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Abstract
For diagnostic purposes, analog circuits may be qualitatively modeled as resistive networks. We dem-
onstrate that common approaches to this task show certain weaknesses because of their sign-based
qualitative values. In order to overcome these deficiencies, we first introduce qualitative deviation val-
ues with a semantics that enables us to model different classes of faults arising in analog circuits. The
qualitative values adequately describe different effects that faults may have. Then we present a sound
and complete inference algorithm for computing these effects using qualitative operators and local
propagation techniques.

1. Introduction
In the past, many different approaches to model-based diagnosis of analog circuits have been
published. For instance, if the circuit parameters can be described by crisp quantitative values,
a linear network can be analyzed by existing tools such as SPICE [Banzhaf, 1989] or systems
based on CLP(R) (e.g. [Biasizzo and Novak, 1995]). In order to cope with tolerances and inac-
curacies, the DIANA system [Dague et al., 1990] uses quantitative intervals to describe net-
work parameters. The FLAMES system [Mohamed and Marzouki, 1996] proposes fuzzy
intervals to describe inaccuracies more adequately.

While these systems can be used to simulate a large class of analog circuits by exploiting
detailed component models, [Struss et al., 1995] argue that for diagnostic purposes more
abstract models are advantageous. In particular, resistive networks with qualitative parameter
values have been investigated in the literature.

For instance, adhering to the no-function-in-structure principle, the Connectivity Method
[Struss et al., 1995] basically propagates qualitative information that encodes which port of a
circuit component is connected to source and sink (direction and kind of resistance, i.e. zero
resistance, finite resistance or, in case of a fault, infinite resistance). However, not all kinds of
circuits can be handled adequately (e.g. bridge circuit topologies). In order to overcome these
deficiencies, [Mauss and Neumann, 1996] have developed a qualitative method to analyze
resistive networks by exploiting the structure of networks. The so-called SPS method explic-
itly represents a network’s series-parallel-star structure as a tree (sps-tree). As a result of the
network analysis, for all currents and voltages, sign-based qualitative values are determined. In
our opinion the Connectivity Method and the SPS method focus on the detection of structural
faults, e.g. broken wires or comparable component faults such as blown light bulbs etc. They
do not address, however, several diagnosis tasks which may arise in resistive networks:

• non-structural faults such as slight deviations from normal behavior,
• deviative effects of non-structural and structural faults,
• specific circuit topologies,
• dealing with abstractions in diagnosis models,
• dealing with variants.

This paper presents a qualitative method for these topics. The problems solved by the approach



are explained with an application example which deals with electricity-powered fork-lifts. In
particular, we consider a field regulator that is a subcomponent of a motor. A schematic dia-
gram of the field regulator circuit is presented in Figure 1. The components shown in the figure
are abstractions of the real physical components. For instance, the control switches T1 to T4
are actually implemented with transistors and diodes but, for diagnostic purposes, such a fine-
grained representation is not required.

In our application we focus on non-structural faults such as slight deviations from normal
behavior, e.g. increased resistance values. Faults of this kind can neither be modeled by the
SPS method nor by the Connectivity Method because of the sign-based qualitative values used
by these methods. In analog circuits the occurrence of a fault effects all currents and voltages,
i.e. the absolute values of parameters change. However, in most cases, the parameters do not
change in their signs (or reach a certain limit). Thus, it is hardly possible to adequately derive
these fault effects using sign-based qualitative values. Furthermore, bridge circuit topologies
are relevant in our domain (see Figure 1). These circuits pose a special problem for qualitative
approaches because the direction of the current through the bridge resistor usually depends on
the exact quantitative values of the component parameters.

Since the components of our model are abstractions of real components, quantitative modeling
systems (see above) are not appropriate, either. Note that, in general, it is difficult to derive use-
ful quantitative values for abstract components. In addition, we also have to deal with the
“variants’ dilemma” [Struss et al., 1995]. This means that a certain model of the field regulator
should cover several variants of this device. Variants differ only slightly concerning their val-
ues of component parameters. Thus, in principle, qualitative methods are preferable.

Based on the SPS method we introduce a new qualitative approach for reasoning about analog
circuits for diagnostic purposes. The main features of our method are:

• The qualitative values represent deviations as well as sign information. With deviations we
can describe non-structural faults such as “resistance too high” as well as structural faults
such as blown light bulbs (“resistance too high and infinite”) even in bridge circuit topolo-
gies.

• The semantics of the qualitative values is grounded on the quantitative nature of landmarks
and their algebraic relations (e.g. order relations). This way we can show soundness and
completeness of the derivation algorithm for qualitative reasoning (cf. also [Struss, 1990]).

• We show that it is not necessary to specify the absolute quantitative values of landmarks.
Considering the order relation between landmarks allows us to deal with abstract circuit
components and provides a basis for dealing with the “variants’ dilemma”. The method pre-

Figure 1: Field regulator (resistors (R), fuse (F), battery (B), field coil (FC), controlled
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switches (T1 to T4)). In this figure the electronic circuit for controlling the switches
has been omitted.



sented in this paper derives simulation results that are sufficient for fault discrimination in a
diagnosis application.

The key idea of our approach is (i) to derive a set of qualitative values (deviation values) to
adequately describe faults and their effects and (ii) to define qualitative operators to propagate
these values in order to simulate circuit behavior. The paper is structured as follows. Qualita-
tive values for describing deviations are introduced in Section 2. In Section 3 we describe a
qualitative calculus simulating circuit behavior based on deviations. The algorithm is shown to
be sound and complete. Section 4 points out the main achievements in a conclusion.

2 Qualitative values
In a resistive network, there are currents and voltages whose directions can be determined by
the structure of the network. The values of these currents and voltages as well as the values of
resistances can be a set of qualitative values that cover the extended positive real number line

 (Type 1). For some currents and voltages, the directions are not determined by the net-
work structure. Thus, we also need qualitative values that cover the whole extended real num-
ber line  (Type 2). As long as only qualitative deviation values of Type 1 can be used, a
qualitative calculus can derive more concise results (i.e. sign information is retained). Distin-
guishing between two types of qualitative value sets is not merely a syntactic criterion but
sharpens the reasoning about effects in resistive networks.

2.1 Qualitative values, Type 1
The qualitative values of Type 1 and their semantics are shown in Table 1.

Although the landmark values in the semantics definition are not specified as fixed quantitative
values, we do rely on the order between landmarks: . The qualitative
value A_normal represents an interval that encodes the range of parameter A in the faultless
state. The other qualitative values describe deviations from the faultless state. We distinguish
between extreme deviation values A_low_0 and A_high_inf and non-extreme deviation values
A_low and A_high.

Describing resistances (R) the qualitative values of Type 1 can be used to model structural as
well as non-structural faults. On the one hand, structural faults such as short circuits and bro-
ken wires can be described by the extreme deviations R_low_0 and R_high_inf, respectively.
On the other hand, non-structural faults such as partial short circuits in coils and corroded wir-
ing points can be modeled by the qualitative values R_low and R_high, respectively. The fault-
less state of a component is represented by the qualitative value R_normal which represents an
interval. This enables us to be tolerant with respect to differential deviations such as physical
tolerances and temperature drifts.

qualitative value abbreviation semantics
A_low_0 A_0

A_low A_l

A_normal A_n

A_high A_h

A_high_inf A_

Table 1: Qualitative values of Type 1

0 ∞,[ ]

∞– ∞,[ ]

A 0 0,[ ]∈
A 0 Amin ),(∈
A Amin Amax,[ ]∈
A Amax ∞,( )∈

∞ A ∞ ∞,[ ]∈

0 Amin Amax ∞< < <



Voltages (U) and currents (I) can also be described by qualitative values of Type 1 if their
directions are determined by the structure of the network. Again, the qualitative value U/
I_normal characterizes the faultless state. Structural faults can result in extreme deviation val-
ues, e.g. there is no current (I_low_0) through a broken wire, as well as in non-extreme devia-
tions, e.g. there is higher current (I_high) in parallel paths of a broken wire. Note that in sign-
based approaches (e.g. [Mauss and Neumann, 1996]) effects like these cannot be modeled.
Non-structural faults mostly lead to non-extreme deviations. For instance, there is lower cur-
rent (I_low) through corroded wiring points.

2.2 Qualitative values, Type 2
The qualitative values of Type 2 and their semantics are shown in Table 2. We use capital let-
ters to distinguish the different types.

Again, we emphasize the order relation between the landmarks: . The
qualitative value U/I_Normal describes the faultless state, but it does not indicate whether the
interval is located to the left or to the right of the zero point of the extended real number line.
U/I_Low_neg_inf and U/I_High_inf describe extreme deviations from the faultless state. U/
I_Low and U/I_High specify non-extreme deviations.

A challenging task for diagnosis systems based on fault models is to derive the effects of faults
on network parameters, i.e. starting at the point where one or even more resistances are
described by qualitative values different from R_normal, currents and voltages at metering
points have to be determined.

3. SDSP-Analysis
A resistive network can be described by a system of linear equations based on Kirchhoff’s and
Ohm’s laws. Assuming that a fault has occurred, this system of equations can be exploited in
order to determine qualitative values for voltages and currents. Since the qualitative values rep-
resent intervals, the system of equations can be algebraically solved. As a result, the functional
relationship between a certain voltage (current) on the one hand and the resistances and the
voltage source on the other hand can be obtained. These functional relationships can vary
widely in complexity depending on the specific network structures. In order to compute the
qualitative values for a voltage (current), the signs of partial derivatives of the above-men-
tioned functional relationship have to be determined. Moreover, symbolic expressions describ-
ing interval boundaries have to be ordered by size. Although possible, this process seems to be
very complicated because the symbolic expressions being involved can be extremely complex.
One approach to simplify this under specific circumstances has been published by [Mauss and
Neumann, 1996]. The main advantage of the SPS method is that the network is described by a
set of component-oriented local equations which can be solved step by step. This means that

qualitative value abbreviation semantics
A_Low_neg_inf A_L_

A_Low A_L

A_Normal A_N

A_High A_H

A_High_inf A_H_

Table 2: Qualitative values of Type 2

∞ A ∞– ∞–,[ ]∈
A ∞– Amin,( )∈
A Amin Amax,[ ]∈
A Amax ∞,( )∈

∞ A ∞ ∞,[ ]∈

∞– Amin Amax ∞< < <



there is always at least one equation that can be directly solved. The equations are organized in
a SP-tree which directly relates corresponding variables and, therefore, solving the set of equa-
tions means local propagation of values guided by the SP-tree. The SPS method currently is a
sign-based approach for analyzing resistive networks. In the introduction we have seen that
with sign-based approaches not all faults and their different effects can be modeled. Therefore,
we adapt the SPS method to the deviation-based qualitative values introduced in Section 2 and
demonstrate that rules known from electrical engineering can be interpreted in such a way that
a local propagation algorithm can also be defined for deviation-based qualitative values.

3.1 Qualitative analysis of resistive networks
Our approach to the qualitative analysis of a resistive network consists of two main steps. We
first describe these steps using the quantitative interpretation of electrical laws in order to show
that we utilize a limited number of different types of equations. This is important since each
type of equation will give rise to a qualitative operator in the qualitative version of the analysis.

1. SDSP transformation:

The circuit transformation consists of star-delta transformation and series-parallel reductions
which generate an SP-tree whose nodes are attached with equations that are used to compute
values of network parameters (transformation resistances, series-parallel compensation resis-
tances, current and voltages). This step is carried out once. Similarly to the SPS method, the
resulting structure will be used to simulate different kinds of faults. The SP-tree is an explicit
representation of the structure of the network.

If the network is not series-parallel reducible (SP-reducible) in the first place, star-delta trans-
formations can be performed. As a result, the transformed network consists exclusively of
series and parallel groupings. The star-delta conversion for circuit transformations is shown in
Figure 2.

The network conversion consists of resistance, current and voltage transformations. Resistance
transformations are described by the following quantitative equations (1) to (6).
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  (3)   (4)
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Figure 2: Star-delta conversion
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  (5)   (6)

Current transformations are described by the equations (7) to (9).

  (7)   (8)   (9)

Voltage transformations are described by the equations (10) to (12).

  (10)   (11)   (12)

As a difference to the SPS method we would like to emphasize that we use star as well as delta
conversions, (hence the name of our method: SDSP method). This is advantageous because, in
comparison to the SPS method, new classes of network topologies can be treated. As a further
difference, we restrict stars and deltas to be transformed to those with three edges - with the
purpose to obtain a fixed number of equation types. And hence a fixed set of qualitative trans-
formation operators. Thus, the number of equations that are exploited by the SDSP method is
limited. As a disadvantage of this restriction to stars and deltas with three edges, we admit that
there are some networks that cannot be treated (e.g. networks consisting exclusively of four-
edge stars without any delta transformations applicable). According to our experiences, these
networks are hardly relevant in practice.

In order to present the naming conventions, the schemes of series and parallel groupings of
resistors are shown in Figure 3.

Series groupings of resistors are described by equations (13) to (15).

  (13) , serial compensation resistor

  (14) , same currents rule

  (15) , voltage divider rule

Parallel grouping of resistors are described by equations (16) to (18).

  (16) , parallel compensation resistor

  (17) , same voltages rule

  (18) , current divider rule
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Figure 3: Series and parallel grouping
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2. Local propagation of qualitative values:

The second step consists of local propagation of qualitative values in the SP-tree in order to
simulate circuit behavior (i.e. the step can be carried out for each of the supplied fault models).

First, by exploiting equation (1) to (6) the values of transformation resistances are determined.
Note, that the special form of the equations (1) to (6) has been derived in order to deal with the

selection problem [Struss, 1990], i.e. we do not utilize  which is obvi-

ously algebraically equivalent to equation (1). The resistance values of transformed resistors
are determined with equations (1) to (6). Since resistances are described by qualitative values
of Type 1, the qualitative versions of equations (1) to (6) have to be defined for values of Type
1.

Second, by exploiting equations (13) and (16), values of resistances are propagated from the
leaves of the SP-tree to its root. Since resistances are described by qualitative values of Type 1,
the qualitative versions of these equations have to be defined on values of Type 1. Note the spe-
cial form of equation (16) which is specifically chosen in order to handle the selection prob-

lem. We do not utilize  which is algebraically equivalent to equation (16).

Third, values for currents and voltages are propagated from the root of the SP-tree to its leaves
by evaluating equation (14), (15), (17) and (18). As a result, values for each current and each
voltage of the transformed network are obtained. In the transformed network the directions of
currents and voltages are determined by the network’s structure. Thus, currents and voltages
are described by qualitative values of Type 1 and, therefore, the qualitative version of equation
(14), (15), (17) and (18) have to be defined on values of Type 1 (see below). This step of the
network analysis is an extension of the SPS method since we exploit an extended set of electri-
cal laws, i.e. current divider and the voltage divider rules are added.

One could argue that these rules violate the no-function-in-structure principle because they are
only applicable if certain groupings of resistors are concerned. Nevertheless we do not hesitate
to exploit these rules, because using them does not imply any limitations on the applicability of
our approach, i.e. the resistors can still be arbitrarily connected. Furthermore, we show that
these two rules are required by the propagation algorithm (see the comments on soundness and
completeness in Section 4). Obviously, the form of the equations (15) and (18) indicates that
qualitative versions of the current divider and voltage divider rules suffer from the selection
problem which cannot be overcome by choosing specific equation transformations. The quali-
tative versions of these two rules are explicitly defined in Section 3.2.

Fourth, values of voltages and currents of the original network are determined by exploiting
equations (7) to (12). Up to this point of the network analysis, currents and voltages are
described by qualitative values of Type 1. Thus, the qualitative version of these rules have to be
defined on values of Type 1. The subtraction of two qualitative values of Type 1 (see the equa-
tions (8) and (10)) leads to qualitative values of Type 2 because the subtraction of two positive
intervals does not necessarily lead to a positive interval. Furthermore, values of voltages and
currents are obtained by evaluating Ohm’s law. Since Ohm’s law combines resistance values
on the one hand and the values of currents and voltages on the other hand, the qualitative ver-

R1 R13 R32⋅
R12 R13 R32+ +
-------------------------------------------=

P3 R1 R2⋅
R1 R2+
--------------------=



sion of Ohm’s law has to be defined for the combination of two qualitative values, one from
Type 1 one from Type 2.

In order to define the qualitative versions of the electrical laws mentioned above, the qualita-
tive versions of addition, multiplication, reciprocal, subtraction and the current divider and the
voltage divider rule have to be defined on values of Type 1. Moreover, the qualitative version of
the multiplication has to be defined for two different values, one from Type 1 the other from
Type 2. In the next section the definition of these operators are given. The qualitative equal
operator is not mentioned because it is trivial.

3.2 Combining qualitative values during SP-tree propagation
The SDSP method relies on the definitions of the above mentioned qualitative operators. These
definitions are based on the following three features. We use uppercase letters to describe qual-
itative operators, e.g. ADD means qualitative addition.

(I) The qualitative values A_normal and A_Normal represent the faultless state. Therefore, any
parameter A has the qualitative value A_normal (A_Normal) if its value is determined from
parameters that, in turn, have the qualitative values A_normal (A_Normal). E.g.,
ADD(R1_normal, R2_ normal) = S3_normal with S3 being the compensation resistor of
the series grouping of R1 and R2.

(II) The qualitative values of the SDSP method have a clear semantics, e.g. A_normal <->
. As noted before, we emphasize that the qualitative values represent

symbolic intervals whose boundaries are not quantitatively specified, but they are ordered,
e.g. .

(III) Due to the semantics of qualitative values, the interval calculus presented by [Struss,
1990] can be utilized for defining qualitative operators. In addition, we use the well known

reciprocal of an interval with the definitions  and .

Exploiting the current divider and the voltage divider rule by applying the elementary
operations for interval arithmetic, might lead to the selection problem. For instance, in
equation (15) and (18) the resistances R1 and R2 appear in the numerator as well as in the
denominator. In order to avoid unnecessary large intervals we define the one-step evalua-
tion of these two rules for intervals as follows.

If  and  and  and

 then

 holds.

Note that  because the current and voltage divider rules are only applied
when SP-reducible networks are considered. In this case, all currents and voltages have
non-negative values. Thus, the equations

 and  and

A Amin Amax,[ ]∈

0 Amin Amax ∞< < <

1
0 0,[ ]

------------- ∞ ∞,[ ]= 1
∞ ∞,[ ]

---------------- 0 0,[ ]=

R1 R1left R1right,[ ]∈ R2 R2left R2right,[ ]∈ U3 U3left U3right,[ ]∈

U1
R1

R1 R2+
-------------------- U3⋅=

U1 U1left U1right,[ ]∈ R1
R1 R2+
-------------------- U3⋅

min

R1
R1 R2+
-------------------- U3⋅

max
,=

U3 R1 R2, , 0≥

R1∂
∂

U1
R2

R1 R2+( )2
---------------------------- U3⋅ 0≥=

R2∂
∂

U1
R1–

R1 R2+( )2
---------------------------- U3⋅ 0≤=



 hold and, therefore, the interval-based evaluation of the voltage

divider rule can be defined as follows.

.

By the same way, we define the interval-based current divider rule.

As explained in Section 3.1, the SDSP method relies on the qualitative versions of the arith-
metical operations addition, multiplication, reciprocal and subtraction of qualitative values of
Type 1 as well as on the multiplication of two qualitative values, one from Type 1 the other
from Type 2. The definition of these operations on qualitative values is given in Tables 3 to 7.
Based on the derivations in (III), the application of the current and voltage divider rules to
qualitative values of Type 1 is presented in Table 8.

For all operations a specific combination table is defined. The tables specify the composition of
normal as well as non-normal qualitative values. In the following we explain the entries of the
composition tables used in the SDSP method. Exemplarily, we show how the results of the
addition of two qualitative values of Type 1 can be motivated.

In order to define the qualitative addition  of two values of Type 1, first, the
combination of normal values is considered. According to the semantics of qualitative values
(see Section 2), we have to specify the quantitative landmarks Cmin, Cmax in relation to
Amin, Amax and Bmin, Bmax. With respect to (I)

C_normal = ADD(A_normal, B_normal)

must hold. In Section 2, the semantics of the qualitative values is given. Thus,

is valid. According to [Struss, 1990]:

The semantics of C_normal is:

C_normal <->

However, what is the result of ADD(A_normal, B_high)? According to the semantics of quali-
tative values A and B:

Taking  and  into account, it is obvious that

holds. Thus,

ADD(A_normal, B_high) = (C_normal or C_high)

is valid (cf. Figure 4 and Table 3).

U3∂
∂
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-------------------- 0>=
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------------------------------------------- U3left⋅ R1right
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------------------------------------------- U3right⋅,
˙

=

I1left I1right,[ ] R2left
R1left R2right+
------------------------------------------- I3left⋅ R2right
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------------------------------------------- I3right⋅,=

C ADD A B,( )=

Cmin Cmax,[ ] Amin Amax,[ ] Bmin Bmax,[ ]+=

Cmin Cmax,[ ] Amin Bmin+ Amax Bmax+,[ ]=

C Cmin Cmax,[ ]∈ Amin Bmin+ Amax Bmax+,[ ]=
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The general principle behind the derivation methods for all qualitative operators is similar, i.e.
the idea of the proof technique for the entries of these tables does neither depend on specific
operations nor on specific qualitative values. Due to space limitations, the results are summa-
rized in Table 3 to Table 8. Slashes (/) mean logical “or” and question marks indicate that cor-
responding operations are undefined. We use lowercase (uppercase) letters for parameters in
the operator definitions in order to indicate that the operators are defined on parameters that are
described by qualitative values of Type 1 (Type 2).

The Tables 3 to 6 define the elementary operations on the qualitative values of Type 1.

It is important to note that the subtraction of two positive intervals does not necessarily lead to
a positive interval. Thus, the qualitative subtraction of two values of Type 1 leads to qualitative
values of Type 2 (see Table 6). Especially, SUB(0, 0) has the qualitative values L, N or H as a
result. Note that the set of values of Type 2 does not include any value that explicitly represents
the quantitative value  (see Section 2).

A | B 0 l n h
0 0 l l / n l / n / h
l l l l / n l / n / h
n l / n l / n n n / h
h l / n / h l / n / h n / h h

Table 3: Qualitative addition  of values of Type 1

A | B 0 l n h
0 0 0 0 0 ?
l 0 l l / n l / n / h
n 0 l / n n n / h
h 0 l / n / h n / h h

?

Table 4: Qualitative multiplication  of values of Type 1

A 0 l n h
h n l 0

Table 5: Qualitative reciprocal  of values of Type 1

0 Cmin Cmax

C_nC_l C_hC_0 C_

8
8

ADD(A_n, B_h)Figure 4: ADD(A_n, B_h) = C_n or C_h

∞
∞
∞
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c ADD a b,( )=

∞

∞
∞
∞
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c MULT a b,( )=

∞
∞

c RECIP a( )=

0



The qualitative multiplication of two values, one from Type 1 the other from Type 2, is defined
in Table 7. Some combinations are undefined (question marks) because each of the qualitative
values L, N, H may represent an interval that contains the quantitative value  and the multipli-

cation of  and the value  is not defined.

The definition of the qualitative current divider and the voltage divider rule on values of Type 1
is shown in Table 8.

3.3 Modeling and SDSP-Analyzing the field regulator
In order to outline the strength of our approach we now show how to model and analyze the

A | B 0 l n h
0 L / N / H L / N / H L / N L L
l L / N / H L / N / H L / N L L
n N / H N / H N L / N L
h H H N / H L / N / H L

H H H H ?

Table 6: Qualitative subtraction  of values of Type 1

A | B 0 l n h
L ? L L L L
L L / N / H L / N / H L / N L / N / H ?
N L / N / H L / N / H N L / N / H ?
H L / N / H L / N / H N / H L / N / H ?
H ? H H H H

Table 7:  Qualitative multiplication  of values of different types.
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?
?

0
0
0

0
0
0

0
0
0

0
0
0

l
n
h

l l / n / h
n / h
h

l / n / h
l / n / h
l / n / h

l / n
l / n
l / n / h

l
l / n
l / n / h

0
0
0

l
n
h

n l / n / h
n / h
h

l / n / h
n / h
n / h

l / n
n
n / h

l / n
l / n
l / n / h

0
0
0

l
n
h

h l / n / h
n / h
h

l / n / h
n / h
h

l / n / h
n / h
n / h

l / n / h
l / n / h
l / n / h

0
0
0

l
n
h

l / n / h
n / h
h

l / n / h
n / h
h

l / n / h
n / h
h

l / n / h
n / h
h

?
?
?

l
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Table 8: Qualitative voltage divider rule
and current divider rule
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field regulator of our application domain. A parallel grouping of a resistor and a switch (see
Figure 1) is represented by only one resistor in order to simplify the model, (Figure 5). The
field coil and the fuse are modeled as resistors as well (Rf and R2). The battery is described by
a voltage source (U0). The resistor R5 models a faulty behavior of the field regulator because it
has the qualitative value R5_low. The network to be analyzed is a bridge circuit.

The first step of the SDSP method is a star-delta conversion (including corresponding resis-
tance transformations) and a subsequent SP-reduction. As a result, the SP-tree is obtained.

For the circuit in Figure 5 the SP-tree is shown in Figure 6. R5 and R23 build a parallel group-
ing and therefore they are the child nodes of the node P7. The letter P indicates that the node 7
compensates a parallel grouping. Series groupings are represented by nodes marked with the
letter S.

U0_n

R1_n R4_n

R3_n R5_l

R2_n

Figure 5 : Resistor transformation
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Figure 6: Propagation of qualitative values
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The second step of the SDSP method is local propagation of qualitative values.

First, the transformation resistance values are determined. Since the involved resistances of the
original network have the qualitative value Ri_normal, the transformed resistances are
described by normal, too (see Figure 5).

Second, the qualitative values of the compensation resistances are determined. The leaves of
the SP-tree show the qualitative values that are presented in Figure 5. These values are propa-
gated to the root (S10) of the tree using the parallel and the series compensation resistor rule.
The value describing P7 is derived by applying the parallel compensation resistor rule.

Third, the qualitative values of currents and voltages are computed. The voltage source is
applied to the whole network and, thus, it is applied to the node S10 in the SP-tree and, there-
fore, U10_normal holds. Qualitative values of currents and voltages are propagated top-down
by applying the propagation rules (see the labels of the arrows in Figure 6 and the correspond-
ing legend).

The final step of the SDSP method is a voltage and current transformation in order to obtain
the qualitative values of the original network.

For instance, if we assume, the qualitative resistance value of resistor R5 is R5_low in order to
model faulty behavior, the SDSP method will compute the current through R5 being equal or
higher (in comparison to the faultless state). More surprisingly, for R1, it cannot be derived
whether the current is higher, lower or equal. In other words: The current’s deviation from the
faultless state depends on the exact quantitative values of resistances in the circuit. As a further
result of the application of the SDSP method, I2 is determined to be equal or lower (I2_L or
I2_N). Note that, due to a subtraction operation (cf. equation (8)), I2 is described by qualitative
values of Type 2. In this case, a lower value might result in the inversion of the direction and,
therefore, in an increase of the absolute value of the current. In order to evaluate the results
concerning I2 for diagnostic purposes, the current of the field coil (bridge resistor) has to be
measured by amount and by sign.

4 Conclusion
First of all, the SDSP method is applicable to almost arbitrary resistive networks that consist of
one voltage source and an unlimited number of resistors. Thus, complex circuits can be han-
dled and even in bridge circuits the algorithm computes the most restrictive set of qualitative
values. As noted before, there are specific network topologies (see Section 3.1) that still cannot
be handled.

I1 ADD I12 I13,( ) ADD n h⁄( ) l n⁄( ),( ) l n⁄ h⁄= = =

I2 SUB I23 I12,( ) SUB l n⁄( ) n h⁄( ),( ) L N⁄= = =

I3 ADD I13 I23,( ) ADD l n⁄( ) l n⁄( ),( ) l n⁄= = =

U1 MULT R1 I1,( ) MULT n l n⁄ h⁄( ),( ) l n⁄ h⁄= = =

U2 MULT R2 I2,( ) MULT n L N,( ),( ) L N⁄= = =

U3 MULT R3 I3,( ) MULT n l n⁄( ),( ) l n⁄= = =



Second, due to the-well known analogies between electricity, hydraulics and mechanics, the
approach is not limited to the electrical domain.

Third, we introduce a set of qualitative values that represent deviations rather than signs. Due
to the semantics of the qualitative values, it is possible to describe structural and non-structural
faults and to distinguish their different effects on voltages and currents without utilizing quan-
titative parameter values.

Fourth, the qualitative versions of electrical rules are specifically chosen to avoid the selection
problem. The inference algorithm is sound and complete under the single-fault assumption and
the assumption that no faulty resistor is involved in a star-delta conversion. The latter assump-
tion is related to the single-fault assumption because with a bridge resistor being non-normal
the star-delta conversion would generate three compensation resistors with non-normal behav-
ior. The complexity of the local propagation of qualitative values of the SDSP method is linear
with respect to the number of resistors in the circuit.

[Struss, 1990] has defined the notion of soundness and completeness of a qualitative inference
system based on its quantitative counterpart. As we have seen, not in all applications, quantita-
tive values are available. Therefore, we have defined a semantics of qualitative deviation values
based on order information alone. Thus, in our setting, the SDSP method cannot directly be
compared to quantitative network analysis methods. As we emphasized, a resistive network
can be described by a set of global linear equations that are based on Ohm’s and Kirchhoff’s
laws. There are well-known mathematical approaches for algebraic equation solving that com-
pute correct results, i.e. the corresponding derivation algorithms are sound and complete. How-
ever, as we have argued, local propagation methods such as SDSP are much simpler. The
problem with local propagation techniques is that intervals are widened, i.e. possibly unsound
results are generated due to uncorrelated local propagation operations. In qualitative
approaches, intervals are represented as disjunctions of qualitative values. In some cases, wid-
ening of intervals even results in incorrect qualitative values in disjunctions being computed by
the propagation algorithm. Thus, the proof for the soundness of the SDSP method must show
that this cannot happen for all kinds of network structures being treated. The completeness
proof must show that the intervals are not restricted too much, i.e. the interval disjunctions are
not “too small”. Completeness can easily be shown by induction over the involved propagation
rules while soundness is more difficult to show. We cannot present this proof in detail in this
paper due to lack of space (we refer to [Milde, 1997]), but we briefly describe the main idea.
Let us assume, the qualitative value for a specific parameter C has to be determined for the
case, that a resistor R has a qualitative value different from R_normal. Without restrictions we
consider the case that the result for C is normal or higher (see Figure 7). If quantitative values
were available, the left margin of the reference interval I_ref lies in the range of C_n and the
right margin lies in the range of C_h. Since only order information is available, we do not
know the exact position of I_ref.

Since the SDSP method is complete, during network analysis it determines an interval for
parameter C, that includes the interval I_ref (see Figure 7). Under the assumptions mentioned
above, we show that the class of intervals represented by the “impossible interval” (see Figure
7) cannot be inferred by the SDSP method. Exploiting the single-fault assumption we rule out
these intervals by showing that the partial derivatives of the boundaries of the SDSP and the
reference interval with respect to R are zero or of the same sign. This proof is based on the
exact set of propagation operators that we have defined in the previous section. Especially, the
soundness of the SDSP method is achieved (i) by the introduction of the current and voltage



divider rules (ii) by their qualitative one-step evaluation.

If we neglected these rules or ignored their on-step evaluation, the SDSP method would
become unsound. This can be easily seen by investigating the example in Figure 6. If the cur-
rent divider rule had been omitted, the qualitative values describing I8 would have to be deter-

mined by evaluating Ohm’s law ( ) only. Applying Ohm‘s law only, the

qualitative values I8_l or I8_n or I8_h are obtained and, therefore, the SDSP is no longer
sound. If the current divider rule is evaluated by applying elementary qualitative operators,
again, the qualitative values I8_l or I8_n or I8_h are obtained.

Furthermore, the soundness of the SDSP method is achieved by the special forms of the elec-
trical rules, that are specifically chosen in order to optimize the derivation of their qualitative
versions. This can be demonstrated by applying elementary qualitative operators to

 (see also equation (16)). As a result, P7_l or P7_n or P7_h were obtained, and,

therefore, the SDSP method would be unsound. For a more detailed presentation of the proof
we refer to [Milde, 1997].
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