
Ontology-based Model Comparison

Katharina Wolter, Thorsten Krebs, Lothar Hotz

HITeC e.V. c/o University of Hamburg

{kwolter | krebs | hotz}@informatik.uni-hamburg.de

Abstract. This paper proposes an ontology-based approach for comparing software products
modelled with UML. An ontology is used that defines the structure of all software products
developed so far or even all products that can be developed using the specified architecture.
Using such an ontology the models of different software products can be compared more
effectively.

1. Problems in Comparing UML Models
UML (Unified Modelling Language1) models are often used to specify software products.
The modelling facilities of UML include, among others, classes that can be used to
represent the product's components (of any kind), attributes that describe properties of a
class, specialisation relations for modelling a taxonomic hierarchy of classes and
compositional relations (i.e. aggregation and composition) for modelling a partonomy of
classes. With these modelling facilities the product architecture can be specified.

Typically, one UML model represents one software product. This means that for every
product a new model is created and that there is no direct relation between the models of
different products. Comparing products – i.e. comparing models – is hampered by the fact
that there is no such relation between the different product models. A lexical comparison,
for example can test for occurrence of classes with identical names in different models,
but the outcome of this comparison heavily depends on the naming of classes. Two
semantically identical classes with different names will not be recognised as being
identical or similar when using a lexical comparison.

The properties and relations of a class have to be compared rather than their names.
Single classes can be compared according to their position in the taxonomy: distance in
the taxonomic hierarchy is a heuristic similarity measure. Sub-graphs of classes can be
compared according to their compositional relations: comparing parts in partonomy is a
heuristic similarity measure, as well.

2. Formalising Software Product Models in Structure-based Configuration
Models

Configuration is a well-known approach to assemble products from a given set of
components. The components are specified as concepts together with their attributes and
relations to other components in a configuration model. Structure-based configuration
explicitly defines a taxonomy and partonomy of all configurable components, forming an
AND/OR graph2. Thus, a configuration model is a kind of ontology, but it contains
additional knowledge entities: like constraints that define restrictions between a number

1 http://www.uml.org/
2 Partonomy is considered to be conjunctive (select some of the parts) while taxonomy is disjunctive (select

one of the specialisations).

2 Katharina Wolter, Thorsten Krebs, Lothar Hotz

of concepts and their properties. Within a configuration model, all admissible
configurations are specified. One specific product is configured by selecting a component
and configuring its descendants in both the taxonomic and compositional relations.

When a product is configured, instances of the concept definitions are created
dynamically during the configuration process. Having product instances (i.e.
configuration solutions) it is known from which concepts the instances have been
instantiated. This enables the comparison of two distinct product models based on the
configuration model.

Traditional application areas for configuration are technical domains like automobiles,
computers, drive systems, etc. But the configuration approach is not limited to this field.
The ConIPF (Configuration in Industrial Product Families) project3, for example, has
shown that configuration is also applicable for software domains [Hotz et al. 2006].

3. Using Ontology to Model Software
Similar to configuration models from structure-based configuration, multiple software
products can be specified in one model. Its ontological structure enables the creation of
both taxonomy and partonomy of the software components. Figure 1 shows how software
can be modelled from modules, applications and libraries. An application is composed of
modules and can use external libraries. Modules can be further decomposed, like a
software module that consists of multiple class definitions, and aligned in a taxonomic
hierarchy defining general concepts and their specialisations. All entities are software
elements.

Fig. 1. Modelling Software using specialisation relations and compositional relations (UML Notation).

3.1. Building the Ontology
There are two ways how to define an ontology of software products: predefining it and
incrementally building it from singe product models.

3 http://www.conipf.org

Ontology-based Model Comparison 3

Predefining a software ontology means first designing the architecture to derive products
from and designing and implementing the components and afterwards assembling new
products based on this architecture. This is a typical approach in configuration [Hotz and
Krebs 2003] or (software) product lines [Clements and Northrop 2002].

Incrementally building a software ontology from single software product models includes
refinement of the product architecture for every software product to be included.
Concepts representing existing components can simply be linked to the concept
representing the product while new concepts have to be introduced for components that
are not yet modelled. For every product included in the software ontology the architecture
is extended. It is therefore essential that the ontology is thoroughly checked for
consistency. Tool support is expected to improve this process.

While the first approach for building the ontology requires a larger initial effort the
second can result in larger restructuring effort for integration of further product models.

3.2. Comparing Two Software Models with an Ontology
Let us consider an example: a family of text editors is modelled in an ontology. A concept
representing the editor itself aggregates concepts that represent the editor's components.

Fig. 2. Modelling different software products within one model (UML Notation).

Figure 2 shows how two different text editors can be modelled within one software
model. The lightweight editor has a find module, while the heavyweight editor has a find-
and-replace module. The find-and-replace module is further composed of a find module
and a replace module.

Having such a model, the architecture of multiple products that have been created with
this model can be compared more effectively. Lexically comparing the find module and
the find-and-replace module, no similarity would be recognised. Using the ontology that

4 Katharina Wolter, Thorsten Krebs, Lothar Hotz

defines the product's architecture one can additionally recognise that the find module is a
part of the find-and-replace module. This means that latter subsumes the former. Thus,
both modules – and therefore both products – are similar!

4. Related Work
SAMOVAR (Systems Analysis of Modelling and Validation of Renault Automobiles) is
a system aiming at preserving and exploring the memory of past projects in automobile
design [Golebiowska et al. 2001]. A so-called Problem Management System (PMS)
contains structured knowledge about problem definitions with corresponding solutions.
Comparing the current problem description with the modelled knowledge allows to
provide the user similar problem descriptions that have been solved in the past. The
system relies on building ontologies, semantic annotations of problem descriptions
relatively to these ontologies, and the formalisation of the ontologies and annotations.

5. Summary
In this paper we described an approach for comparing software product models based on
an ontology. All software components are structured in a taxonomic and partonomic
hierarchy. The separate software product models can be compared based on their relation
to the ontology and thus better results can be achieved compared to simple lexical
comparison of e.g. component or class names. Two approaches for defining the ontology
have been described: predefining it and incrementally building it from singe product
models.

6. References
[Clements and Northrop 2002] P. Clements, L. Northrop: Software Product Lines: Practices and Patterns.

Addison-Wesley, 2002.

[Golebiowska et al. 2001] J. Golebiowska, R. Dieng-Kuntz, O. Corby, D. Mousseau: Building and Exploiting
Ontologies for an Automobile Project Memory. In: Proceedings of First International Conference on
Knowledge Capture (K-CAP), Victoria, BC, Canada, ACM, 2001.

[Hotz and Krebs 2003] L. Hotz, T. Krebs: Configuration – State of the Art and New Challenges. In
Proceedings of 17. Workshop, Planen, Scheduling und Konfigurieren, Entwerfen (PuK2003), pp. 145-
157, Hamburg, Germany, 2003.

[Hotz et al. 2006] L. Hotz, K.Wolter, T. Krebs, S. Deelstra, M. Sinnema, J. Nijhuis, and J. MacGregor.
Configuration in Industrial Product Families - The ConIPF Methodology. IOS Press, Berlin, 2006.

