numbers, sets of strings,
integers and reals and ranges of integers and reals. Similarity of concrete domains can be
measured by computing the distance between numbers and intersections of sets or ranges.

The similarity between two concept definitions is the sum of distance-based similarity and role-
based similarity. A value between 0 and 1 is computed, 0 denoting no similarity and 1 denoting
equality. A detailed description of the similarity measure including algorithms for computing
similarity of concepts is given in Section 6.4.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 15



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

3.4.2 Example

Let us consider a simplified RSL-related example: two SVOSentences need to be compared.
When comparing SVOSentences, the structure of the sentences is known (i.e. Subject and
Predicate) and all Terms of a sentence are compared to the appropriate Terms of the other
sentence. All Terms that are used in a sentence are defined in the DomainSpecification and
have an association to the corresponding Terms defined in the Terminology. Definitions of the
DomainSpecification are represented by concepts and their associations are represented by roles,
the concepts representing Terms being the fillers of these roles. All these concepts are modeled
in the TBox.

When, for example, a new SVOSentence contains the Term order, a concept instance rep-
resenting this Term is created (in the ABox). This instance contains a role with the concept
representing the Term order in the Terminology as its filler. If a concept representing the Term

order is already modeled in the TBox, it is automatically inferred that the new instance is
an instance of the pre-existing concept. The similarity of this concept and the newly created
instance is 1 since they both have the same role with the same filler.

A concept representing an SVOSentence contains roles specifying the NounPhrases and Verb-

Phrases. Hence, comparing SVOSentences is done analogously to comparing definitions from
the DomainSpecification. In fact, these definitions from the DomainSpecification are compared
in the first recursion of comparing SVOSentences.

3.5 Graph-based Similarity

Beside the similarity approaches depicted in the previous sections, graph-based similarity will
play an important role in the ReDSeeDS similarity measure. In this deliverable and the whole
ReDSeeDS project, graph-based similarity includes all attempts to define and measure the sim-
ilarity of two artefacts by their graph representation. In ReDSeeDs, these graph-representations
will be abstract syntax graphs stored in the fact repository.

3.5.1 General principles

The similarity of two artefacts represented as graphs is defined mainly by two properties of the
graphs. The first one is the local similarity of single parts in the graphs, represented as nodes

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 16



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

and edges. The second one is the structure of the graphs, defined by connections of nodes and
edges.

Currently, there are various definitions of graph-based similarity or graph-based differences
available. Beside the exact match as maximum similarity of two graphs, there are mainly the
following three ideas used as a basis for graph similarity algorithms.

• Structural similarity based on (sub)graph isomorphism

• Difference between two graphs depicted as the number of editing operations needed to
convert one graph into the other

• A combination of structural and local similarity, also known as the similarity flooding
idea

The main principles of the three approaches are depicted in the following subsections. The third
one as the most promising one is described in more detail.

3.5.2 Structural similarity

The first of these three ideas, the structural similarity based on (sub)graph isomorphism, tries
to find the largest subgraphs in two graphs A and B that are isomorphic. Based on the size and
number of these isomorphioc subgraphs, the similarity of the two graphs A and B is defined. As
an additional factor, the complexity of the isomorphism can be used to calculate the similarity
of two graphs.

The result of a similarity measurement based on (sub)graph isomorphism is a real value that
expresses how similar two graphs are. Further, the subgraphs that are isomorphic can be treated
as a result of the algorithm.

The main restriction of subgraph isomorphism based similarity lies in the isomorphism. Only
isomorphic parts are matched, while parts the are only similar cannot be matched. Thus, sub-
graph isomorphim similarity may be only a starting point for a graph-based similarity approach
in ReDSeeDS.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 17



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

3.5.3 Local similarity

The second similarity measure depends on the idea that the similarity of two artefacts is the
converse of their local differences. The difference between two artefacts can be seen as the
minimal number of editing operations needed to convert one artefact into the other. As each of
these editing operations affects only a single node or edge in the graph, the similarity measure
is based on local differences or local similarities.

This approach has been used in text-based similarity since the nineteenseventies, for instance
by the diff-utilities [Hun76]. Experiments to apply difference measures for text on textual
representation of graphs, for instance XMI, show that the calculated differences do not match
the differences expected by humans.

The result of such a difference or similarity measure is a list of editing operations needed to
transform one document into the other one. Using the number and complexity of that operations
as well as the size of the documents as a basis, a real value can be calculated which expresses
the similarity of two documents.

Further research shows, that the algorithms known from difference calculation for textual docu-
ments produce poor results if used to calculate differences between graphs. Thus, the difference-
based similarity may also be only a starting point for a graph based similarity approach in ReD-
SeeDS.

3.5.4 A combined approach

The third similarity measure mentioned above combines structural similarity of graphs and local
similarity of single elements. This idea is known as similarity flooding [MGMR02]. The main
concept of this approach is the fact, that local similarity and structural similarity highly depend
on each other. Intuitively, the local similarity of two graph elements is mainly defined by their
attributes. As an example, the similarity of two string attributes can be expressed by the longest
common substring or, a bit more sophisticated, by the number of edit operations needed to
transform one string into the other one. The similarity of other attributes can be calculated in
similar manner.

Further, also connections to other graph elements affect the local similarity of two graph ele-
ments. The second part of the overall similarity is the similarity of the graph structure. This
graph structure is defined by interconnections of graph elements and therefore highly influenced

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 18



Software Case Similarity Measure – D4.2
Existing Similarity Measures

ver. 1.0
31.07.2007

by the local similarity of the several graph elements. Thus, the similarity flooding can somehow
be seen as a combination of subgraph-isomorphism and editing difference approaches. The re-
sult of such a graph similarity measure is a set of matches between elements in both models.
Every element in the first model has at most one matching element in the second model and
vice versa. Additionally, every match is weighted with a factor between 0 (no match) and 1
(full match). On the basis of the matches together with the match factors and the elements that
have no matching partner, the total similarity of two models can be calculated.

To accommodate the facts described above, several algorithms were developed during the last
years. The main idea behind these algorithms is to calculate the local similarity of one node
N and to propagate this similarity to all connected nodes. The local similarity of these nodes
connected to N is then influenced by the local similarity on N. Of course, the local similarities
of the nodes connected to N will influence the local similarity of N itself. So, the similarity
calculation is done in an iterative process until the similarities do not change any more.

One of the variants which is known to work even for large graphs is called SiDiff 4 [UK05].
It is developed by the software engineering group at the University of Siegen, Germany. The
SiDiff similarity algorithm can be used to calculate similarities of software case artefacts by
running the SiDiff algorithm on the data stored in the software case fact repository. Details of
this coupling are a matter of current research.

The application of graph-based similarity measures and computation is mainly useful on well-
structured data. In software cases, this well-structured data are SVOSentences, Constrained-

LanguageScenarios and model-based Scenario representations as well as UML diagrams. The
quality of graph-based similarity highly depends on the right adjustment of several parameters
in the SiDiff algorithm and thus on experiments with real software cases. These experiments
are subject of current research.

4www.sidiff.org

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 19



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

Chapter 4

RSL Requirements Models

This chapter provides a brief overview of the structure of requirements models specified in
RSL and their relations to the Terminology. This introduction only presents aspects of RSL
requirements models that are important for the similarity measure. For a detailed introduction of
RSL we refer to Deliverable D2.4.1 (Requirements Specification Language Definition). Since
this section is based on the revised RSL metamodel some details differ from D2.4.1, however.

Some RSL aspects already imply requirements for the similarity measure. Whenever this ap-
plies the number of the requirement is mentioned. All requirements on the similarity measure
are described in detail in the next chapter.

4.1 Requirements Specification

An RSL requirements model consists of a RequirementsSpecification and a DomainSpecifica-

tion. This section introduces the RequirementsSpecification while the DomainSpecification is
described in Section 4.6.

The RequirementsSpecification is organised in several RequirementsPackages which contain
the Requirements. This structure is illustrated in Figure 4.1. RSL distinguishes five types of
Requirements:

• FunctionalRequirementOnSystem

• FunctionalRequirementOnComposite

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 20



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

• ConstraintOnSystem

• ConstraintOnProcess

• UseCase

Requirements can be associated with other Requirements using RequirementRelationships like
Fulfills, Operationalises, Constrains, MakesPossible. Furthermore, each Requirement has one
or more RequirementRepresentations. RSL provides the following types of RequirementRep-

resentations:

• DescriptiveRequirementRepresentations:

– SentenceList

– ConstraintLanguageScenario

• Model-basedRequirementRepresentations:

– ActivityScenario

– InteractionScenario

In order to find similar Requirements it is necessary to compare Requirements having different
representations. Some specific Requirement may be specified in a SentenceList in one software
case an in a ConstraintLanguageScenario in another software case (see Requirement 6).

4.2 Sentence List

A SentenceList consists of one or more HyperlinkedSentences. HyperlinkedSentence is an
abstract class that can be specialised into the following classes:

• NaturalLanguageHypertextSentence

• ConstraintLanguageSentence

ConstraintLanguageSentence is also an abstract class. A SentenceList may contain the follow-
ing concrete types of Sentences:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 21



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

Requirements Specification 1

Requirements Package 1

Requirements Package 2

Requirement 1

Requirement Representation 1

Requirement Representation 2

Requirement 2

Requirement Representation 1

Requirements Package 3

Figure 4.1: Requirements are organised in RequirementsPackages and have one or more Re-
quirementRepresentations.

• NaturalLanguageHypertextSentence

• SVOSentence

• ModalSVOSentence

• ConditionalSentence

1. [[d:The n:system]] a: shall allow [[d:the n:shop assistant]] [[v:to define m:new n:courses]].
2. [[d:The n:system]] a: shall [v:display d:all n:courses]].
3. [[d:The n:system]] a: shall allow [[d:the n:shop assistant]] [[v:to cancel n:courses]].
4. [[d:The n:system]] a: shall allow [[d:the n:shop assistant]] [[v:to print n:course list]].
5. [[c:If]] [[d:the n:shop assistant]] [[v:cancels d:a n:course]], 

[[d:the n:system]] a:shall [[v:inform d:the n:course instructor]].

Figure 4.2: A SentenceList containing different types of HyperlinkedSentences.

An example for a SentenceList is given in Figure 4.2. This Figure illustrates that a SentenceList

can contain different types of Sentences. The same aspect of a Requirement can be stated in
an SVOSentence in one SentenceList and in a NaturalLanguageHypertextSentence in another
SentenceList. Thus, in order to compare SentenceLists it might be necessary to compare all
different Sentence types a SentenceList may contain, i.e.: NaturalLanguageHypertextSentence,
SVOSentence, ModalSVOSentence, ConditionalSentence (see Requirement 4).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 22



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

4.3 Constraint Language Scenario

ConstraintLanguageScenarios consist of a sequence of ConstraintLanguageSentences and a
UIStoryboard. Figure 4.3 gives an example for the ConstraintLanguageSentence part of a sce-
nario.

Precondition: Customer must be logged in
1. [[n: Customer]] [[v: wants to sign up p: for n: exercises]]
==> invoke/insert: Choose exercises type
2. [[n: FC System]] [[v: checks n: availability p: of n: exercises]]
==> cond: exercises unavailable 
3. [[n: FC System]] [[v: shows n: error message dialog]]
final failure

Figure 4.3: A ConstraintLanguageScenario containing three SVOSentences and one Invoca-
tionSentence, one ConditionSentence, a PreconditionSentence and a PostconditionSentence.
The UIStoryboard is not shown in the figure.

ConstraintLanguageSentence is an abstract class. As part of a ConstraintLanguageScenario it
can be specialised into the following types of sentences:

• SVOSentence

• InvocationSentence

• PreconditionSentence

• PostconditionSentence

• ConditionSentence

UIStoryboard contains a sequence of UIScenes. The transition from one UIScene to the next
one is initiated by a UserAction which is associated with an SVOSentence. A UIScene consists
of a UIPresentationUnit (screenshot) and has two parameters: sceneNumber and sceneDescrip-

tion. Thus, the ConstraintLanguageScenario is the only RequirementRepresentation that may
contain Requirements information in images.

4.4 Activity Scenario

An ActivityScenario consists of RSLActivityEdges and RSLActivityNodes. An RSLActivityNode

contains an SVOSentence or a ControlSentence. The RSLActivityEdge may contain a Con-

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 23



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

ditionSentence and a RejoinSentence. An example for an ActivityScenario is given in Figure
4.4.

Basic Path
1. Customer wants to sign up for exercises
==>invoke/insert: Choose exercises type
2. System checks availability of exercises
==>cond: exercises available
3. System shows time schedule
==>invoke/request: Change location
4. Customer chooses time from time schedule
5. System shows sign-up summary dialog
6. Customer submits sign-up for exercises
7. System signs up customer for exercises
final success

Alternate 2
1. Customer wants to sign up for exercises
==>invoke/insert: Choose exercises type
2. System checks availability of exercises
==>cond: exercises available
3. System shows time schedule
==>invoke/request: Change location
4. Customer chooses time from time schedule
5. System shows sign-up summary dialog
6. Customer cancels sign-up for exercises
final failure

Alternate 1
Precondition: Customer must to be logged in
1. Customer wants to sign up for exercises
==>invoke/insert: Choose exercises type
2. System checks availability of exercises
==>cond: exercises unavailable
3. System shows error message dialog
final failure

Custom er

System

Choose exercises
type

«Pre-condi tion»
{Custom er m ust 
be logged in}

fa i lurefa i lure

wants to  sign up for exercises

invoke/insert

checks avai lab i l i ty
of exercises

[exercises unavai lab le]:
shows error m essage d ia log

.

(System)  shows  
time schedule   

(System)  
checks  

availabilty of 
exercices 

«invoke/insert»
Choose exercises 

type

(Customer)  
wants to sign up 
for exercises   .Fa i lure

(Customer)  
cancels  sign up 

for exercices 

.Fa i lure

(System)  shows  
error message 

dialog   .Success

(System)  signs 
up  customer for 

exercices 

(Customer)  
submits  sign-up 

for exercices 

(System)  shows  
sign-up summary 

dialog   

«invoke/request»

Change location

(Customer)  
chooses  time 

from time 
schedule 

«Pre-condi tion»
{Custom er m ust to  be 
logged in}

[exercices
unavai lab le]

[exercises
avai lab le]

a) b)

c)

Figure 4.4: ActivityScenario

4.5 Interaction Scenario

An InteractionScenario is one possible representation for Scenarios which is similar to the in-
teraction diagram in UML. It consists of Lifelines and Messages between the Lifelines. Each
Lifeline represents an Actor or a SystemElement. Communication between Actors and Sys-

temElements are modelled as Messages. Together with the Lifelines as subjects, the Messages

are SVOSentences.

See Figure 4.5 for an example Interaction Scenario.

Customer

System

Choose exercises
type

«Pre-condition»
{Customer must 
be logged in}

failurefailure

wants to sign up for exercises

invoke/insert

checks availability
of exercises

[exercises unavailable]:
shows error message dialog

Figure 4.5: InteractionScenario

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 24



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

4.6 Domain Specification

The Domain Specification contains definitions for all Terms and Phrases referred to in the Re-

quirementsSpecification and separates this representation of the application domain from the
RequirementsSpecification. It can be seen as a precise, software-case-specific glossary. In
contrast to DomainSpecifications the Terminology provides a definition of Terms that is com-
mon for all software cases. The elements of all DomainSpecifications are mapped to Terms of
the Terminology. This mapping provides a word sense disambiguation for all words used in a
DomainSpecification. Thus, the ambiguity problem (see 3.1) is solved for RSL requirements
models. Figure 4.6 illustrates the relations between elements of the RequirementsSpecification,
the DomainSpecifications and the Terminology. The Terminology is described in the next section.

Terminology

Requirements Model Case 1

R
eq

ui
re

m
en

ts
 

Sp
ec

ifi
ca

tio
n 

1
D

om
ai

n 
Sp

ec
ifi

ca
tio

n 
1

Requirements Model Case 2

R
eq

ui
re

m
en

ts
 

Sp
ec

ifi
ca

tio
n 

2
D

om
ai

n 
Sp

ec
ifi

ca
tio

n 
2

Requirements Model Case X

R
eq

ui
re

m
en

ts
 

Sp
ec

ifi
ca

tio
n 

X
D

om
ai

n 
Sp

ec
ifi

ca
tio

n 
X

…

Figure 4.6: Mapping between RequirementsSpecification, DomainSpecification and Terminol-
ogy.

The Domain Specification is structured in packages like NotionsPackage, ActorsPackage and
SystemElementsPackage. Additional packages for further structuring can be defined. An ex-
ample for such a package is the UIElementsPackage in Figure 4.7.

The NotionsPackage contains all Notions. Each Notion contains a Noun from the Terminology

as name. A Notion groups all DomainStatements that share its name. A DomainStatement

contains a Phrase as its name and NaturalLanguageHypertextSentence as description. Notions

may be generalised.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 25



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

UIElements, InputOutputDevices and InputOutputTyps are specialisations of Notion. They are
used to describe UserInterfaceRequirements. Each UIElement has at least a UIElementRepresentation.
This might either be a textual description or an image, screenshot, icon, voice etc.

The ActorsPackage contains all Actors and the SystemElementsPackage groups all SystemEle-

ments.

Domain Specification 1

Notions Package
Notion 1 Notion 3

Notion 2 Notion 4

Notion 5

Actors Package

System Elements Package

Actor 1

Actor 2 Actor 3

SystemElement 1

System Element 2

Actor 4 Actor 5

UI Elements Package

UI Element 1 UI Element 2

Input Output Device 1

Input Output Device 2

Input Output Type 1

Figure 4.7: Example structure of a DomainSpecification

Figure 4.8 gives an example for a minimal RequirementsSpecification that contains only one
SVOSentence and the associated DomainSpecification.

4.7 Terminology

The Terminology contains all words that are used in the RequirementsSpecification. For each
word, the possible inflections are stored in the Terminology. Further, a short explanation of
every word may be added. The different words in the Terminology are connected by links,
so synonyms and homonyms can be identified as well as words that are “somehow similar”. In
contrast to the DomainSpecification, the Terminology contains general knowledge onto which all
DomainSpecifications are mapped. The relation between DomainSpecifications and Terminology

is illustrated in Figure 4.9 on page 28.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 26



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

SV
O

Se
nt

en
ce

1 
:S

VO
Se

nt
en

ce

Cl
ie

nt
 :

Su
bj

ec
t

ch
an

ge
s 

or
de

r o
f i

te
m

s 
:

Pr
ed

ic
at

e

Cl
ie

nt
 :

No
un

Li
nk

Cl
ie

nt
 :

No
un

Ph
ra

se

ch
an

ge
s 

:
Ph

ra
se

Ve
rb

Li
nk

or
de

r :
No

un
Li

nk
ite

m
s 

:
No

un
Li

nk

ch
an

ge
s 

or
de

r :
Si

m
pl

eV
er

bP
hr

as
e

ite
m

s 
:

No
un

Ph
ra

se

ch
an

ge
s 

or
de

r o
f i

te
m

s 
:

Co
m

pl
ex

Ve
rb

Ph
ra

se

Se
nt

en
ce

Li
st

1 
:

Se
nt

en
ce

Li
st

Re
qu

ire
m

en
t1

 :
Re

qu
ire

m
en

t

Re
qu

ire
m

en
ts

Sp
ec

ifi
ca

tio
n1

 :
Re

qu
ire

m
en

ts
Sp

ec
ifi

ca
tio

n

Re
qu

ire
m

en
ts

Pa
ck

ag
e1

 :
Re

qu
ire

m
en

ts
Pa

ck
ag

e

ch
an

ge
s 

or
de

r :
Do

m
ai

nS
ta

te
m

en
t

ch
an

ge
s 

or
de

r o
f 

ite
m

s 
:

Do
m

ai
nS

ta
te

m
en

t

ite
m

s 
:

Do
m

ai
nS

ta
te

m
en

t

or
de

r :
Do

m
ai

nS
ta

te
m

en
t

Cl
ie

nt
 :A

ct
or

ite
m

s 
:

No
tio

n

or
de

r :
No

tio
n

No
tio

ns
Pa

ck
ag

e1
 :

No
tio

ns
Pa

ck
ag

e

Do
m

ai
nS

pe
ci

fic
at

io
n1

 :
Do

m
ai

nS
pe

ci
fic

at
io

n

Ac
to

rs
Pa

ck
ag

e1
 :

Ac
to

rs
Pa

ck
ag

e

or
de

r :
No

un
Ph

ra
se

C
lie

nt
 c

ha
ng

es
 o

rd
er

 o
f i

te
m

s.

of
 :

Ph
ra

se
Pr

ep
os

iti
on

Li
nk

Fi
gu

re
4.

8:
R

eq
ui

re
m

en
ts

S
pe

ci
fic

at
io

n
co

nt
ai

ni
ng

on
e

S
V

O
S

en
te

nc
e

an
d

re
la

te
d

D
om

ai
nS

pe
ci

fic
at

io
n

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 27



Software Case Similarity Measure – D4.2
RSL Requirements Models

ver. 1.0
31.07.2007

SV
O

Se
nt

en
ce

1 
:S

VO
S

en
te

nc
e

Cl
ie

nt
 :

Su
bj

ec
t

Cu
st

om
er

 :
No

un

ite
m

 :N
ou

n

or
de

r2
 :

No
un

ch
an

ge
s 

:
Ve

rb

Co
m

m
on

Te
rm

in
ol

og
y 

:
Te

rm
in

ol
og

y
Cl

ie
nt

 :
No

un

ch
an

ge
s 

or
de

r o
f i

te
m

s 
:

Pr
ed

ic
at

e

Cl
ie

nt
 :

No
un

Li
nk

Cl
ie

nt
 :

No
un

Ph
ra

se

ch
an

ge
s 

:
Ph

ra
se

Ve
rb

Li
nk

or
de

r :
No

un
Li

nk
ite

m
s 

:
N

ou
nL

in
k

or
de

r1
 :

No
un

ch
an

ge
s 

or
de

r :
Si

m
pl

eV
er

bP
hr

as
e

ite
m

s 
:

No
un

Ph
ra

se

ch
an

ge
s 

or
de

r o
f i

te
m

s 
:

Co
m

pl
ex

Ve
rb

Ph
ra

se

S
en

te
nc

eL
is

t1
 :

S
en

te
nc

eL
is

t

Re
qu

ire
m

en
t1

 :
Re

qu
ire

m
en

t

R
eq

ui
re

m
en

ts
Sp

ec
ifi

ca
tio

n1
 :

Re
qu

ire
m

en
ts

Sp
ec

ifi
ca

tio
n

Re
qu

ire
m

en
ts

Pa
ck

ag
e1

 :
Re

qu
ire

m
en

ts
P

ac
ka

ge

ch
an

ge
s 

or
de

r :
Do

m
ai

nS
ta

te
m

en
t

ch
an

ge
s 

or
de

r o
f 

ite
m

s 
:

Do
m

ai
nS

ta
te

m
en

t

ite
m

s 
:

Do
m

ai
nS

ta
te

m
en

t

or
de

r :
Do

m
ai

nS
ta

te
m

en
t

Cl
ie

nt
 :A

ct
or

ite
m

s 
:

No
tio

n

or
de

r :
No

tio
n

No
tio

ns
Pa

ck
ag

e1
 :

No
tio

ns
Pa

ck
ag

e

Do
m

ai
nS

pe
ci

fic
at

io
n1

 :
Do

m
ai

nS
pe

ci
fic

at
io

n

Ac
to

rs
Pa

ck
ag

e1
 :

Ac
to

rs
Pa

ck
ag

e

or
de

r :
No

un
Ph

ra
se

or
de

r, 
pu

rc
ha

se
 o

rd
er

 :
W

or
dN

et
Te

rm

or
de

rin
g,

 o
rd

er
, 

or
di

na
tio

n 
:

W
or

dN
et

Te
rm

ite
m

 :W
or

dN
et

Te
rm

ch
an

ge
, a

lte
r, 

m
od

ify
 :

W
or

dN
et

Te
rm

cu
st

om
er

, c
lie

nt
 :

W
or

dN
et

Te
rm

C
lie

nt
 c

ha
ng

es
 o

rd
er

 o
f i

te
m

s.

of
 :

Ph
ra

se
Pr

ep
os

iti
on

Li
nk

of
 :

Pr
ep

os
iti

on

Fi
gu

re
4.

9:
T

hi
s

fig
ur

e
sh

ow
s

th
e

D
om

ai
nS

pe
ci

fic
at

io
n

of
Fi

gu
re

4.
8

an
d

th
e

re
la

te
d

el
em

en
ts

of
th

eT
er

m
in

ol
og

y.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 28



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

Chapter 5

Similarity Measure Requirements

This chapter summarises the requirements that shall be met by the similarity measure. The
chapter is structured in five sections. Firstly, requirements related to the query are explained (see
Section 5.1). Section 5.2 illustrates which RSL entities should be compared to which other RSL
entities. This aspect is defined in more detail in Section 5.5, while Section 5.3 specifies which
results the similarity measure shall provide. Constraints on the requirements measurement are
described in Section 5.4. All requirements are consequently numbered in order to allow for
explicit references.

5.1 Queries

1. The similarity measure shall allow queries that specify:

(a) a set of Sentences (Sentences may have different type) with associated Domain-

Specification,

(b) a set of Requirements with associated DomainSpecification,

(c) a set of RequirementsPackages with associated DomainSpecification,

(d) a complete RSL requirements model (consisting of Requirements and DomainSpec-

ification),

(e) a set of DomainElements (e.g. Notions, Actors),

(f) a set of DomainElementPackages,

(g) a complete DomainSpecification,

(h) a set of Terms,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 29



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

(i) any of the above entities combined with another one using the operators AND, OR,
NOT.

2. The similarity measure shall be able to handle queries that contain different Requiremen-

tRepresentations mixed in a query.

3. The similarity measure shall allow us to specify the preferred size of cases contained in
the results.

5.2 RSL Entities to be compared

4. Different sentence types: The similarity measure shall be able to calculate meaningful
similarities for queries and cases that consist of different types of Sentences (e.g. Nat-

uralLanguageSentence, SVOSentence, ModalSVOSentence, ConditionalSentence). The
RSL entities that are used to represent a NaturalLanguageHypertextSentence on the one
hand and a SVOSentence on the other hand are different. However, the meaning of such
sentences may nevertheless be very similar.

5. Using RSL, a Sentence is more than simply a string. A Sentence consists of Phrases

that are defined in the DomainSpecification. Phrases are linked to Terms in the Termi-

nology and WordNetTerms. Figure 4.6 and Figure 4.9 exemplify the structure that might
be related to a Sentence. Comparing two Sentences the information contained in this
structure shall be considered in addition to the sentence string.

6. Different RequirementRepresentations: The similarity measure shall be able to calculate
meaningful similarities for queries and cases that consist of a set of Requirements de-
fined in different RequirementRepresentations. E.g. the query specifies a SentenceList

with some NaturalLanguageHypertextSentences while one of the cases consists of several
ConstrainedLanguageScenarios specifying the same requirement.

7. Size of Requirements: The similarity measure shall be able to compare one Requirement

stated in the query with a set of Requirements contained in a software case and vice versa.
A pairwise comparison of Requirements is not always sufficient in order to determine
all existing similarities because of the different size of Requirements. Example: What
is modelled in one ConstrainedLanguageScenario in Software Case A can be split into
several Scenarios in Software Case B.

8. No configuration similarity: The similarity measure does not need to build configurations
of software cases by itself.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 30



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

9. Automatic fallback: Software cases with less formalized Requirements should be found
as well, i.e., if a case has only NaturalLanguageRequirements and the query is specified
in SVOSentences then a meaningful similarity has to be calculated for the case with the
NaturalLanguageRequirements, too.

5.3 Results of the Similarity Measure

10. The results provided by the similarity measure shall allow us to list the cases according
to their similarity with the query.

11. The result of the similarity measure shall illustrate commonalities and differences be-
tween the query and a certain case, e.g. which parts of the query and the case are iden-
tical, which are similar and which are completely different. E.g. the query consists of
two Sentences and a case consists of 25 Sentences. Which of these 25 Sentences map
to the query Sentences? A further example is illustrated in Figure 5.3. This is related
to the solution marking mechanism, which will be developed in Task 4.3 (Definition of a
solution marking mechanism for showing model differences). In contrast to the mecha-
nism developed in Task 4.3 this requirement is only related to differences in requirements
models. However, the same mechanisms can be used to achieve the required effect.

12. Results of the similarity measure:

(a) sim(query,case)∈ [0,1] where 0 denotes no similarity and 1 denotes an exact match.

(b) If a case consists of all or more Requirements defined in the query and the Require-

ments are defined in the same RequirementRepresentation the result shall be 1. This
is based on the assumption that the additional Requirements may possibly be reused
and are therefore valuable for the Requirements Engineer. This requirement means
that the similarity measure / function is not commutative. Assume that the query
defines ten requirements and the case contains exactly the same requirements plus
four others. Then sim(query,case) = 1 while sim(case,query) < 1.

(c) If a case consists only of some of the Requirements specified in the query, the result
shall be less than 1.

(d) If a case consists of all Requirements defined in the query but the Requirements

are defined in a different RequirementRepresentation the result shall be less than
1. (This is based on the assumption that it is more efficient to reuse Requirements

already defined in the RequirementRepresentation used in the current project or for
the aspect considered in the query.)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 31



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

(e) If a case consists of all Requirements defined in the query but the DomainElements

are mapped to different Terms or WordNetTerms the similarity shall be less than 1.
-> Ambiguity problem, see Figure 5.1

(f) If a query and a case describe the same Requirement but in different words the
similarity shall be high even if they do not have even one word in common. ->
Paraphrase problem, see Figure 5.2

(g) If a query and a case each consists of a Requirement and the type of both Require-

ments is different, the similarity shall be less than 1.

(h) If a query and a case consist of a ConstrainedLanguageScenario with identical Sen-

tences but the order of the Sentences is different then the similarity shall be less
than 1.

RequirementsSpecification1

RequirementsSpecification2

DomainSpecification1

Terminology

DomainSpecification2

customer

customer

ordercustomer items

order, purchase order

change

order, ordering

change

HyperlinkesSentence

Terminology

DomainSpecification

of

order

Legend:

items

items

SVOSentence: [[n:Customer]] [[v: changes n:order p:of n:items]].

change

SVOSentence: [[n:Customer]] [[v: changes n:order d:of n:items]].

Figure 5.1: Ambiguity of Sentences: The sentences have the same wording but different mean-
ing.

13. The results provided by the similarity measure shall allow us to illustrate which parts of
a case are similar to the query and which not.

14. If the similarity is evaluated to be less than 1, the result of the similarity measure shall
explain the cause, e.g. different Requirements, different RequirementRepresentations,
different meaning of DomainElements, ...

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 32



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

RequirementsSpecification1

RequirementsSpecification2

DomainSpecification1

Terminology

DomainSpecification2

customer

customer, client 

purchase orderclient merchandise

order, purchase order

change, alter, modify

modify

HyperlinkesSentence

Terminology

DomainSpecification

of

order

Legend:

items

merchandise, ware, product

SVOSentence: [[n:Client]] [[v:modifies n:purchase order p:of n:merchandise]].

change

SVOSentence: [[n:Customer]] [[v: changes n:order d:of n:products]].

Figure 5.2: Paraphrase Problem: two sentences with similar meaning but different wording.

5.4 Constraints on Similarity Measure

15. The similarity measure shall require as little additional modelling effort as possible. Some
similarity approaches evaluate the artefacts to be compared (e.g. requirements models,
software cases) directly. Other approaches are based on characterisations of these arte-
facts. The creation of these characterisations can necessitate additional modelling effort
if the information cannot be extracted automatically from the artefacts.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 33



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

System displays initial roles listQuery:

System shows original roles listSentence3:

System displays predefined document listSentence2:

System displays print previewSentence1:

Result A:
Sentence1: 0,4
Sentence2: 0,7
Sentence3: 0,9

Result B:

System displays initial roles listQuery:

System shows initial roles listSentence3:

System displays predefined document listSentence2:

System displays print previewSentence1:

Figure 5.3: A similarity value for each case (see result A) is not sufficient to support the reuse of
cases. Commonalities and differences should also be visualised (see result B for an example).

5.5 Detailed Requirements - RSL entities to be compared

An appropriate similarity measure can only be developed when it is known exactly what is to be
compared. Preliminary statements regarding this topic were made in Section 5.2. In this section
we define in detail which RSL entities have to be compared to which other RSL entities. The
similarity measure need not be able to compare each RSL entity with each other RSL entity for
two reasons. Firstly, not all RSL entities can be part of a query. For example all abstract classes
of the RSL metamodel cannot be part of a query. Secondly, most RSL entities which may be
part of a query only need to be compared to a few other RSL entities in order to determine
similar cases.

We explain below, for the main RSL query entities, to which parts of RSL requirements models
in the fact repository they should be compared. These results are summarised in several tables
(see Figure 5.4 for an example). Each row shows, for one RSL query entity, to which RSL en-
tities it should be compared. This is indicated by "m1, m2, m3, ..." in the table. The numbering
makes it easy to refer to specific entries. For each entry an appropriate comparison method will
be determined in the next chapter.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 34



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

5.5.1 Requirements Specification

Each RSL query entity should be compared with the corresponding RSL entities in the software
cases, i.e. if e.g. an Actor is specified in the query it should be compared with all Actor instances
in the software cases. In the following we explain for each RSL entity to which other RSL
entities it should be compared additionally. See Figure 5.4 for a summary of these explanations.

Complete RSL requirements model: A complete requirements model consists of a Require-

mentsSpecification and a DomainSpecification. The RSL entities to be compared with
those specifications are specified below.

RequirementsSpecification: RequirementsSpecifications should be compared with Require-

mentsSpecifications.

RequirementsPackage: Due to the different size of cases the RequirementsPackage should
be compared to RequirementsSpecifications also.

Requirement: A Requirement specified in the query should also be compared with Require-

mentsPackages since Requirements can vary in size. E.g. the content of one use case can
be divided in several use cases connected with "invoke" in another RequirementsSpecifi-

cation. This example holds also for other RequirementRepresentations. A SentenceList

e.g. can be divided into several SentenceLists, too.

Query\Case R
eq

ui
re

m
en

ts
S

pe
ci

fic
at

io
n

R
eq

ui
re

m
en

ts
P

ac
ka

ge

R
eq

ui
re

m
en

t

RequirementsSpecification m1
RequirementsPackage m2 m3
Requirement m4 m5

Figure 5.4: The first column lists RSL entities that might be specified in a query. Each row
shows to which RSL entities of software cases the specific RSL entity should be compared.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 35



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

5.5.2 Requirement Representation

The same Requirement can be represented by different RequirementRepresentations in different
software cases (see Requirement 6). Therefore, it is necessary to compare each Requiremen-

tRepresentation to each other RequirementRepresentation (see Figure 5.5).

Query \Case Se
nt

en
ce

Li
st

 

C
on

st
ra

in
tL

an
gu

ag
eS

ce
na

rio

A
ct

iv
ity

Sc
en

ar
io

In
te

ra
ct

io
nS

ce
na

rio

SentenceList m1 m2 m3 m4
ConstraintLanguageScenario m5 m6 m7 m8
ActivityScenario m9 m10 m11 m12
InteractionScenario m13 m14 m15 m16

Figure 5.5: All RequirementRepresentations need to be compared with all RequirementRepre-
sentations.

Textual information plays a major role in all RequirementRepresentations, including the model-
based RequirementRepresentations. RSL distinguishes nine types of Sentences. Figure 5.6
shows which RequirementRepresentations may contain which Sentence types.

SentenceList ConstraintLanguageScenario InteractionScenario
NaturalLanguageHypertextSentence SVOSentence NounPhrase (part of NounPhraseLifeline)
SVOSentence InvocationSentence VerbPhrase (part of PredicateMessage)
ModalSVOSentence PreconditionSentence InvocationSentence
ConditionalSentence PostconditionSentence PreconditionSentence

ConditionSentence PostconditionSentence
RejoinSentence ConditionSentence

RejoinSentence
ActivityScenario
SVOSentence
InvocationSentence
PreconditionSentence
PostconditionSentence
ConditionSentence
RejoinSentence

Figure 5.6: RequirementRepresentations and assigned the types of sentences they may contain.

It is possible to transform partially instances of ConstrainedLanguageScenario, ActivityScenario

and InteractionScenario into each other. ConstrainedLanguageScenarios and ActivityScenar-

ios consist of the same sentences’ types. InteractionScenarios do not contain SVOSentences.
However, InteractionScenarios do contain a NounPhrase and a VerbPhrase which are the major

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 36



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

parts of SVOSentences. Thus, NounPhrase and VerbPhrase are listed in Figure 5.6 instead of
SVOSentence.

Although the textual parts of ConstrainedLanguageScenarios, ActivityScenarios and Interac-

tionScenarios can be mapped onto one another, it is not possible to define a 1-to-1 mapping
between these RequirementRepresentations. Some information can only be specified in a par-
ticular RequirementRepresentation. For example, only the ConstrainedLanguageScenario con-
tains a UIStoryboard.

NaturalLanguageHypertextSentence, ModalSVOSentence and ConditionalSentence may only
be part of SentenceLists (see Figure 5.6). The only sentence type that may be part of all Re-

quirementRepresentations is the SVOSentence. In the following we explain for each sentence
type with which other RSL entities it should be compared.

5.5.3 Sentences

If a query contains a sentence then this sentence shall be compared with all sentences of the
same type in any of the software cases (this is reflected by the markings in the diagonal in
Figure 5.7). As stated in Requirement 4, different sentence types can be used to specify the
same aspect of a Requirement. Thus, it is necessary to compare different types of sentences.

Different groups of sentences can be distinguished. ConditionalSentence, PreconditionSen-

tence, PostconditionSentence and ConditionSentence all specify some kind of restriction. Thus,
they should be compared with each other. This is indicated in Figure 5.7 by the mi with
light grey background. While PreconditionSentence, PostconditionSentence and ConditionSen-

tence, InvocationSentence and RejoinSentence define possible sequences of actions in Use-

Cases the main sentence types are SVOSentence, ModalSVOSentence, ConditionalSentence

and NaturalLanguageHypertextSentence. These main sentence types should be compared with
each other as indicated in Figure 5.7 by the mi with dark grey background. The table in Fig-
ure 5.7 contains a NounPhrase and a VerbPhrase (parts of an InteractionScenario) since both
together correspond to the SVOSentence contained in ConstrainedLanguageScenarios and Ac-

tivityScenarios.

A more uniform solution could be to compare all types of sentences with all other types of
sentences. This approach has the disadvantage of a higher number of necessary comparisons,
however. Whether it results in better similarity results can only be determined by experiments
with a reasonable number of software cases.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 37



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

Query \ Case N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

S
V

O
S

en
te

nc
e

M
od

al
S

V
O

S
en

te
nc

e

C
on

di
tio

na
lS

en
te

nc
e

P
re

co
nd

iti
on

S
en

te
nc

e

P
os

tc
on

di
tio

nS
en

te
nc

e

C
on

di
tio

nS
en

te
nc

e

In
vo

ca
tio

nS
en

te
nc

e

R
ej

oi
nS

en
te

nc
e

N
ou

nP
hr

as
e 

(p
ar

t o
f N

ou
nP

hr
as

eL
ife

lin
e)

V
er

bP
hr

as
e 

(p
ar

t o
f P

re
di

ca
te

M
es

sa
ge

)

NaturalLanguageHypertextSentence m1 m2 m3 m4 m5 m6
SVOSentence m7 m8 m9 m10 m11 m12
ModalSVOSentence m13 m14 m15 m16 m17 m18
ConditionalSentence m19 m20 m21 m22 m23 m24 m25 m26 m27
PreconditionSentence m28 m29 m30 m31
PostconditionSentence m32 m33 m34 m35
ConditionSentence m33 m34 m35 m36
InvocationSentence m37
RejoinSentence m38
NounPhrase (part of NounPhraseLifeline) m39 m40 m41 m42 m43
VerbPhrase (part of PredicateMessage) m44 m45 m46 m47 m48

Figure 5.7: The table shows to which types of sentences a specific query sentence should be
compared.

5.5.4 Domain Specification

Besides the RequirementSpecification, the DomainSpecification is an important part of an RSL
requirements model. Figure 5.8 lists the most important elements of DomainSpecifications.
Like all other RSL entities DomainElements contained in a query should be compared with all
instances of the same type contained in one of the software cases (see markings in the diagonal
in Figure 5.8). Additionally the following RSL entities should be compared:

SystemElement and InputOutputDevice can be compared with each other because an object
that is described as a SystemElement in a query may be specified as an InputOutputDevice

in a software case and vice versa (comp. m12, m40 in Figure 5.8).

SimpleVerbPhrase should be compared with NounPhrases because even if another case does
not comprise the SimpleVerbPhrase it may contain the NounPhrase contained in it e.g.
the query specifies store user data and a certain software case only contains the
NounPhrase user data (comp. m27, m29 in Figure 5.8).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 38



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

ComplexVerbPhrase should be compared with SimpleVerbPhrase and NounPhrase because
a case may contain these parts of a ComplexVerbPhrase even if it does not contain the
whole ComplexVerbPhrase (comp. m32, m33 in Figure 5.8).

The words used in NaturalLanguageHypertextSentences are not necessarily mapped to Phrases

in the DomainSpecification. In order to identify such occurrences, the main Elements of the
DomainSpecification should be compared with all instances of NaturalLanguageHypertextSen-

tences (see Figure 5.8). Two RSL entities may contain NaturalLanguageHypertextSentences,
the SentenceList and the DomainElementRepresentation.

Query / Case D
om

ai
nS

pe
ci

fic
at

io
n

A
ct

or
sP

ac
ka

ge

Ac
to

r

S
ys

te
m

E
le

m
en

ts
P

ac
ka

ge

S
ys

te
m

E
le

m
en

t

N
ot

io
ns

P
ac

ka
ge

N
ot

io
n

D
om

ai
nS

ta
te

m
en

t

N
ou

nP
hr

as
e

S
im

pl
eV

er
bP

hr
as

e

C
om

pl
ex

V
er

bP
hr

as
e

U
IE

le
m

en
t

In
pu

tO
ut

pu
tD

ev
ic

e

In
pu

tO
ut

pu
tT

yp
e

U
IC

on
ta

in
er

Se
nt

en
ce

Li
st

 

N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

D
om

ai
nE

le
m

en
tR

ep
re

se
nt

at
io

n

N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

DomainSpecification m1
ActorsPackage m2 m3 m4
Actor m5 m6 m7
SystemElementsPackage m8 m9 m10
SystemElement m11 m12 m13 m14
NotionsPackage m15 m16 m17
Notion m18 m19 m20
DomainStatement m21 m22 m23
NounPhrase m24 m25 m26
SimpleVerbPhrase m27 m28 m29 m30 m31
ComplexVerbPhrase m32 m33 m34 m35 m36
UIElement m37 m38 m39
InputOutputDevice m40 m41 m42 m43
InputOutputType m44 m45 m46
UIContainer m47 m48 m49

Figure 5.8: The table shows to which RSL entities a DomainElement contained in a query
should be compared.

5.5.5 Terminology

A query can also specify Terms from the Terminology. Since Nouns, Verbs, Adjectives and
Adverbs (both Modifier in Terminology) are the most meaningful entities of Sentences they
should be compared with related parts in DomainSpecifications. See Figure 5.9 for a summary.

Nouns should be compared with all entities that can contain a Noun: Actor, SystemElement,
Notion, DomainStatement, NounPhrase, SimpleVerbPhrase, ComplexVerbPhrase, UIEle-

ment, InputOutputDevice, InputOutputType and UIContainer (comp. m1-m11 in Figure

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 39



Software Case Similarity Measure – D4.2
Similarity Measure Requirements

ver. 1.0
31.07.2007

5.9). Additionally, Nouns should be compared with NaturalLanguageHypertextSentences

since the words used in this type of Sentence might not be mapped to elements in the Do-

mainSpecification.

Verbs should be compared with all entities that can contain a Verb: DomainStatement, Sim-

pleVerbPhrase and ComplexVerbPhrase (comp. m14-m16 in Figure 5.9). Verbs should
be compared with NaturalLanguageHypertextSentences for the same reason as stated for
Nouns.

Modifier should be compared with NounPhrases since they may contain a Modifier. Addition-
ally, the Modifier should be compared with NaturalLanguageHypertextSentences for the
same reason as stated for Nouns.

Query / Case D
om

ai
nS

pe
ci

fic
at

io
n

A
ct

or
sP

ac
ka

ge

Ac
to

r

S
ys

te
m

E
le

m
en

ts
P

ac
ka

ge

S
ys

te
m

E
le

m
en

t

N
ot

io
ns

P
ac

ka
ge

N
ot

io
n

D
om

ai
nS

ta
te

m
en

t

N
ou

nP
hr

as
e

S
im

pl
eV

er
bP

hr
as

e

C
om

pl
ex

V
er

bP
hr

as
e

U
IE

le
m

en
t

In
pu

tO
ut

pu
tD

ev
ic

e

In
pu

tO
ut

pu
tT

yp
e

U
IC

on
ta

in
er

Se
nt

en
ce

Li
st

 

N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

D
om

ai
nE

le
m

en
tR

ep
re

se
nt

at
io

n

N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

Terminology
Noun m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12 m13
Verb m14 m15 m16 m17 m18
ModalVerb
Determiner
Modifier m19 m20 m21 m22 m23 m24
Preposition
ConditionalConjunction

Figure 5.9: The table shows to which RSL entities a Term specified in a query shall be compared.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 40



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Chapter 6

Similarity Measures

This chapter describes similarity measures appropriate for comparing RSL requirements mod-
els. Different similarity measures are combined in order to conform with the different aspects
of RSL requirement models and the requirements specified in Chapter 5.

Section 6.1 summarises the main characteristics of the similarity measures which are consid-
ered(see Chapter 3 for details). The Sections 6.2-6.5 describe the proposed similarity measures
in more detail. Finally, in Section 6.6 these similarity measures are assigned to the RSL entities
that need to be compared.

6.1 Comparison of similarity measures

The main characteristics of the similarity measures considered are summarised in Figure 6.1.
Information Retrieval can be used as a fallback method because it can be applied to any artefact
containing a significant amount of text. The method only provides lexicographic term matching
and structure of artefacts is not evaluated. Thus, a more elaborate method should be applied
when possible. Structural Case-based Reasoning applies a fixed structure for comparing cases
while ReDSeeDS software cases have a variable structure. The RSL metamodel defines all pos-
sible structures for RSL requirements models. Graph-based comparison and Description Logic
can be used to compare the structure of elements. They process elements of different structure.
For comparing pure text, neither approach might be the best choice, however. NaturalLan-

guageHypertextSentences might consist of pure text, if the contained words are not mapped to
elements of the DomainSpecification. The graph-based similarity approach directly evaluates

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 41



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

the software cases stored in the fact repository while all other approaches need a preprocessing
of the data stored in the fact repository.

This brief comparison illustrates that there is no approach that is best suited to all aspects of
RSL requirements models. A combination of these approaches is necessary to cope with all
parts of these models. The following sections explain how the similarity approaches introduced
in Chapter 3 can be adapted to the needs of ReDSeeDS.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 42



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

A
pp

ro
ac

h 
In

fo
rm

at
io

n 
R

et
rie

va
l 

St
ru

ct
ur

al
 C

B
R

 
D

es
cr

ip
tio

n 
Lo

gi
c 

G
ra

ph
-b

as
ed

 
Si

m
ila

rit
y 

El
em

en
ts

 c
om

pa
re

d 
 

 
te

xt
-b

as
ed

 d
oc

um
en

ts
 

 
st

ru
ct

ur
e 

is
 n

ot
 a

na
ly

se
d 

by
 s

ta
te

-
of

-th
e-

ar
t a

pp
ro

ac
he

s 

 
ca

se
s 

of
 id

en
tic

al
 s

tru
ct

ur
e 

(a
ttr

ib
ut

es
) w

ith
 d

iff
er

en
t 

va
lu

es
 fo

r t
he

 a
ttr

ib
ut

es
 

 
co

nc
ep

t d
ef

in
iti

on
s 

th
at

 a
re

 
co

ns
is

te
nt

 w
ith

 R
S

L 
m

et
am

od
el

 (c
on

ta
in

ed
 in

 
TB

ox
) 

 
gr

ap
hs

 o
f a

ny
 s

tru
ct

ur
e 

In
pu

t r
eq

ui
re

d 
 

 
do

cu
m

en
t r

ep
re

se
nt

at
io

ns
 

ne
ed

ed
 

 
au

to
m

at
ed

 g
en

er
at

io
n 

of
 

re
pr

es
en

ta
tio

ns
 p

os
si

bl
e 

(S
te

m
m

in
g,

 In
de

xi
ng

, e
tc

.) 

 
ca

se
 re

pr
es

en
ta

tio
ns

 n
ee

de
d 

 
au

to
m

at
ed

 g
en

er
at

io
n 

of
 

re
pr

es
en

ta
tio

ns
 p

os
si

bl
e 

 
ad

di
tio

na
l i

nf
or

m
at

io
n 

ca
n 

be
 

ad
de

d 
 

 
O

W
L 

re
pr

es
en

ta
tio

n 
of

 
qu

er
ie

s 
an

d 
ca

se
s 

ne
ed

ed
 

 
JG

ra
La

b 
->

 O
W

L 
co

nv
er

te
r 

ha
s 

be
en

 d
ev

el
op

ed
 b

y 
U

ni
ve

rs
ity

 o
f K

ob
le

nz
 

 
ca

se
  

 
no

 g
en

er
at

io
n 

of
 

re
pr

es
en

ta
tio

ns
 n

ec
es

sa
ry

 

R
es

ul
t p

ro
vi

de
d 

 
 

V
al

ue
 in

 [0
..1

] 
 

 
V

al
ue

 in
 [0

..1
] 

 
 

V
al

ue
 in

 [0
..1

] 
 

 
V

al
ue

 in
 [0

..1
] 

 
O

ne
 in

te
gr

at
ed

 g
ra

ph
 

co
nt

ai
ni

ng
 b

ot
h 

qu
er

y 
an

d 
ca

se
 

U
nd

er
ly

in
g 

m
ea

ni
ng

 
of

 “
Si

m
ila

rit
y”

   
D

oc
um

en
ts

 c
on

ta
in

in
g 

sa
m

e 
st

rin
gs

 in
 

th
e 

sa
m

e 
fre

qu
en

cy
 a

re
 v

er
y 

si
m

ila
r /

 
id

en
tic

al
. 

C
as

es
 w

ith
 s

am
e 

va
lu

es
 fo

r 
at

tri
bu

te
s 

ar
e 

ve
ry

 s
im

ila
r /

 
id

en
tic

al
. 

C
on

ce
pt

 d
ef

in
iti

on
s 

co
nt

ai
ni

ng
 

co
nc

ep
ts

 w
ith

 m
in

im
al

 d
is

ta
nc

e 
in

 
th

e 
ta

xo
no

m
y 

an
d 

th
e 

sa
m

e 
ro

le
s 

ar
e 

ve
ry

 s
im

ila
r /

 id
en

tic
al

. 

C
as

es
 c

on
si

st
in

g 
of

 th
e 

sa
m

e 
gr

ap
h 

el
em

en
ts

 (l
oc

al
 s

im
ila

rit
y 

de
te

rm
in

ed
 b

y 
at

tri
bu

te
s)

 
ar

ra
ng

ed
 in

 th
e 

sa
m

e 
st

ru
ct

ur
e 

(in
te

rc
on

ne
ct

io
ns

) a
re

 v
er

y 
si

m
ila

r 
/ i

de
nt

ic
al

. 
Pa

ra
ph

ra
se

 P
ro

bl
em

 
no

t s
ol

ve
d 

by
 s

ta
te

-o
f-t

he
-a

rt 
ap

pr
oa

ch
es

; t
op

ic
 o

f c
ur

re
nt

 re
se

ar
ch

 
ca

n 
be

 s
ol

ve
d 

by
 lo

ca
l s

im
ila

rit
y 

m
ea

su
re

 th
at

 e
va

lu
at

es
 th

e 
m

ap
pi

ng
 to

 T
er

m
s 

in
 T

er
m

in
ol

og
y 

ca
n 

be
 s

ol
ve

d 
by

 in
te

gr
at

in
g 

th
e 

Te
rm

in
ol

og
y 

in
 th

e 
Tb

ox
 

ca
n 

be
 s

ol
ve

d 
by

 in
te

gr
at

in
g 

th
e 

Te
rm

in
ol

og
y 

in
 th

e 
fa

ct
 re

po
si

to
ry

 

 

Fi
gu

re
6.

1:
C

om
pa

ri
so

n
of

Si
m

ila
ri

ty
m

ea
su

re
s

w
ith

re
sp

ec
tt

o
th

ei
ra

pp
lic

at
io

n
in

R
eD

Se
eD

S.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 43



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

6.2 Global Similarity Measures

The global similarity combines the different local similarities. For this purpose, the local sim-
ilarities are grouped by the major elements of a software case, i.e., requirements, architecture,
detailed design, and code. Thus, we use the standard weighted-normalized-sum similarity mea-
sure (see Section 3.3) at two levels.

For the purpose of the global similarity, we distinguish between "items" as non-technical prop-
erties of a software case and "attributes" as technical properties in the characterization1 for the
purpose of similarity calculations. "Technical properties" refers to properties that are used by
the similarity engine for calculating similarities. Their representation might be optimized for
similarity calculation and, therefore, need not be in any of the ReDSeeDS languages.

For a software case, the following items are subject to a characterization:2

• Requirements items: (following the different requirement types from Section 4.1)

– FunctionalRequirementsOnSystem

– FunctionalRequirementsOnComposite

– ConstraintOnSystem

– UseCase

– DomainSpecification

• Architecture items:

– Architectural style

• DetailedDesign items:

– Design patterns used

• Code items:

– Programming language

1see ReDSeeDS Deliverable D4.1 (Section 4.2) for a definition and explanation of "characterization" and "ar-
tifact"

2This structure might change with actual cases becoming available for experimentation and is, therefore, a "first
guess".

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 44



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

The global similarity is then the weighted normalized sum of the local similarities for these
items, grouped by requirements, architecture, design, and code:

sim(Q,C) = (wr
∑Q.r.item 6=unde f ,C.r.item 6=unde f wr.item · simr.item(Q.r.item,C.r.item)

∑Q.r.item 6=unde f ,C.r.item 6=unde f wr.item
(6.1)

+wa
∑Q.a.item 6=unde f ,C.a.item 6=unde f wa.item · sima.item(Q.a.item,C.a.item)

∑Q.a.item 6=unde f ,C.a.item 6=unde f wa.item

+wd
∑Q.d.item6=unde f ,C.d.item 6=unde f wd.item · simd.item(Q.d.item,C.d.item)

∑Q.d.item 6=unde f ,C.d.item 6=unde f wd.item

+wc
∑Q.c.item6=unde f ,C.c.item 6=unde f wc.item · simc.item(Q.c.item,C.c.item)

∑Q.c.item 6=unde f ,C.c.item 6=unde f wc.item
)

/(wr +wa +wd +wc)

Explanations:

• Q: the query case as software case

• C: the reuse candidate as software case

• r: requirements

• a: architecture

• d: detailed design

• c: code

• e: one of r,a,d,c

• wr,wa,wd,wc: weights for the different major elements, i.e., requirements, architecture,
design, code.

• we.item: weights for the different items in a major element

• Q.r.item refers to an item "item" in the requirements section of a query

• C.a.item refers to an item "item" in the architecture section of a software case

• simr.item refers to the local similarity measures for a certain item - here the item "item"
in the requirements. A local similarity measure always delivers a value between 0 and 1
(see 5.3).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 45



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

As similarity measures for the items under architecture, design, and code, some rather standard
similarity measures from CBR could be employed: Taxonomic similarity measures for patterns,
i.e. items "design patterns" and "architectural style": symbol similarity measures for "program-
ming language". Thus, for our research, we focus on the new similarities for requirements.
These also relate most to the subject of the project, i.e. requirements-oriented reuse.

For overlapping similarity measures for an item, we use the weighted normalized sum to weight
different local similarities. The actual characterization used for similarity computation might
contain different attributes for the different local similarities for an item.

sime.item(Q.e.item,C.e.item) =
∑i=1..n wi · sime.item,i(Q.e.item,C.e.item)

∑i=1..n wi
(6.2)

Knowledge of which attribute belongs to which item is encoded in the similarity functions. The
local similarity for overlapping similarity measures has the following properties:

• Information / data is available for all similarity measures: The similarity value from each
measure takes a part of the weight of the item.

• Information / data is not available for all similarity measures: A fallback mechanism
(comp. Requirement 4 and 9 in Section 5.2) is implemented by the above formula to-
gether with a characterization extractor that maps more formal representations on less
formal representations (e.g., ConstraintLanguageScenarios on simple text). To satisfy
requirement 12d, the formula also counts undefined attributes - in contrast to the global
similarity for items (formula 6.1).

6.3 Textual Similarity Measures

The idea of the textual similarity measures is to compare Requirements or Scenarios based
on the text that they contain or represent. Thus, respective characterization extraction has to
extract a list of words from the given Requirement(s) or Scenario(s). The advantage of the
measure is that it can be applied to almost any RequirementsSpecification. This is obvious for
ConstraintLanguageSentences. ActivityScenarios also consist of SVOSentence and, therefore,
also can be mapped to text. Respectively, InteractionScenarios can be mapped to text. Thus,
all types of RequirementsSpecifications can be mapped to text and therefore compared using a
textual similarity measure.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 46



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

In the following, we present two textual measures that can be used for measuring the simi-
larity of requirements and/or scenarios: The set-of-words measure (6.3.1) does not consider
the structure at all. The set-of-sentences measure (6.3.3) considers the structure introduced by
sentences.

6.3.1 Similarity using Set-of-Words Measure

The set-of-words measure weights the occurrences of words equally. No structure is considered
for the similarity calculation.

The actual similarity measure is composed of two parts: A similarity at the word list level
combines similarities at the word level.

For the similarity at the word list level, we use a set similarity measure. Thus, the order of words
is not considered. Furthermore, we use a set similarity measure that does not consider word
frequencies and document length in order to not conflict with requirement 12b. A set similarity
measure with such properties has been developed by Tautz & Gresse van Wangenheim [TG98]:

simsetO fWords(q,c) =


∑e1∈q

max{simtattr (e1,e2)|e2∈c}
card(q) ⇔ card(q) > 0∧ card(c) > 0

0 ⇔ card(c) = 0
1 otherwise

(6.3)

For the word-level similarities, the following similarities and mechanisms can be used and
combined:

Boolean similarity measure: For comparing two words, the boolean similarity reflects the
result of a string comparison:

sim(eq,ec) =

{
1 ⇔ eq = ec

0 otherwise

Stopword removal mechanisms: Stopwords are frequent words that have no specific meaning
in a domain (e.g., a, the, of). Since such words usually occur in all documents, they do
not help to determine the relevance of a document and could even mislead the similarity
when weighted like any other word in a query. Thus, stopwords should be removed.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 47



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Stemming mechanisms: In linguistics, a stem is the part of a word that is common to all its
inflected variants. Stemming is the process of reducing inflected (or sometimes derived)
words to their stem, base or root form – generally a written word form. The words can
then be compared based on their stem. Thus, stemming can improve the results of the
above boolean similarity.
Obviously, stemming depends on the language: In the English language a simple stem-
ming by cutting off suffixes works pretty well – e.g., cutting off the plural "s". There are
several such stemming algorithms (e.g. Paice / Husk Stemmer3). An exception is irreg-
ular verbs. In the German language, such a simple stemming does not work very well
because when the inflection changes, so may characters in the stem part of the word, e.g.,
"Baum" and "Bäume".

N-gram matching: N-Gram Matching compares words using N-character sub-words, e.g. 3-
gram matching using 3-character sub-words. This allows to (1) compensate typos and
(2) implement a language-independent stemming. Problems are the high complexity and
high memory need. So, there are certain volume limits for n-gram matching.

Synonym-based similarity measure: Using a thesaurus, synonyms can be found. With a fixed
synonym similarity (like the WordNet synonyms), the boolean similarity measure can be
refined as follows:

sim(eq,ec) =


1 ⇔ eq = ec

simsynonym ⇔ isDirectSynonym(eq,ec)
0 otherwise

where

• simsynonym: synonym similarity ∈]0;1[ (constant)

• isDirectSynonym(eq,ec): true if the word eq is a direct synonym of the word ec

The synonym-based similarity measure can address the paraphrase problem (requirement
12f) by exploiting the mappings between different domains as synonym specifications for
this measure.

Taxonomy-based similarity measures A taxonomy adds relationship types4 to the vocabu-
lary. WordNet-based similarity measures (see Section 3.2) are an example of this type of
measure. For taxonomies as trees with a uniform relationship type, heuristics using the
the node depth are meaningful, e.g. from REFSENO [TG98]:

sim(eq,ec) =
d(cnode(ec,eq))

d(ec) < d(eq)?d(ec) : d(eq)

3http://www.comp.lancs.ac.uk/computing/research/stemming/Links/paice.htm
4Some terminology representations or thesauri also allow and provide other relationships than "is synonym".

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 48



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

where

• d(n): depth of node n where d(ROOT ) = 1

• cnode(n1,n2): least common subsumer of the nodes n1 and n2 in the taxonomy

Bergmann has described how to set up taxonomy similarities for various relationship
types [Ber98].
Another taxonomy similarity is described below as "distance-based similarity" (Section
6.4.1). For computational reasons, it may be necessary to maintain a query-word-by-case-
word similarity table to allow a fast lookup of word similarities. However, such a table
must be updated upon changes to the terminology.
The synonym-based similarity measure can address the paraphrase problem (requirement
12f) by exploiting the mappings between different domains as synonym specifications for
this measure.

6.3.2 Known Issues

Utility modeled by similarity The smaller the query, the higher the risk that cases with a sim-
ilarity of 1 are not relevant (typical information retrieval issue with short queries).

Performance Set measures posed performance problems in early CBR systems. It will be
necessary to determine by experiments to which text sizes the set-of-words measure is
applicable with reasonable performance.

6.3.3 Similarity using a Set-of-Sentences Measure

The idea of the set-of-sentences measure is to consider the requirements structure for search –
in contrast to the set-of-words measure. Thus, we use a set similarity measure on top of the
set-of-words measure:

simsetO f Sentences(q,c) = simset(q,c) with simtattr := simsetO fWords

The set-similarity measure [TG98] is fed with each sentence as an element and operates on this
set of sentences. For each sentence, the set-of-words similarity is used. This allows for the
variations in the word similarity described with the set-of-words similarity measure.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 49



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

6.3.4 Known Issues

Impact of structure measure The actual impact of the structure measure is not obvious. The
measure should improve the precision of comparison of SVO sentences because words are
not mixed from different sentences as is the case for the set-of-words measure on whole
scenarios. However, with natural language, a sentence could also contain several SVO
statements. In general, for small collections (<100 cases), we do not expect a significant
impact on the ranking order in comparison to the pure set-of-words measure on sentences.

Performance Set measures posed performance problems in early CBR systems. Due to the
two-recursion set-similarity construction of this measure, it is expected be more sensitive
to performance issues than the set-of-words measure. It will be necessary to analyze by
experiments to which text sizes the set-of-words measure is still applicable.

6.4 Description Logic-based Similarity Measures

Measuring similarity in Description Logics (DLs) is based on comparing two concept defini-
tions. This comparison includes both the concept placement in the taxonomic hierarchy and the
roles and role fillers that the concepts define (see also Section 3.4).

6.4.1 Algorithms for Similarity Measures for Conceptual Structures

In this section we provide algorithms that can be applied in Description Logic systems for
measuring similarity of two conceptual structures. All algorithms are denoted in pseudo code,
i.e. implementation-independent.

Concept-based Similarity

Concept-based similarity describes the similarity of two concepts based on two aspects. The
first aspect is their position in the taxonomy and the second aspect is their roles. Both aspects
can be computed independently from each other and therefore two algorithms describing the
similarity of distance between concepts and common roles of concepts are computed and the
returned similarity values are summed up.

ALGORITHM: conceptBasedSimilarity(c1, c2)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 50



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

1. return distanceBasedSimilarity(c1, c2) + roleBasedSimilarity(c1, c2)
2

Distance-based Similarity

Distance-based similarity describes the similarity of two concepts based on their position in the
taxonomy. The distance of both concepts to the least common subsumer (LCS) is computed,
both values are added and a value describing distance-based similarity is returned: 1 means both
concepts are in fact the same concept and the smaller the value the further away the concepts
are from each other.

ALGORITHM: distanceBasedSimilarity(c1, c2)

1. lcs = leastCommonSubsumer(c1, c2)

2. distance1 = pathLength(c1, lcs)

3. distance2 = pathLength(c2, lcs)

4. distance = distance1 + distance2

5. return 1
α+distance

Note that the α value is needed because comparing a concept to itself the taxonomic distance is
0 and division by 0 is not allowed. See also Section 6.4.2 for more details.

Role-based Similarity

Role-based similarity describes the similarity of two concepts based on their roles and role
fillers. The roles of both concepts are recursively compared and similarities are summed up
for every concept. A value describing role-based similarity is returned: 1 means both concepts
have the same roles and the smaller the value the less their roles have in common.

The similarity is based on values that are computed by comparing every role of one concept to
every role of the other concept. A matrix is filled with all similarity values and the maximum
value in every row or column indicates the best matching roles of both concepts. In order to find

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 51



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

a match for every role and not use the same role as a match more than once, when c1 has less
roles the maximum value of a column is used and when c2 has less roles the maximum value of
a row is used.

ALGORITHM: roleBasedSimilarity(c1, c2)

1. if c1 OR c2 has roles, do

(a) similarity = 0

(b) roleValues = [ |roles(c1)| ], [ |roles(c2)| ]

(c) for int i=0; i < |roles(c1)|; i++, do

i. s = roles(c1)[i]

ii. for int j=0; j < |roles(c2)|; j++, do

A. t = roles(c2)[j]

B. roleValues[i][j] = conceptBasedSimilarity(s, t)

(d) if |roles(c1)| < |roles(c2)|

i. for int k=0; k <= |roles(c1)|; k++, do

A. similarity += max(roleValues[k][*])

(e) else

i. for int k=0; k <= |roles(c2)|; k++, do

A. similarity += max(roleValues[*][k])

(f) similarity = similarity
max(i, j)

2. else, do

(a) similarity = distanceBasedSimilarity(c1, c2)

3. return similarity

6.4.2 Known Issues

There are some issues that have to be taken into account and may only be assessed and ruled
out during development of the ReDSeeDS engine, i.e. after implementing and evaluating the
algorithms.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 52



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

• In the algorithm for distance-based similarity, some value α needs to be added to the
distance due to the fact that when comparing a concept to itself the distance is 0 and
division by 0 is not allowed. What exactly is a good value for α needs to be clarified
during implementation and experiments. Another possibility to measure the distance of
two concepts is to compute the product of the number of siblings for every predecessor
on the path from the starting concept to the least common subsumer. For this distance
measure the number of siblings is taken into account which is based on the assumption
that two siblings are more similar when there are no further siblings (all instances of the
parent belong to either of the two) and are less similar when there are further siblings (all
instances of the parent belong to one of the siblings).

• An addition to the above mentioned algorithm of measuring role-based similarity is to
consider not only the role filler but also the role name. When, for example, an SVOSen-

tence is compared to another SVOSentence, the types of roles that have to be compared
are known: the Noun of the one Sentence needs to be compared to the Noun of the other
Sentence, and analogously the Verbs and Objects are compared. This means that taking
the role name into account may improve the comparison of matching roles between the
two concept structures. However, completely relying on the role name is dangerous: when
comparing two concept structures that are of different types (e.g. an SVOSentence and
a NaturalLanguageSentence) the role names are different, but nonetheless the concept
structures may be semantically equivalent. Furthermore, if matching roles with different
names refer to the exact same filler, it may be reasonable to treat them as equal or as more
similar than two roles with the same name and different fillers. How much weight a role
name should have for the comparison of concepts, and for which combinations of RSL
entities, has to be evaluated during implementation with concrete examples.

• Roles can be used to denote simple attributes of concept, like a name, ID, etc. Such at-
tributes are modeled with so-called concrete domains, i.e. strings, integer numbers, real
numbers, sets of strings, integers or reals and ranges of integers or reals. Different math-
ematical approaches are needed to compare the different concrete domains. For example,
simple integer or real numbers can be easily compared by relying on the obvious seman-
tics of the binary mathematical relations =, 6=, <, ≤, >, and ≥. However, the distance
between two numbers may be more significant than knowing that one number is greater
than another one. For sets and ranges of numbers the intersection of the compared do-
mains is interesting: two concrete domains are assumed to be more similar when they
have more elements in common. However, the number of elements in a set and the dis-
tance of numbers are of interest, too, because {1,4,7} is more similar to {2,5,8} than to
{0,1}, although they have no common elements.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 53



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

• When comparing a role filler of a concept with all role fillers of another concept, it may
happen that two or more combinations of fillers are assigned the same similarity value.
Automatically selecting the "best matching" role filler is ambiguous and may be non-
deterministic for such situations. It is not yet known if and how often such situations will
be encountered, and how they may be resolved. Hence a detailed evaluation of this issue
is postponed until a working implementation and concrete examples are present.

6.4.3 Example

Figure 6.2 simplifies the UML class diagram from Figure 4.8 to improve the overview. The
structure of SVOSentences involving NounPhrases, Predicates, VerbPhrases is omitted. To
be able to see of which words the two example sentences are constructed, the Links are kept.
However, the most important aspect of this figure is the Terminology for this example containing
Terms and WordNetTerms.

Customer :
NounLink

Customer :
Noun

changes :
PhraseVerbLink

items :
NounLink

item :Noun

order2 :
Noun

changes :
Verb

order :
NounLink

CommonTerminology :
Terminology

Client :
Noun

Client :
NounLink

changes :
PhraseVerbLink

order :
NounLink

items :
NounLink

order1 :
Noun

order, purchase order :
WordNetTerm

ordering, order, 
ordination :

WordNetTerm

item :WordNetTerm

change, alter, 
modify :

WordNetTerm

customer, client :
WordNetTerm

of :
PhrasePrepositionLink

of :
Preposition

of :
PhrasePrepositionLink

Figure 6.2: Two SVOSentences and their relations to WordNetTerms (excerpt from the example
in Figure 4.9 on page 28).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 54



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

A taxonomy of WordNetTerm instances was constructed that contains the corresponding terms
of the example sentences. WordNet defines terms with a hyponomy-of relation that has been
translated into a is-a relation, i.e. taxonomy between Terms (see Figure 6.3).

The query is formulated as an instance of a RequirementsSpecification, i.e. with instances of
the corresponding UML classes of the RSL. Instance recognition is applied to compute the most
specific concept of which every instance is an instance. Then these concepts are compared using
the concept-based similarity measure. The cases are modeled as concepts in the TBox but, to
stay as close as possible to the other approaches and previous figures, we use instances of the
corresponding UML classes in Figures 6.2 and 6.3.

It is easy to see that the Sentences use both common and different Terms. The Sentences use
four common Terms and one different Term. Note that Client and Customer are synonyms
that link to the same WordNetTerm, while order1 and order2 are used differently in both
sentences, as homonyms: they link to different WordNetTerms. Measuring the similarity of both
Sentences should compute quite a high value, i.e. a value less than but still close to 1. Using
the concept-based similarity measure, we compute their similarity step by step in the following.

First, we compute the distance-based similarities of Terms that are used in both Sentences.
For reasons of simplicity we assume that the structure of the Sentences is relevant and known.
Thus, Subjects are compared to Subjects, Verbs are compared to Verbs, and so on. Not every
role of one Sentence has to be compared to every role of the other Sentence and thus the
matrix of similarity measures that is described in the role-based similarity algorithm need not
be completely filled. Instead, the best matches are known and max(roleValues[i][ j]) can be
abbreviated with matchingRoleValue[i][ j]. The α of the distance-based similarity algorithm
uses the value 0 in this example.

• Client and Customer are both Nouns, hence are specialisations of Noun and thus sib-
lings in the taxonomy: their taxonomic distance is 2 and distanceBasedSimilarity(Client,
Customer) = 1

2 .

• Both Sentences use the Verb change, i.e. the same Term. There is no taxonomic dis-
tance when comparing a concept to itself and distanceBasedSimilarity(change, change)
= 1.

• The Nouns order1 and order2 are used, each in one of the two Sentences. Since they
are both specialisations of Noun, the taxonomic distance is 2 and distanceBasedSimilar-
ity(order1, order2) = 1

2 .

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 55



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

• Both Sentences use the Preposition of, i.e. the same Term. There is no taxonomic
distance when comparing a concept to itself and distanceBasedSimilarity(of, of) = 1.

• Both Sentences use the Noun item, i.e. the same Term. There is no taxonomic distance
when comparing a concept to itself and distanceBasedSimilarity(item, item) = 1.

Next, we compute the role-based similarities of the Terms. Note that all Terms specify a role
with the filler CommonTerminology; to be more exact this is an inverse role because the Termi-

nology consists of the Terms. But since all Terms specify this role with the same filler we omit
it during the following evaluation.

• Client and Customer both define a role that has the same filler: the WordNetTerm

customer, client. This means that, although the two Nouns have a different name,
roleBasedSimilarity(Client, Customer) = 1.

• Both Sentences use the Verb change, i.e. the same Term. It is apparent that roleBased-
Similarity(change, change) = 1.

• The Nouns order1 and order2 both have a role with a specific WordNetTerm as
filler: the first Sentence has filler order, purchase order, the second Sentence

has filler ordering, order, ordination. The least common superconcept of
the two WordNetTerms is abstraction, abstract entity (see also Figure 6.3).
The taxonomic distance between order, purchase order and abstraction,
abstract entity is 6 and the taxonomic distance between ordering, order,

ordination and abstraction, abstract entity is 3. Thus the distance be-
tween order, purchase order and ordering, order, ordination is 9
and roleBasedSimilarity(order1, order2) = 1

9 .

• Both Sentences use the Preposition of, i.e. the same Term. It is apparent that roleBased-
Similarity(of, of) = 1.

• Both Sentences use the Noun item, i.e. the same Term. It is apparent that roleBased-
Similarity(item, item) = 1.

The role-based similarity of two Sentences is the sum of concept-based similarities between
their roles (i.e. distance-based similarity plus role-based similarity divided by 2 per matching
role), divided by the number of roles:

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 56



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

1
2 +1

2 + 1+1
2 +

1
2 + 1

9
2 + 1+1

2 + 1+1
2

5

=
3
4 +1+ 11

36 +1+1
5

=
4.05̄

5
= 0.81̄

order, purchase order :
WordNetTerm

ordering, order, 
ordination :

WordNetTerm

item :WordNetTerm

change, alter, 
modify :

WordNetTerm

customer, client :
WordNetTerm

entity :WordNetTerm

abstraction, abstract 
entity :WordNetTerm

relation :
WordNetTerm

part, portion, component part, 
component, constituent :

WordNetTerm

communication :
WordNetTerm

written communication, written 
language, black and white :

WordNetTerm

writing, written material, 
piece of writing :

WordNetTerm

document, written 
document, papers :

WordNetTerm

commercial document, 
commercial instrument :

WordNetTerm

group, grouping :
WordNetTerm

arrangement :
WordNetTerm

physical entity :
WordNetTerm

object, physical object :
WordNetTerm

whole, unit :
WordNetTerm

living thing, animate 
thing :WordNetTerm

organism, being :
WordNetTerm

person, individual, someone, 
somebody, mortal, soul :

WordNetTerm

user :WordNetTerm

consumer :
WordNetTerm

Figure 6.3: WordNet taxonomy of Nouns for Terms occurring in the example SVOSentences.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 57



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Finally, the concept-based similarity of the two SVOSentences would additionally include com-
puting the distance-based similarity of the two Sentences and take the complete structure shown
in Figure 4.8 into account. For reasons of simplicity we omit the complete structure for this ex-
ample.

If, for example, the two Sentences used the same notion of order so that their only difference
is the synonym of Client and Customer, the similarity would increase to

3
4 +1+1+1+1

5 =
4.75

5 = 0.95. The value 1 is not reached because Client and Customer are still two differ-
ent Nouns (represented by different UML classes), although being synonyms. If, instead of a
synonym, two different Subjects were used, obviously the similarity value would decrease.

6.5 Graph-Based Similarity

The graph-based similarity of two elements A and B is based on comparison of the abstract
syntax graphs of the two elements. As mentioned in Section 3.5, the currently most promising
graph-based similarity measure is the similarity flooding algorithm [MGMR02] and its variants.
Due to a close cooperation between the Universities of Koblenz and Siegen, the SiDiff algorithm
[UK05] is designated for use in the ReDSeeDS engine. The remainder of this section will
explain the basics of this algorithm and the metamodel for the graphs the algorithm works on.

6.5.1 SiDiff Metamodel

The SiDiff algorithm works on graphs that are instances of the SiDiff metamodel, which is
depicted in figure 6.4. To be independent of existing and changing metamodels and to allow
the SiDiff algorithm to compare models as instances of a wide range of metamodels, the SiDiff
metamodel is very general.

A Document consists of several Elements. In a UML class diagram, a Document contains
all Elements of the model. Each of the Elements has exactly one ElementType. Beside this,
Elements might also contain several Attributes. Every Attribute models a name / value pair.

The major part of the graph structure is modeled by the reflexive composition at Element. This
composition builds up a tree structure of the document. Elements may contain sub-Elements,
for instance in UML a Package contains Classes, a Class contains Methods, a Method contains
Parameters and so on. The second part of the graph structure is model by the class Reference.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 58



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Document

- name:  String

Element

- hashValue:  byte[]

- name:  String

- path:  String

- version:  int

Reference

- name:  String

Attribute

- name:  String

- value:  String

ElementType

- name:  String

- threshold:  float

0..*

contains

1

0..*

hasReference

1

references

0..* hasAttribute

1

0..*

hasSubElement

0..1

0..*

isOfType

1

0..1

isSubTypeOf

0..*

Figure 6.4: Metamodel used by SiDiff

References may exist between any two Elements. An example of a Reference in UML is an
Association between two Classes that is not a Composition.

6.5.2 The SiDiff Algorithm

The algorithm used by the SiDiff tool to measure the difference of two models A and B can be
divided into two phases, a bottom-up and a top-down one.

In the first one, similar model elements are identified in both models. This phase works bottom-
up and only elements that are similar to exactly one other element in the second model are
matched. To control the match, a similarity threshold can be specified for each element type in
a model. Thus, only elements with a similarity greater than this threshold are matched in the
bottom-up phase. If an element is similar to more than one element in the second model, the
bottom-up phase does not match the elements. Instead, the matching is deferred to a later phase
of the algorithm.

As soon as two elements are matched, the algorithm checks if child elements exist that have
not been matched. If one such child element is found, the algorithm switches to the top-down
phase. In that phase the last match of the bottom-up phase is propagated to all child elements
of the matched elements. This leads to new similarity values for the child elements, since the
match of the parent elements is taken into account. On the basis of these new similarity values,

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 59



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

additional elements can be matched. These matches are further propagated top-down. After no
more child nodes can be matched, the algorithm switches back to the bottom-up phase.

As soon as all elements have been tried to be matched in the bottom-up phase, the algorithm
stops. The result of the algorithm is a table which contains the matching element pairs and
their similarity. Using this table, a unified model containing all elements of both models can be
created. Besides this, and more interesting for the similarity calculation of Software Cases, the
resulting table can be used to calculate a real value that depicts the similarity of two models.
The details of this calculation have already been depicted in section 3.5.

6.6 Applicability of Similarity Measures

In Section 5.5 we described in detail which RSL entities should be compared with one another.
In this section we assign similarity measures to these pairs of RSL entities and include these
similarity measures in the tables introduced in Section 5.5.

The section is structured as follows: Firstly, similarity measures are assigned to entities of the
Terminology. Secondly, the elements of the DomainSpecification are discussed and finally the
entities of the RequirementsSpecification are addressed. This order is necessary because the
similarity of two Terms might be part of the similarity measure of two Phrases, i.e. the similar-
ity of Terms is a local similarity measure that is used as part of another similarity measure.

6.6.1 Terminology

Terms contained in the Terminology are associated with a WordNetTerm. Both, the Term and the
WordNetTerm contain a name (String) and a description (String). A basic similarity measure
could only consider the name for the similarity evaluation. However, this would not solve the
paraphrase problem. The paraphrase problem can be solved by evaluating the association to
WordNetTerms. This can be achieved by several similarity approaches: Graph-based similarity,
Description Logic and WordNet-Similarities (see below). A further possibility is to extend
an Information Retrieval approach as described in Section 6.3. Which alternative is the most
effective needs to be determined through experiments. All approaches have in common that
they are based on the semantic relations defined in WordNet. Therefore, we refer to this local
similarity measure as "WN-Sim" (for WordNet-based similarity).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 60



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Noun

A Noun contained in a query should be compared with the following entities: Actor, SystemEle-

ment, Notion, DomainStatement, NounPhrase, SimpleVerbPhrase and ComplexVerbPhrase (see
Figure 6.5). All these RSL entities are associated with a Noun in the Terminology that is again
associated with a WordNetTerm. The Similarity of these entities with a Noun is determined by
the similarity of the associated WordNetTerms.

Exceptions are DomainStatement, SimpleVerbPhrase and ComplexVerbPhrase since they may
contain one or two Nouns. If they contain two Nouns the determined similarities are combined.

Similarity (Noun, Actor / SystemElement / Notion / DomainStatement / NounPhrase / Simple-

VerbPhrase / ComplexVerbPhrase) = WN-Sim1 (WordNetTerm, WordNetTerm)

Verb

A Verb contained in a query should be compared with the following entities: DomainState-

ment, SimpleVerbPhrase and ComplexVerbPhrase (see Figure 6.5). These RSL entities may be
associated with a Verb in the Terminology that is again associated with a WordNetTerm. The
similarity of these entities with a Verb is determined by the similarity of the associated Word-

NetTerms. An exception is the DomainStatement since not all DomainStatements have a Verb.
If the DomainStatement does not contain a Verb the similarity is 0.

Similarity (Verb, DomainStatement / SimpleVerbPhrase / ComplexVerbPhrase) = WN-Sim2
(WordNetTerm, WordNetTerm)

Modifier

A Modifier contained in a query should be compared with NounPhrases (see Figure 6.5). A
NounPhrase may be associated with a Modifier in the Terminology that is again associated with
a WordNetTerm. The similarity of a NounPhrase with a Modifier is determined by the similarity
of the associated WordNetTerms. However, not all NounPhrases are associated with a Modifier.
In this case the similarity is 0.

Similarity (Modifier, NounPhrase) = WN-Sim3 (WordNetTerm, WordNetTerm)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 61



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Query / Case Ac
to

r

S
ys

te
m

E
le

m
en

t

N
ot

io
n

D
om

ai
nS

ta
te

m
en

t

N
ou

nP
hr

as
e

S
im

pl
eV

er
bP

hr
as

e

C
om

pl
ex

V
er

bP
hr

as
e

U
IE

le
m

en
t

In
pu

tO
ut

pu
tD

ev
ic

e

In
pu

tO
ut

pu
tT

yp
e

U
IC

on
ta

in
er

N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

Terminology
Noun WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 WN-Sim1 SimM4
Verb WN-Sim2 WN-Sim2 WN-Sim2 SimM4
ModalVerb
Determiner
Modifier WN-Sim3 SimM4
Preposition
ConditionalConjunction

Figure 6.5: RSL entities to be compared with Terms and assigned similarity measures.

6.6.2 Domain Specification

The similarity measures for DomainSpecification are described in the following and are sum-
marised in Figure 6.5.

Phrases

All Phrases are contained in the DomainSpecification of a software case. The Phrases are
associated with Terms in the Terminology via TermHyperlinks. These Terms are again associated
with WordNetTerms. Phrases are well-structured RSL entities. Thus, the similarity may be
evaluated with the graph-based similarity measure and the Description Logic similarity measure
(possibly in combination) (G/DL-Sim). A further possibility is to determine the WordNet-based
similarity for all Nouns, Verbs and Modifiers associated with a Phrase and combine these values.
This alternative would not consider other words contained in a Sentence, e.g. Determiner,

ConditionalConjunction, Preposition and ModalVerbs. Which alternative is the most effective
one can only be determined through experiments.

Similarity (Phrase, Phrase) = G/DL-Sim(Phrase, Phrase)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 62



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Domain Statement

A DomainStatement contains a Phrase as name and may contain a textual description in one
or more NaturalLanguageHypertextSentences. The attribute sentenceText contains this textual
description (String) of a NaturalLanguageHypertextSentence. The similarity measure for Do-

mainStatements should take into account both the textual description and the Phrase.

Similarity (DomainStatement, DomainStatement) = G/DL-Sim(Phrase, Phrase) + Set-of-Word-
Sim (sentenceText, sentenceText)(SimM6)

Domain Elements

Actor and SystemElement are DomainElements. Both contain a Phrase as name and may
contain NaturalLanguageHypertextSentences. The similarity measure should take into account
the textual description as well as the Phrase.

Similarity (Actor, Actor) = G/DL-Sim(Phrase, Phrase) + Set-of-Word-Sim (sentenceText, sen-

tenceText)(SimM6)

Similarity (SystemElement, SystemElement) = G/DL-Sim(Phrase, Phrase) + Set-of-Word-Sim
(sentenceText, sentenceText)(SimM6)

A Notion is also a DomainElement. It contains:

• a Noun as name,

• several DomainStatements,

• several NotionAttributs and

• a textual description (NatualLanguageHypertextSentences)

A Notion may be connected with other Notions with a DomainElementAssociation and with a
NotionSpecialisation. The similarity measure for Notions should take into account all parts of a
Notion and its context, i.e. the related Notions. This can be achieved using the graph-based sim-
ilarity measure and the Description Logic similarity measure (possibly in combination) (G/DL-
Sim) for the structured part in combination with the Set-of-Word-Sim for the textual description
(sentenceText).

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 63



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Similarity (Notion, Notion) = G/DL-Sim(Notion, Notion) + Set-of-Word-Sim (sentenceText, sen-

tenceText)(SimM7)

UIElement, InputOutputDevice, InputOutputType are specialisations of Notion. They can be
compared using the same similarity measure as described for Notion. The InputOutputDevice

should also be compared with SystemElement and vice versa. Both RSL entities contain a Noun

as name. This Noun is linked with a WordNetTerm which can be used for a WordNet-based
similarity as described in Section 6.6.1.

Similarity (InputOutputDevice, SystemElement) = WN-Sim1 (WordNetTerm, WordNetTerm)

Similarity (SystemElement, InputOutputDevice) = WN-Sim1 (WordNetTerm, WordNetTerm)

UIContainer is used to structure the UIElements contained in a DomainSpecification. Thus, a
graph-based similarity measure and the Description Logic similarity measure can be used to
compare the spatial or temporal order represented by UIContainers.

Similarity (UIContainer, UIContainer) = G/DL-Sim(UIContainer, UIContainer)

Domain Element Packages

DomainPackages contain DomainElements, which are potentially interconnected by DomainEle-

mentRelationship. These structures can be compared using a graph-based similarity measure
and the Description Logic similarity measure (G/DL-Sim).

Domain Specification

A DomainSpecification contains several DomainElementPackages and one SystemElement that
defines the system under development. Thus, the similarity of two DomainSpcifications is
mainly defined by its packages and consequently the same similarity measure can be used as
for packages.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 64



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Q
ue

ry
 / 

C
as

e

DomainSpecification

ActorsPackage

Actor

SystemElementsPackage

SystemElement

NotionsPackage

Notion

DomainStatement

NounPhrase

SimpleVerbPhrase

ComplexVerbPhrase

UIElement

InputOutputDevice

InputOutputType

UIContainer

NaturalLanguageHypertextSentence

D
om

ai
nS

pe
ci

fic
at

io
n

G
/D

L-
S

im
A

ct
or

sP
ac

ka
ge

G
/D

L-
S

im
S

im
M

2
A

ct
or

S
im

M
6

S
im

M
2

S
ys

te
m

E
le

m
en

ts
P

ac
ka

ge
G

/D
L-

S
im

S
im

M
2

S
ys

te
m

E
le

m
en

t
S

im
M

6
W

N
-S

im
1

S
im

M
2

N
ot

io
ns

P
ac

ka
ge

G
/D

L-
S

im
S

im
M

2
N

ot
io

n
S

im
M

7
S

im
M

2
D

om
ai

nS
ta

te
m

en
t

S
im

M
6

S
im

M
2

N
ou

nP
hr

as
e

G
/D

L-
S

im
S

im
M

3
S

im
pl

eV
er

bP
hr

as
e

G
/D

L-
S

im
G

/D
L-

S
im

G
/D

L-
S

im
S

im
M

3
C

om
pl

ex
V

er
bP

hr
as

e
G

/D
L-

S
im

G
/D

L-
S

im
G

/D
L-

S
im

S
im

M
3

U
IE

le
m

en
t

S
im

M
7

S
im

M
2

In
pu

tO
ut

pu
tD

ev
ic

e
W

N
-S

im
1

S
im

M
7

S
im

M
2

In
pu

tO
ut

pu
tT

yp
e

S
im

M
7

S
im

M
2

U
IC

on
ta

in
er

G
/D

L-
S

im
S

im
M

2

Fi
gu

re
6.

6:
T

he
lo

ca
ls

im
ila

ri
ty

m
ea

su
re

s
fo

rR
SL

en
tit

ie
s

of
th

e
D

om
ai

nS
pe

ci
fic

at
io

n
ar

e
su

m
m

ar
is

ed
in

th
is

ta
bl

e.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 65



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

6.6.3 Requirements Specification

Natural Language Hypertext Sentence

A NaturalLanguageHypertextSentence contains a sentenceText (String) and may link Phrases.
Even if parts of a NaturalLanguageHypertextSentence are linked to Phrases, some other parts
might not be linked. In order to evaluate the whole sentence’s text, IR should be applied to
compare any RSL entity with a NaturalLanguageHypertextSentence. If a NaturalLanguageHy-

pertextSentence links Phrases these should be evaluated additionally and both results should
be combined. The following list specifies in detail which entities need to be evaluated when
comparing NaturalLanguageHypertextSentences.

• Similarity (NaturalLanguageHypertextSentence, HyperlinkedSentence) = Set-of-Word-
Sim (sentenceText, sentenceText) + Sim of linked Phrases (SimM1)

• Similarity (NaturalLanguageHypertextSentence, DomainElements / DomainElementPack-

ages / DomainStatements) = Set-of-Word-Sim (sentenceText, text of DomainElemen-

tRepresentations) + Sim of contained Phrases (SimM2)

• Similarity (NaturalLanguageHypertextSentence, Phrases) = Set-of-Word-Sim (sentence-

Text, name of linked Terms) + Sim of Phrases (SimM3)

• Similarity (NaturalLanguageHypertextSentence, Terms) = Set-of-Word-Sim (sentence-

Text, name of Term) + Sim Term and Terms linked by NaturalLanguageHypertextSen-

tence’s Phrases. (SimM4)

SVO Sentence, Modal SVO Sentence and Conditional Sentence

SVOSentence, ModalSVOSentence and ConditionalSentence are well-structured Sentences.
Each word is mapped to a Term in the Terminology and all Phrases are integrated in the Do-

mainSpecification. The structure that relates to an SVOSentence is exemplified in Figure 4.9 on
page 28. Evaluating the structure of these sentence types enables us to:

• identify whether a particular Actor is a Subject or Object in the Sentence,

• solve the paraphrase problem by evaluating the mapping to Terms in the Terminology,

• solve the ambiguity problem by evaluating the mapping to Terms in the Terminology.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 66



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

The graph-based similarity measure and the Description Logic similarity measure may be used
(possibly in combination) to determine the similarity of these sentences (G/DL-Sim).

PreconditionSentence, PostconditionsSentence, ConditionSentence, InvocationSentence and
RejoinSentence

PreconditionSentence, PostconditionsSentence, ConditionSentence, InvocationSentence and Re-

joinSentence are not as well-structured as SVOSentence and the like. These Sentences may
link Phrases but not every word needs to be linked to DomainSpecification and Terminology.
Thus, the similarity measure needs to evaluate the sentence text.

Similarity (PreconditionSentences / PostconditionsSentences / ConditionSentences / Invoca-

tionSentences / RejoinSentences, PreconditionSentences / PostconditionsSentences / Condi-

tionSentences / InvocationSentences / RejoinSentences) = Set-of-Word-Sim (sentenceText,

sentenceText) + Sim of linked Phrases (SimM1).

NounPhrase & VerbPhrase of InteractionScenario

InteractionScenarios do not contain SVOSentences that aggregate Subject and Predicate. The
similarity of SVOSentences, ModalSVOSentences and ConditionalSentences with NounPhrase

and VerbPhrase of InteractionScenarios can be evaluated by comparing the NounPhrase with
the Phrase linked by the Sentences Subject and the VerbPhrase with the Phrase linked by
the sentences Predicate. The ConditionalSentence contains two Subjects and two Predicates.
Thus, both need to be compared.

Similarity (NounPhrase + VerbPhrase (of InteractionScenarios), SVOSentences / ModalSVOSen-

tences / ConditionalSentences) = Sim of NounPhrase and Phrases linked by Subject(s) + Sim
of VerbPhrase and Phrases linked by Predicate(s) (SimM5).

RequirementRepresentation

A SentenceList consists of a set of sentences. The order of sentences in a SentenceList is not
relevant. This is different for requirements representations that describe behavioural require-
ments, i.e. ConstraintLanguageScenarios and ActivityScenarios and InteractionScenarios, since
they describe certain procedures that the system to be built should allow. A textual similarity

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 67



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Query \ Case N
at

ur
al

La
ng

ua
ge

H
yp

er
te

xt
S

en
te

nc
e

S
V

O
S

en
te

nc
e

M
od

al
S

V
O

S
en

te
nc

e

C
on

di
tio

na
lS

en
te

nc
e

P
re

co
nd

iti
on

S
en

te
nc

e

P
os

tc
on

di
tio

nS
en

te
nc

e

C
on

di
tio

nS
en

te
nc

e

In
vo

ca
tio

nS
en

te
nc

e

R
ej

oi
nS

en
te

nc
e

N
ou

nP
hr

as
e 

(p
ar

t o
f N

ou
nP

hr
as

eL
ife

lin
e)

V
er

bP
hr

as
e 

(p
ar

t o
f P

re
di

ca
te

M
es

sa
ge

)

NaturalLanguageHypertextSentence SimM1 SimM1 SimM1 SimM1 SimM3 SimM3
SVOSentence SimM1 G/DL-Sim G/DL-Sim G/DL-Sim SimM5 SimM5
ModalSVOSentence SimM1 G/DL-Sim G/DL-Sim G/DL-Sim SimM5 SimM5
ConditionalSentence SimM1 G/DL-Sim G/DL-Sim G/DL-Sim SimM1 SimM1 SimM1 SimM5 SimM5
PreconditionSentence SimM1 SimM1 SimM1 SimM1
PostconditionSentence SimM1 SimM1 SimM1 SimM1
ConditionSentence SimM1 SimM1 SimM1 SimM1
InvocationSentence SimM1
RejoinSentence SimM1
NounPhrase (part of NounPhraseLifeline) SimM3 SimM5 SimM5 SimM5 G/DL-Sim
VerbPhrase (part of PredicateMessage) SimM3 SimM5 SimM5 SimM5 G/DL-Sim

Figure 6.7: Similarity measures for comparing sentences.

measure would only compare the sf words / sf phrases but would not consider the order of de-
scribed actions. Thus, the graph-based similarity measure and the Description Logic similarity
measure are more appropriate for comparing these sf RequirementRepresentations.

Similarity (ConstraintLanguageScenario / ActivityScenario / InteractionScenario , Constraint-

LanguageScenario / ActivityScenario / InteractionScenario) = G/DL-Sim (ConstraintLanguageSce-

nario / ActivityScenario / InteractionScenario , ConstraintLanguageScenario / ActivityScenario /

InteractionScenario)

A SentenceList may contain sentences of different types (see Figure 5.7 for an overview). Dif-
ferent types of sentences require different similarity measures (see Figure 6.7). Thus, a global
similarity measure (similar to the set-of-sentences similarity measure, see Section 6.3.3) should
summarise the similarities of the sentences contained in a SentenceList. The same holds if a
SentenceList is compared with one of the RequirementRepresentations for behavioural require-
ments. These results are summarised in Figure 6.8 Similarity (SentenceList, SentenceList) =
Similarity of contained HyperlinkedSentences (SimM8)

Similarity (SentenceList, ConstraintLanguageScenario / ActivityScenario / InteractionScenario)
= Similarity of contained HyperlinkedSentences (SimM8)

Similarity (ConstraintLanguageScenario / ActivityScenario / InteractionScenario, SentenceList)
= Similarity of contained HyperlinkedSentences (SimM8)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 68



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

Query \Case Se
nt

en
ce

Li
st

 

C
on

st
ra

in
tL

an
gu

ag
eS

ce
na

rio

A
ct

iv
ity

Sc
en

ar
io

In
te

ra
ct

io
nS

ce
na

rio

SentenceList SimM8 SimM8 SimM8 SimM8
ConstraintLanguageScenario SimM8 G/DL-Sim G/DL-Sim G/DL-Sim
ActivityScenario SimM8 G/DL-Sim G/DL-Sim G/DL-Sim
InteractionScenario SimM8 G/DL-Sim G/DL-Sim G/DL-Sim

Figure 6.8: Similarity measures for comparing RequirementRepresentations.

RequirementSpecification

Requirements have different types (see Section 4.1 and can be associated with other Require-

ments using RequirementRelationships like Fulfills, Operationalises, Constrains, MakesPossi-

ble. Each Requirement has at least one RequirementRepresentation. These aspects should be
considered when comparing Requirements.

A textual similarity measure would not consider the coherences defined by RequirementRe-

lationships. This can be achieved using the graph-based similarity measure and the Descrip-
tion Logic similarity measure. These measures may produce poor results when comparing Re-

quirementRepresentations that mainly contain NaturalLanguageHypertextSentences, however.
Thus, a combination is needed. The RequirementRepresentations are compared according to
Figure 6.8 while the relations between Requirements are compared using the graph-based ap-
proach. Thus, the similarity measures from Figure 6.8 are used as local similarity measures.

Additionally, it is necessary to compare a Requirement defined in the query with Require-

mentsPackages. This could be realised by pairwise comparison of the Requirement with all
Requirements contained in the RequirementsPackage. However, this leads to poor results
when the Requirement defined in the query covers several Requirements defined in the Re-

quirementsPackage (comp. Requirement 7). Thus, comparison on the level of sentences is
more appropriate. The resulting similarity measures are summarised in Figure 6.9.

Similarity (Requirement, Requirement) = Similarity of RequirementRepresentations combined
with G-Sim of RequirementRelationships (SimM9)

Similarity (Requirement, RequirementsPackage) = Similarity of contained HyperlinkedSen-

tences (SimM8)

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 69



Software Case Similarity Measure – D4.2
Similarity Measures

ver. 1.0
31.07.2007

RequirementsPackages contain a set of Requirements. The similarity of twoRequirementsPackages

can be determined by the similarity of their Requirements. Thus, the similarity measure for
Requirements is used as a local similarity measure. Furthermore, the RequirementsPackage

should be compared with RequirementsSpecifications. This should be done on the level of Re-

quirements rather than on the level of packages due to the fact that packages might differ in
size.

Similarity (RequirementsPackage, RequirementsPackage) = Similarity of contained Require-

ments (SimM10)

Similarity (RequirementsPackage, RequirementsSpecification) = Similarity of contained Re-

quirements (SimM10)

RequirementsSpecifications consist of several RequirementsPackages. The similarity of two
RequirementsSpecifications can be determined by comparing the contained RequirementsPack-

ages or contained Requirements. The latter would not take into account the structuring in
packages. Which alternative leads to better results needs to be tested in experiments.

Similarity (RequirementsSpecification, RequirementsSpecification) = Similarity of contained
RequirementsPackages (SimM10)

Query\Case R
eq

ui
re

m
en

ts
S

pe
ci

fic
at

io
n

R
eq

ui
re

m
en

ts
P

ac
ka

ge

R
eq

ui
re

m
en

t

RequirementsSpecification SimM10
RequirementsPackage SimM10 SimM10
Requirement SimM8 SimM9

Figure 6.9: Similarity measures for comparing Requirements, RequirementsPackages and Re-
quirementsSpecifications.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 70



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

Chapter 7

Similarity Measures - Design
Considerations

When evaluating the effectiveness and efficiency of the similarity measures described in the
previous chapters two prerequisites have to be fulfilled: first a reasonable amount of software
cases have to be present, second the similarity measures have to be implemented in a retrieval
framework. These prerequisites can only be fulfilled once the ReDSeeDS engine is (partly)
implemented and the retrieval framework is integrated in Work Package WP5.

Architectural considerations for the retrieval framework are made in Deliverable D4.1.1. In
the following, design considerations for integrating similarity measures are discussed and illus-
trated with preliminary examples.

7.1 Textual Similarity Measures - Design Considerations

Textual similarity measures will be implemented as extensions of existing textual similarity
measures in RAISIN. All similarities will be computed online. If online computation is too
slow, word similarities will be cached in tables or lists.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 71



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

7.2 Description Logic Similarity Measures - Design Considerations

This section discusses aspects that may arise when Description Logics (DL) are used in the
ReDSeeDS engine that will be developed in the Tasks 5.4 and 5.5. When using Description
Logics for case retrieval the following design considerations have to be made:

1. Selection of a Description Logic inference tool

2. Interface between RSL and DL’s internal representation

3. Representation of cases in DL

4. Representation of queries in DL

5. Services of DL used for retrieval

6. Similarity measures

In the following, these aspects are discussed and illustrated with examples.

7.2.1 Selection of a Description Logic Inference Tool

Currently we see two Description Logic inference tools that may be used within ReDSeeDS:
Racer Pro1 and the Semantic Web Common Lisp Object System (SWCLOS)2. While the for-
mer is a Description Logic tool based on tableau algorithms the latter uses meta-programming
facilities to implement a DL reasoner. The first experiments that are described below use SW-
CLOS. However, when selecting an appropriate tool choice for ReDSeeDS (Deliverable D4.4
Repository Selection Report) other inference tools may be considered.

Properties of SWCLOS are:

• Semantic Web Processing in CLOS the Common Lisp Object System

• OWL Full (the Web Ontology Language3) implementation, i.e. classes are also considered
as individuals

1www.racer-systems.com
2http://pegasus.agent.galaxy-express.co.jp/SemanticWeb-swclos-en.htm
3http://www.w3.org/TR/owl-ref/

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 72



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

• Satisfiability check and proactive entailment

• Handling of OWL Entailment Rules4

• Multiple classing

• Extended structural subsumption algorithm, which is incomplete for the existential re-
striction, but useful for OWL reasoning for most cases in practice [BCM+03].

• Creator: Galaxy Express Corporation which offers a BSD-like Open Source Licence

For more details on SWCLOS we refer the interested reader to [KT06].

For our experiments we build an experimental environment consisting of Common Lisp, SW-
CLOS, RSL as OWL, cases as SWCLOS concepts and queries as SWCLOS individuals, which
is explained in the following.

7.2.2 Interface between RSL and DL’s Internal Representation

To evaluate the similarity measure based on Description Logics, RSL, which exists basically as
UML diagrams from Enterprise Architect has to be transformed into a Web Ontology Language

(OWL) ontology, which is in turn imported into SWCLOS (see Figure 7.1).

RSL Editor Meta Model

Metamodel in OWL

OWL Objects (SWCLOS)

OWL Entailment

Conversion

ToolReadyRSL.owl

ToolReadyRSL.xmi

Figure 7.1: SWCLOS Information Flow.

This transformation is done by a conceptual and a format mapping.

Conceptual Mapping

To be able to make inferences about RSL in a Description Logic system, one has to convert the
RSL meta model to a TBox. This means that all RSL entities (DomainSpecification, Require-

mentSpecification etc.) including their relationships (like NounLink etc.) have to be converted
4http://www.w3.org/TR/rdf-mt/

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 73



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

to concepts (RSL concepts) and roles (RSL roles) respectively. This is more or less a one to one
mapping of meta classes to concepts. The relations like NounLink are represented as classes in
ToolReadyRSL. Those relation classes have to be mapped to roles in DL.

Furthermore, when incorporating Terms from WordNet, these have to be mapped to concepts
of a TBox too. Because WordNetTerms are usually instances of classes WN:Noun, WN:Verb

etc. one has to shift those instances to corresponding concepts in the DL sense. Furthermore,
between instances (terms) in WordNet the hyponym-of relation may be defined. This relation
has to be mapped to the is-a relation between the corresponding concepts of the TBox.

Via the RSL relation TRRSL:linksToWordNetEntry_d1e5622 the terms of the Termi-
nology are linked to WordNet concepts, thus, the meaning of terms of the Terminology is finally
established (see Figure 7.2 for an example in SWCLOS).

(defResource TY::order1 (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:Noun
(owl:Restriction (owl:onProperty TRRSL:isPartOfTerminology_d1e5647)

(owl:allValuesFrom TY::CommonTerminology))
(owl:Restriction (owl:onProperty TRRSL:linksToWordNetEntry_d1e5622)

(owl:allValuesFrom a:|104902219-c|))))

(defResource TY::order2 (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:Noun
(owl:Restriction (owl:onProperty TRRSL:isPartOfTerminology_d1e5647)

(owl:allValuesFrom TY::CommonTerminology))
(owl:Restriction (owl:onProperty TRRSL:linksToWordNetEntry_d1e5622)

(owl:allValuesFrom a:|106246680-c|))))

Figure 7.2: We show here the SWCLOS notation of TBox concepts. Con-
cepts of the Terminology are related to concepts of WordNet by using the relation
TRRSL:linksToWordNetEntry_d1e5622. This relation finally establishes the mean-
ing of order1 and order2 in Figure 6.2 (see Section 6.4 on page 54). a:|104902219-c|
denotes the concept of the WordNet Synset 104902219, which is the set ("order" "purchase or-
der"). a:|106246680-c| denotes the concept of the WordNet Synset 106246680, which is
the set ("order" "ordering").

Format Mapping

Typical Description Logic inference systems import ontologies written in the Web Ontology

Language (OWL). The Web Ontology Language OWL is a semantic markup language for pub-
lishing and sharing ontologies on the World Wide Web. OWL is developed as a vocabulary
extension of RDF (the Resource Description Framework) and is derived from the DAML+OIL5

Web Ontology Language.

5http://www.w3.org/TR/daml+oil-reference

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 74



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

OWL is designed for use by applications that need to process the content of information instead
of just presenting information to humans. OWL facilitates greater machine interpretability of
Web content than that supported by XML, RDF, and RDF Schema (RDF-S) by providing ad-
ditional vocabulary along with a formal semantics. OWL has three increasingly-expressive
sublanguages: OWL Lite, OWL DL, and OWL Full.6

To be able to use RSL in a Description Logic system, RSL has to be converted to OWL. Cur-
rently there exists a conversion tool written by University of Koblenz which converts the Tool-
ReadyRSL metamodel (see Chapter 1) to OWL concepts.

RSL is based on UML 2.0. OWL Full and UML 2.0 are two modelling languages that have
a lot of features in common. The basic modelling elements can easily be transformed from
UML 2.0 classes to OWL Full classes [HEC+04]. Next to the notion of classes, both OWL Full
and UML 2.0 share the notions of instances of classes (OWL: individual), attributes (OWL:
property with basic data type), associations (OWL: property with associated class type), gener-
alisation (OWL: subclass or intersection), multiplicity (OWL: minCardinality,
maxCardinality, inverseOf), enumerations (OWL: oneOf), (non-)navigables (OWL:
domain, range), packages (OWL: ontology) and dependencies (OWL: reserved name).

Some modelling elements, however, are not common for both languages. While OWL Full of-
fers intersection, union and complement, and relies on the unique name assumption (UNA) and
equivalence of classes, UML 2.0 does not. On the other hand, UML 2.0 offers behavioural fea-
tures (i.e. static operations, interfaces and abstract classes), complex objects (i.e. composition
and aggregation), as well as ports and connectors which OWL Full does not offer.

However, for the ToolReadyRSL metamodel a mapping can be given. As an example we give
in Figure 7.3 the representation of DeterminerLink in OWL.

OWL representations are imported via SWCLOS into the experimental environment.

6http://www.w3.org/TR/owl-features/

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 75



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

<
o
w
l
:
C
l
a
s
s
r
d
f
:
I
D
=
"
D
e
t
e
r
m
i
n
e
r
"
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
r
d
f
:
r
e
s
o
u
r
c
e
=
"
#
T
e
r
m
"
/
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
o
w
l
:
o
n
P
r
o
p
e
r
t
y
r
d
f
:
r
e
s
o
u
r
c
e
=
"
#
d
e
t
e
r
m
i
n
e
r
L
i
n
k
-
o
f
"
/
>

<
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
0
<
/
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y
>

<
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
2
1
4
7
4
8
3
6
4
7
<
/
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y
>

<
/
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
/
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
o
w
l
:
o
n
P
r
o
p
e
r
t
y
r
d
f
:
r
e
s
o
u
r
c
e
=
"
#
d
e
t
e
r
m
i
n
e
r
S
p
e
c
i
a
l
i
s
a
t
i
o
n
R
e
l
a
t
i
o
n
"
/
>

<
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
0
<
/
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y
>

<
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
2
1
4
7
4
8
3
6
4
7
<
/
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y
>

<
/
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
/
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
o
w
l
:
o
n
P
r
o
p
e
r
t
y

r
d
f
:
r
e
s
o
u
r
c
e
=
"
#
d
e
t
e
r
m
i
n
e
r
S
p
e
c
i
a
l
i
s
a
t
i
o
n
R
e
l
a
t
i
o
n
-
o
f
"
/
>

<
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
0
<
/
o
w
l
:
m
i
n
C
a
r
d
i
n
a
l
i
t
y
>

<
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y

r
d
f
:
d
a
t
a
t
y
p
e
=
"
h
t
t
p
:
/
/
w
w
w
.
w
3
.
o
r
g
/
2
0
0
1
/
X
M
L
S
c
h
e
m
a
#
n
o
n
N
e
g
a
t
i
v
e
I
n
t
e
g
e
r
"
>
2
1
4
7
4
8
3
6
4
7
<
/
o
w
l
:
m
a
x
C
a
r
d
i
n
a
l
i
t
y
>

<
/
o
w
l
:
R
e
s
t
r
i
c
t
i
o
n
>

<
/
r
d
f
s
:
s
u
b
C
l
a
s
s
O
f
>

<
/
o
w
l
:
C
l
a
s
s
>

Fi
gu

re
7.

3:
R

ep
re

se
nt

in
g

R
SL

w
ith

O
W

L
.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 76



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

7.2.3 Representation of Software Cases in DL

As described in Section 6.4 software cases are represented with concepts of the TBox. As an
example parts of two software cases depicted in Figure 6.2 on page 54 are shown in Figure 7.4.

(defResource c1::Client--NounPhrase (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:NounPhrase
(owl:Restriction (owl:onProperty TRRSL:nounLink)

(owl:allValuesFrom TY::client))
(owl:Restriction (owl:onProperty TRRSL:isPartOfActor_d1e4112)

(owl:allValuesFrom c1::Client))))

(defResource c1::order--NounPhrase (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:NounPhrase
(owl:Restriction (owl:onProperty TRRSL:nounLink)

(owl:allValuesFrom TY::order1))
(owl:Restriction (owl:onProperty TRRSL:isPartOfDomainStatement_d1e3741)

(owl:allValuesFrom c1::order--DomainStatement))))

(defResource c2::Customer--NounPhrase (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:NounPhrase
(owl:Restriction (owl:onProperty TRRSL:nounLink)

(owl:allValuesFrom TY::customer))
(owl:Restriction (owl:onProperty TRRSL:isPartOfActor_d1e4112)

(owl:allValuesFrom c2::Customer))))

(defResource c2::order--NounPhrase (rdf:type owl:Class)
(owl:intersectionOf
TRRSL:NounPhrase
(owl:Restriction (owl:onProperty TRRSL:nounLink)

(owl:allValuesFrom TY::order2))
(owl:Restriction (owl:onProperty TRRSL:isPartOfDomainStatement_d1e3741)

(owl:allValuesFrom c2::order--DomainStatement))))

Figure 7.4: The crucial parts of the two SVO Sentences shown in Figure 6.2 as concepts written
in SWCLOS, i.e. "client", "customer", and two meanings of "order". c1 and c2 denote Case 1
and Case 2. TY refers to the Terminology, which specifies the meaning of the NounPhrases (see
Figure 7.2).

Thus, all RSL entities of a software case specialise RSL concepts, like c2::order-NounPhrase
specialises TRRSL:NounPhrase. All known cases are specified in this way. The entailment
rules of DL compute automatically the specialisation relations between the RSL entities of
cases. If a new software case is added to the fact repository, it has to be mapped to concepts
like those shown in Figure 7.4.

7.2.4 Representation of Queries in DL

A query is represented by instances of RSL concepts. In Figure 7.5 one query is shown which
directly corresponds to the NounPhrase of Case 2. Because all roles of an individual are checked
during instance recognition, all roles have to have appropriate individuals as role fillers. This is

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 77



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

why the whole instance chain from qu::myTy-Order2, which specifies the intended mean-
ing by (TRRSL:linksToWordNetEntry_d1e5622 qu::mywn-meaning), to qu::my-
terminology has to be instantiated.

Note that the instances in the query are instances of RSL concepts not of case concepts like
c2::Customer-NounPhrase. This means, that the query itself is not yet related to cases,
which is appropriate.

(defIndividual qu::my-terminology (rdf:type TY::CommonTerminology))

(defIndividual qu::mywn-meaning (rdf:type a:|106246680-c|))

(defIndividual qu::my-DomainSpecification
(rdf:type TRRSL:DomainSpecification))

(defIndividual qu::my-NotionsPackage (rdf:type TRRSL:NotionsPackage)
(TRRSL:isPartOfDomainSpecification_d1e3573 qu::my-DomainSpecification))

(defIndividual qu::my-Order (rdf:type TRRSL:Notion)
(TRRSL:isPartOfNotionsPackage_d1e3772 qu::my-NotionsPackage))

(defIndividual qu::my-OrderDomainStatement
(rdf:type TRRSL:DomainStatement)

(TRRSL:isPartOfNotion_d1e3666 qu::my-Order))

(defIndividual qu::myTy-Order2 (rdf:type TY::order2)
(TRRSL:isPartOfTerminology_d1e5647 qu::my-terminology)
(TRRSL:linksToWordNetEntry_d1e5622_WN qu::mywn-meaning))

(defIndividual qu::myOrder--NounPhrase (rdf:type TRRSL:NounPhrase)
(TRRSL:nounLink qu::myTy-Order2)
(TRRSL:isPartOfDomainStatement_d1e3741 qu::my-OrderDomainStatement))

Figure 7.5: A query represented as instances in SWCLOS notation. Further queries may be
represented which use other meanings of "order" or "client". Here the query represents a Noun-
Phrase which contains "order" by instantiating the concept a:|106246680-c|.

7.2.5 Services of DL used for Retrieval

The main service of DL used for case retrieval is the instance recognition service (see Section
6.4). As the query is seen as an instance structure, their relations to potential concepts can
be computed by instance recognition. Currently in our experiments this has to be done by
comparing the query to every case concept. In SWCLOS the instance recognition service is
implemented by typep see Figure 7.6.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 78



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

(typep qu::myOrder--NounPhrase c2::order--NounPhrase) --> t
(typep qu::myOrder--NounPhrase c1::order--NounPhrase) --> nil

Figure 7.6: Checking the query against the corresponding part of two cases and the expected
result.

7.2.6 Similarity Measures

The taxonomic similarity measure sketched in Section 6.4 is not yet implemented, but the ex-
ample in this section describes its usage.

7.2.7 Summary

The following observations should be noted, when applying DL to RSL case retrieval:

• During instance recognition the final WordNet meaning determines the concept an in-
stance belongs to.

• Without some similarity measure a DL retrieval corresponds to a boolean information
retrieval method, which determines if a query is similar to a case or not.

• All roles in a query have to have appropriate individuals as fillers.

• An advantage of DL is given when the query is more specific than the cases (e.g. Query:
"commercial document" Case: "Document"). Then the DL services would identify those
more general cases, by relating the query to the corresponding concepts.

• The main advantage of DL would be obtained, if the concepts of WordNet were described
by roles, not only by a string set. If a query were to use such roles for an instance of the
top concept Thing the DL services would infer what specific concept is meant by the
query.

• Currently in RSL variability occurs in diverse places. Notions can for example be de-
scribed by specialisations and relations between them or SentenceLists can have a vari-
able number of SVOSentences as parts. In each such case where variability in structure
may occur, DL services would bring advantages in comparing the structure of a case with
a query, because they can compute similarity measures based on structure.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 79



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

7.3 Graph-based similarity - Design Considerations

In order to use the SiDiff algorithm depicted in section 6.5, the SiDiff tool can be used. This
section describes the SiDiff tool as well as the details of the similarity measure implemented in
this tool.

7.3.1 The SiDiff Tool

The SiDiff tool is developed by the software engineering group at the University of Siegen,
Germany under leadership of Professor Kelter. The SiDiff developers state that their tool is able
to produce more exact results than other graph-based tools. They explain this with the fact that
SiDiff takes the semantics of model elements into account.

To evaluate the similarity of two SCL models with the SiDiff tool, the SCL models stored in
the fact repository are exported to a format that the SiDiff tool can process. Currently, this is an
XML-file.

The result of the similarity calculation is a table which contains similar elements in both models
and their similarity. The total similarity of the two models can then be calculated depending on
the number of similar elements, their similarity and the number of elements without a matching
partner.

7.3.2 Similarity Measure

The quality of the similarity calculated by the SiDiff tool depends on several parameters. For
each element type, two elements of that type are compared using the elements properties. Since
the impact of several properties may differ from type to type and there may exist properties
that are not defined for every element type, for each type it can be specified in which way
each property affects the similarity of two elements [Weh04]. For instance, in class models the
similarity of two classes may depend on the following aspects:

• Similar names: The similarity of two elements is higher if their names are equal. Further,
it is also true that only small changes in the name lead to a higher similarity than totally
different names.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 80



Software Case Similarity Measure – D4.2
Similarity Measures - Design Considerations

ver. 1.0
31.07.2007

• Matching parents: If the parents of both elements match, the similarity of the elements is
probably higher than without matching parents. This is one of the key attributes for the
top-down phase of the SiDiff algorithm. See chapter 6.5.2 for further information on that
algorithm.

• Attributes: As well as the name, the attributes of the elements may have significant influ-
ence on the similarity.

• References: As the last property, any references to other elements are important for the
similarity of two elements. This is similar to matching parents.

For each of these properties and each of the element types, a factor between 0 and 1 can be
specified. If the factor is set to 0, the property has no impact on the similarity for that element
type, if it is set to 1, it has a high influence. As an example, one may decide that the similarity
of names is the most important factor and thus weight the name with a 0.5. Further, the impact
of matching parents and references may be equal, hence both are weighted with a 0.2. As the
last component, the attributes may have a low influence so their factor is set to 0.1. In this case,
the sum of the factors is 1.0, but in general, the factors are normalized anyway so that their sum
is 1.0.

In addition to these factors for the several properties, the similarity threshold (see also Section
6.5.2) also has a great influence on the accuracy of the SiDiff algorithm.

To specify reasonable values for the factors as well as the similarity threshold, experiments are
needed as soon as the software cases are available in the project.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 81



Software Case Similarity Measure – D4.2
Conclusion

ver. 1.0
31.07.2007

Chapter 8

Conclusion

This deliverable describes the concepts behind the software case similarity measure that will
be part of the ReDSeeDS Engine. Thus, this deliverable provides important input for Work
Package 5 (Development of the ReDSeeDS system prototype). The main contributions of this
deliverable are:

• An overview of similarity measures that are relevant for comparing RSL requirement
models and a brief introduction of the corresponding research areas (see Chapter 3).

• A detailed specification of requirements to be met by the similarity measure (see Chapter
5).

• A concept for a similarity measure for RSL requirement models. This concept is based
on the requirements and combines the similarity measures introduced in Chapter 3 appro-
priately (see Chapter 6).

• An overview of aspects that need to be considered when implementing the similarity
measures as part of the ReDSeeDS Engine in Work Package 5 (see Chapter 7).

• A number of questions that need to be considered during the experiments (see Chapter 6
and 7).

This deliverable focuses on the combination of similarity measures from different research ar-
eas. This takes into account the different aspects of RSL requirements models. RSL integrates
textual descriptions and model-based descriptions in one language. Thus, the similarity measure
needs to combine similarity measures for these different types of artefacts.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 82



Software Case Similarity Measure – D4.2
Conclusion

ver. 1.0
31.07.2007

Several similarity measures for reuse of software development artefacts have been developed.
These similarity measures take different types of software development artefacts into account.
Most approaches focus on artefacts produced in later stages of the development cycle, e.g. de-
sign artefacts or even code. Work that focuses on requirements artefacts typically relies on one
type of similarity measure only, usually Information Retrieval. Our work, however, combines
measures from different research areas.

Further work on the ReDSeeDS software case similarity measure involves reconciling the sim-
ilarity measure requirements with the overall requirements on the ReDSeeDS engine (Task 5.2
Specification of user requirements for the ReDSeeDS Engine Prototype). In cases of conflict
this might require the adaptation of similarity measure requirements.

Experiments are needed to further improve the similarity measure. To conduct such experiments
many RSL-consistent requirements models are needed. In Information Retrieval, huge docu-
ment collections are usually needed to assess the effectiveness of similarity measures. Thus,
these experiments cannot be conducted until tool-support for RSL is available.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 83



Software Case Similarity Measure – D4.2
Bibliography

ver. 1.0
31.07.2007

Bibliography

[ABS96] Klaus-Dieter Althoff and Brigitte Bartsch-Spörl. Decision support for case-
based applications. Wirtschaftsinformatik, 38(1):8–16, February 1996.

[AP94] A Aamodt and E Plaza. Case-based reasoning: Foundational issues, method-
ological variations, and system approaches. Artificial Intelligence Communica-

tions, 7(1):39–59, 1994.

[BBG+99] Ralph Bergmann, Sean Breen, Mehmet Göker, Michel Manago, and Stefan
Wess. Developing Industrial Case-Based Reasoning Applications – The IN-

RECA Methodology. Springer Verlag, 1999.

[BBMW99] Ralph Bergmann, Sean Breen, Michel Manago, and Stefan Wess. Developing

Industrial Case-Based Reasoning Applications - The INRECA Methodology.
Springer, 1999.

[BCM+03] F Baader, D Calvanese, D McGuinness, D Nardi, and P Patel-Schneider. The

Description Logic Handbook. Cambridge University Press, 2003.

[Ber98] Ralph Bergmann. On the use of taxonomies for representing case features and
local similarity measures. In 6th German Workshop on CBR, 1998.

[BR91] V Basili and H-D Rombach. Support for comprehensive reuse. IEEE Software

Engineering Journal, 6(5):303–316, 1991.

[BS85] Ron J. Brachman and James G. Schmolze. An Overview of the KL-ONE
Knowledge Representation System. Cognitive Science, 9(2):171–216, 1985.

[BYRN99] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Re-

trieval. ACM Press, New York, 1999.

[GCGADA99] Pedro A. González-Calero, Mercedes Gómez-Albarran, and Belén Díaz-
Agudo. Applying dls for retrieval in case-based reasoning. In Proc. of the

1999 International Workshop on Description Logics (DL’99), 1999.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 84



Software Case Similarity Measure – D4.2
Bibliography

ver. 1.0
31.07.2007

[GF04] David A. Grossman and Ophir Frieder. Information retrieval: algorithms and

heuristics. Springer, 2004.

[Gom04] Paulo Gomes. Software design retrieval using bayesian networks and WordNet.
Lecture Notes in Computer Science, 3155:184–197, 2004.

[GPP+04] Paulo Gomes, Francisco C. Pereira, Paulo Paiva, Nuno Seco, Paulo Carreiro,
José L. Ferreira, and Carlos Bento. Using wordnet for case-based retrieval of
uml models. AI Commun., 17:13–23, 2004.

[HEC+04] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang,
Y. Ye, E. Kendall, and M. Dutra. Owl full and uml 2.0 compared.
www.itee.uq.edu.au/ colomb/Papers/UML-OWLont04.03.01.pdf, March 2004.

[Hun76] M. Douglas Hunt, James W. und McIlroy. An algorithm for differential file
comparison. Computing Science Technical Report 41, Bell Laboratories, June
1976.

[Kol93] Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann, 1993.

[KT06] S. Koide and H. Takeda. Owl-full reasoning from an object oriented perspec-
tive. In R. Mizoguchi, Z. Shi, and F. Giunchiglia, editors, The Semantic Web

(ASWC 2006), volume 4185 of Lecture Notes in Computer Science, pages 263–
277. Springer Verlag, 2006.

[Kur04] Dominik Kuropka. Modelle zur Repräsentation natürlichsprachlicher Doku-

mente - Ontologie-basiertes Information-Filtering and -Retrieval mit rela-

tionalen Datenbanken. Logos, 2004.

[LBSBW98] Mario Lenz, Brigitte Bartsch-SpÃ¶rl, Hans-Dieter Brukhard, and Stefan Wess,
editors. Case-Based Reasoning Technology - From Foundations to Applica-

tions, chapter Textual CBR, pages 115–137. Springer, 1998.

[LHK98] Mario Lenz, André Hübner, and Mirjam Kunze. Textual CBR and information
retrieval a comparison. Lecture Notes in Computer Science, 1400, 1998.

[LYM05] Shuang Liu, Clement Yu, and Weiyi Meng. Word sense disambiguation in
queries. In CIKM ’05: Proceedings of the 14th ACM international conference

on Information and knowledge management, pages 525–532, New York, NY,
USA, 2005. ACM Press.

[MBF+90] George A Miller, Richard Beckwith, Christiane Fellbaum, Derek Gross, and
Katherine J Miller. Introduction to WordNet: An on-line lexical database. In-

ternational Journal of Lexicography, 3(4):235–244, 1990.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 85



Software Case Similarity Measure – D4.2
Bibliography

ver. 1.0
31.07.2007

[MGMR02] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema matching.
In ICDE, pages 117–128, 2002.

[Min74] Marvin A. Minsky. A framework for representing knowledge. Technical re-
port, Artificial Intelligence Memo 306, Massachusetts Institute of Technology,
Cambridge, MA, USA, 1974.

[NAB07] Markus Nick, Klaus-Dieter Althoff, and Ralph Bergmann. Experience manage-
ment. Kuenstliche Intelligenz, 2:48–49, March 2007.

[Nic05] Markus Nick. Experience Maintenance through Closed-Loop Feedback. PhD
thesis, University of Kaiserslautern, Germany, 2005. Published by Fraunhofer
IRB Verlag, Germany, ISBN 3-8167-6927-6.

[PPM04] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet::similarity - measur-
ing the relatedness of concepts. In In Proceedings of the Nineteenth National

Conference on Artificial Intelligence (AAAI-04), 2004.

[Qui69] R. Quillian. Semantic memory. In Marvin Minsky, editor, Semantic Information

Processing. MIT Press, 1969.

[Sin01] Amit Singhal. Modern information retrieval: A brief overview. Bulletin of the

IEEE Computer Society Technical Committee on Data Engineering, 2001.

[SM83] Gerard Salton and Michael J. McGill. Introduction to Modern Information

Retrieval, chapter Retrieval Evaluation, pages 157–198. McGraw Hill, 1983.

[TA97] C Tautz and K-D Althoff. Using case-based reasoning for reusing software
knowledge. Lecture Notes in Computer Science, 1266:156–165, 1997.

[TA98] Carsten Tautz and Klaus-Dieter Althoff. Operationalizing comprehensive soft-
ware knowledge reuse based on CBR methods. In Lothar Gierl and Mario
Lenz, editors, 6th German Workshop on CBR, volume 7 of IMIB Series, pages
89–98, Berlin, Germany, March 1998. Institut für Medizinische Informatik und
Biometrik, Universität Rostock.

[TG98] Carsten Tautz and Christiane Gresse von Wangenheim. REFSENO: A rep-
resentation formalism for software engineering ontologies. Technical Report
IESE-Report No. 015.98/E, Fraunhofer Institute for Experimental Software En-
gineering, Kaiserslautern (Germany), 1998.

[UK05] Jörg Niere Udo Kelter, Jürgen Wehren. A generic difference algorithm for uml
models. In Proceedings of the SE 2005, Essen, Germany, Essen, Germany,
March 2005.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 86



Software Case Similarity Measure – D4.2
Bibliography

ver. 1.0
31.07.2007

[VVR+05] Giannis Varelas, Epimenidis Voutsakis, Paraskevi Raftopoulou, Euripides G.M.
Petrakis, and Evangelos E. Milios. Semantic similarity methods in WordNet
and their application to information retrieval on the web. In WIDM ’05: Pro-

ceedings of the 7th annual ACM international workshop on Web information

and data management, pages 10–16, New York, NY, USA, 2005. ACM Press.

[Weh04] Jürgen Wehren. Ein XMI-basiertes Differenzwerkzeug für UML Diagramme.
Diploma thesis, University of Siegen, Germany, 2004.

IST-2006-033596 ReDSeeDS: Requirements Driven Software Development System page 87


	History of changes
	Summary
	Table of contents
	Scope, Conventions, Guidelines
	Document Scope
	Related work and relations to other documents
	Document Structure
	Usage Guidelines
	Conventions

	Introduction
	Existing Similarity Measures
	Similarity in Information Retrieval
	WordNet
	Similarity in Case-based Reasoning
	Similarity in Description Logic combined with Case-based Reasoning
	Combining Description Logics with Case-based Reasoning
	Example

	Graph-based Similarity
	General principles
	Structural similarity
	Local similarity
	A combined approach


	RSL Requirements Models
	Requirements Specification
	Sentence List
	Constraint Language Scenario
	Activity Scenario
	Interaction Scenario
	Domain Specification
	Terminology

	Similarity Measure Requirements
	Queries
	RSL Entities to be compared
	Results of the Similarity Measure
	Constraints on Similarity Measure
	Detailed Requirements - RSL entities to be compared
	Requirements Specification
	Requirement Representation
	Sentences
	Domain Specification
	Terminology


	Similarity Measures
	Comparison of similarity measures
	Global Similarity Measures
	Textual Similarity Measures
	Similarity using Set-of-Words Measure
	Known Issues
	Similarity using a Set-of-Sentences Measure
	Known Issues

	Description Logic-based Similarity Measures
	Algorithms for Similarity Measures for Conceptual Structures
	Known Issues
	Example

	Graph-Based Similarity
	SiDiff Metamodel
	The SiDiff Algorithm

	Applicability of Similarity Measures
	Terminology
	Domain Specification
	Requirements Specification


	Similarity Measures - Design Considerations
	Textual Similarity Measures - Design Considerations
	Description Logic Similarity Measures - Design Considerations
	Selection of a Description Logic Inference Tool
	Interface between RSL and DL's Internal Representation
	Representation of Software Cases in DL
	Representation of Queries in DL
	Services of DL used for Retrieval
	Similarity Measures
	Summary

	Graph-based similarity - Design Considerations
	The SiDiff Tool
	Similarity Measure


	Conclusion
	Bibliography

