
Supporting the Product Derivation Process with a Knowledge-based Approach

Lothar Hotz
HITeC c/o Fachbereich Informatik

Universität Hamburg
Hamburg, Germany 22527

Email: hotz@informatik.uni-hamburg.de

Thorsten Krebs
LKI, Fachbereich Informatik

Universität Hamburg
Hamburg, Germany 22527

Email: krebs@informatik.uni-hamburg.de

Abstract

In this paper, a product derivation process is described,
which is based on specifying customer requirements, fea-
tures and artifacts in a knowledge base. In such a knowl-
edge base a model about all kinds of variability of a
software-intensive systems is represented by using a logic-
based representation language. Having such a language,
a machinery which interprets the model is defined and
actively supports the product derivation process e.g. by
handling dependencies between features, customer require-
ments, and artifacts. Because the adaptation and new devel-
opment of artifacts is a basic task during the derivation pro-
cess where a product for a specific customer is developed,
this evolution task is integrated in the proposed knowledge-
based derivation process.

1. Introduction

The product line approach makes a distinction between
domain engineering, where a common platform for an ar-
bitrary number of products is designed and realized, and
application engineering, where a customer product is de-
rived based on the common platform (product derivation
process) [3, 5]. In this paper, a product derivation process
which includes both the selection and assembling of config-
urable assets (like requirements, features, artifacts) out of a
platform and their adaptation, modification, and new devel-
opment for customer specific requirements is presented.

The main assumption is based on the existence of a
descriptive model for representing already developed arti-
facts and their relations to features and customer require-
ments as well as the underlying architectural structure with
its variations [2, 14]. All kinds of variability are repre-
sented (described) in such a model. Thus, variability is
made explicit while the realization of the variability in the
source code is still separate. This model is called configu-
ration model. Thus, we speak of a knowledge-based prod-

uct derivation process (kb-pd-process). Furthermore, it is
assumed, that such a model is necessary to manage the in-
creasing amount of variability in software-based products.
Such a configuration model can be used for partially auto-
mated configuration of technical systems, where ”configur-
ing” can be selecting, parameterizing, constraining, decom-
posing, specializing and integrating components of diverse
configurable assets (e.g. features, hardware, software, doc-
uments etc.). With partially automated we mean a process
where user interactions are made for specifying a configu-
ration goal and logical impacts are made automatically by
the system.

A configuration model describes all kinds of variability
in a software system. Thus, it describes all potentially deriv-
able products. But this is done on a descriptive level: when
using a configuration model with an inference engine, only
a description of a product is derived, not the product itself.
But it is intended to use the description for collecting the
necessary source code modules and realizing (implement-
ing, loading, compiling etc.) the product in a straight for-
ward manner. Furthermore, a configuration model is not
a model to be used for implementing a software module,
e.g. it does not necessarily describe classes for an object-
oriented implementation.

Summarizing, a product derivation process which is sup-
ported by a knowledge base, includes the following basic
tasks:

1. Make the software, i.e. design and implement the ar-
tifacts. This is done in domain engineering, but also
when changes according to specific requirements have
to be realized.

2. Model all assets related to the software, i.e. customer
requirements and features, as well as the software it-
self according to their variability facilities. This means
generate the knowledge base.

3. For a specific product, the product derivation process
is performed to realize the product configuration.

1



A major difference of configuring software and config-
uring hardware is that the creation of the software (or mini-
mum parts of it in the evolution case) is closely related to the
configuration process itself (i.e. point one and three have to
be interchanged). This is normally not the case for hard-
ware, where the creation of technical entities like evalua-
tors, PC’s or aircraft cabins are strictly separated from their
descriptive configuration, and later changes are hardly pos-
sible.

In the following, we first describe some distinct levels
which we have to deal with when describing configurable
assets (Section 2). In Section 3, we present the language
entities as well as their interplay in the product derivation
process. Evolution aspects are discussed in Section 4. A
short survey on some related work is given in Section 5.

2. Levels of abstraction

We identify three tasks to be done on distinct levels
of abstraction for exploring a knowledge-based product
derivation process:

1. Language for specifying the knowledge base –
What is used for modeling?

This level describes what can be used for modeling the
general aspects of the process and the domain specific
part. This is done by specifying a language, that can
be used to describe the necessary knowledge. Further-
more, a machinery (inference engine) for interpreting
this description is specified and realized in a tool. Ba-
sic ingredients of the language are concepts, relations
between concepts, procedural knowledge and a spe-
cific goal description (see [8, 10] for an example of
such a language and a suitable tool). Entities of this
language are further described in Section 3.

2. Aspects of the process – What are the general in-
gredients of a product derivation process?

On this level, general aspects that have to be modeled
for engineering and developing products are specified.
This level determines, which entities for the kb-pd-
process have to be described. This is intended to be
a description for a number of kb-pd-processes in dis-
tinct business units or companies, ideally for develop-
ment of combined hardware/software systems in gen-
eral. The description of a specific domain is done on
the next level.

Following aspects of the kb-pd-process are currently
taken into account:

� Customer requirements: A description of
known and anticipated requirements expressed in
terms which can be understood by the customer.

� Features: A description of the facilities of the
system and its artifacts.

� Artifacts: A description of the hardware, soft-
ware components and textual documentations to
be used in products.

� Phases of the process: A description of general
phases of the process, e.g. ”determine customer
requirements”, ”select appropriate features”, ”se-
lect and adapt necessary artifacts”.

� Reference configurations: A description of typ-
ical combinations of artifacts (cases), which can
be enhanced or modified for a specific product.

For each aspect, an upper model with e.g. decompo-
sitions (e.g. sub-features) and relations between these
aspects is expressed. The upper model describes com-
mon parts of domain specific models. Upper models
are used to facilitate domain specific modeling. They
reflect the phases of the product derivation process
as well as their aspects. Furthermore, relations be-
tween those aspects are specified, e.g. require relations
between customer requirements and features. This
means, relations between parts of the upper-model are
specified.

An example of an upper model is given in Figure
1. Two different views on features (i.e. customer-
view (cv-feature) and technical-view (tv-feature))
are shown. Both specialize to a concept which has
sub-features and one which doesn’t (cv-no-subs, cv-
with-subs). The dotted arrows indicate places where
the domain specific models come in. Lines indicate
specialization relations and arrows decomposition re-
lations. This example shows how conceptual work
done in [7, 12, 13, 19] can be used for specifying an
upper model, which in turn can be used for automated
product derivation.

Each aspect of the process is modeled by using the lan-
guage. Thus, it is described how e.g. customer require-
ments and their relations can be represented by using
concepts and concept relations. In this paper, we do
not further elaborate on this topic.

Artifacts

CPS

CPS-system

Customer-Requirements Features

has-subrequirements has-subfeatures

has-parts

has-component

Figure 1. Example of an upper model

2



3. Domain specific level – What is modeled for a spe-
cific domain?

On this level, a domain specific model is created by
using the language and the upper model. By interpret-
ing the model with a machinery (given by a tool), this
model is used for performing the process. For devel-
oping software modules (i.e. on a file, source code, de-
veloper model level), development tools and software
management tools are integrated. In this paper, we do
not further elaborate on this topic.

3. Entities of the knowledge based model

Basic entities of the model and the process are listed in
the following:

1. A concept model for describing concepts by using
names, parameters and relations between parameters
and concepts. Main relations are decomposition rela-
tions, specialization relations and restrictions between
parameters of arbitrary concepts expressed by con-
straints. Such concept models can be used to describe
properties and entities of products like features, cus-
tomer requirements, hardware components, and soft-
ware modules.

2. Procedural knowledge mainly consists of a descrip-
tion of strategies. A strategy focuses on a specific
part of the concept model. E.g. a strategy focuses on
features, another one on customer requirements and a
next one on software components or on the system as
a whole. Furthermore, conflict resolution knowledge
is used for resolving a conflict (e.g. by introducing ex-
plicit backtracking points).

3. A goal specification describes a priori known facts, a
specific product has to fulfill.

Strategies are performed in phases which focus on a spe-
cific part of the model. After selecting this part, in a phase
all necessary decisions (i.e. configuration steps) are deter-
mined by looking at the model. Each configuration step
represents one decision, e.g. the setting of a parameter
value or processing a decomposition relation. Possible con-
figuration steps are collected in an agenda, which can be
sorted in a specific order, e.g. first decomposing the archi-
tecture in parts, then selecting appropriate components and
then parameterizing them. Decisions can be made by us-
ing distinct kinds of methods including automatic or manual
ones. Each decision is computed by a value determination
method, which yields to a specific value representing the de-
cision. Examples for value determination methods are: “ask
the user”1 , “take a value of the concept model” or “invoke a

1By the means of this value determination method the partially auto-
mated process is realized, i.e. user interactions come in here.

given function”. Thus, in a configuration step the decisions
to be made are described and after applying some kind of
value determination method the resulting value is stored in
the current partial configuration. A partial configuration
represents all decisions made so far and their implications,
which are drawn by the mechanisms described in the fol-
lowing. The resulting configuration, or final configuration
describes the product with all configurable assets (features
that are included, artifacts that have to be used etc.). Some-
times this is called product model (do not confound that
with the previously mentioned configuration model, which
describes not one but all products in a generic way).

In a cyclic practice, after each configuration step more
global (i.e. systemwide) mechanisms are (optionally) exe-
cuted. Examples are:

� Constraint propagation: For computing inferences
followed by a decision and for validating the made de-
cisions, constraints defined in the knowledge model
(constraints represent relations between concepts and
their properties) are propagated, based on some kind
of constraint propagation mechanism.

� External mechanisms: For performing an external
method, which does not use the concept model but
only the currently configured partial configuration, ex-
ternal techniques can be applied. Examples are:

– Simulation Techniques: a simulation model is de-
rived from the partial configuration and a sep-
arated module (like matlab) is called for this
task. Some specific kind of simulation in the area
of software product derivation is ”compiling the
source files”.

– Optimization techniques: the current partial con-
figuration is used to compute optimal values for
some parameters of the configuration.

– Calibration: the current partial configuration
might only give ranges for some parameters,
which can be further specified by calibrating the
real system. This calibration process can be
started as a global mechanism. Its results can be
stored in the partial configuration for further con-
sidering their impacts on other parameters in the
model.

� Further logical inferences: Methods, which perform
logical inferences that are not performed using the de-
cision process but use the concept model, can be in-
voked (e.g. taxonomic inferencing, description logic
etc.).

The objective of global mechanisms is to compute values
for not yet fixed decisions or to validate the already made

3



decisions. Those mechanisms (if more than one is present)
are processed in an arbitrary order but repeated until no
new values are computed by those mechanisms, i.e. until
a fixed point is reached. If this validation is not success-
ful or the computed value for a parameter is the empty set,
a conflict is detected (e.g. if the compilation of the source
files fails). A conflict means that the goal description, the
subsequent decisions made by the user and their logical im-
pacts are not consistent with the model. For resolving a
conflict, diverse kinds of conflict resolution methods (e.g.
backtracking) can be applied to make other user-based deci-
sions (see [8]). Those conflict resolution methods all try to
change the goal description or subsequent decisions made
by the user, because they are not consistent with the cur-
rent model. On the other side, one could also try to change
the model, because if a conflict is detected, with the given
model it is not possible to fulfill the given goal descriptions
and user needs. This gives a starting-point for evolution, i.e.
to modify or newly develop artifacts and include them in the
model to fulfill the needs (see Section 4).

Summarizing as a general skeleton the kb-pd-process
performs the following (slightly simplified) cycle:

Until no more strategy is found:

1. Select a strategy

2. Compute the agenda according to the focus

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry

� Perform a value determination method

� (Optionally) execute the global mechanisms

� If a conflict occurs, evaluate conflict resolution knowledge.

4. Including evolution aspects in the process

Above, a well-known configuration process is described
(see [6, 9]). The changing of artifacts and further develop-
ment of new components (i.e. evolution) can be included
in this process as described in the following subsections.
The aspect of evolution can be seen as a kind of innova-
tive configuration. We see innovative configuration not as
an absolute term but as a relative one – relative to a model.
A model describes a set of admissible configurations. In-
novation related to this model is given if the configuration
process computes a configuration which does not belong to
the predefined set. For supplying a product derivation pro-
cess where evolution of artifacts is a basic task, we expect
to apply methods known in innovative configuration to be
used.2

2A survey on innovative configuration is given in [8, 15].

4.1. Points of evolution

Following situations which come up in the process de-
scribed in Section 3 indicate the necessity for evolution:

1. Anticipated evolution can partially be realized with
more general models: Instead of narrowing the model,
broader value ranges for parameters and relations can
be modeled a priori. For example, the sub-models de-
scribing customer requirements or features can repre-
sent more facilities than the underlying artifacts can
realize. If during the derivation process such a feature
is selected by the goal description or inferred by the
machinery, it gives raise to evolution of an artifact.

2. Conflicts which cannot be resolved by backtracking,
i.e. by using the current model, indicate places where
evolution can take place. For example, if two arti-
facts are chosen which are incompatible, a resolution
of such a conflict would be to develop a new compati-
ble artifact and include it into the model.

3. Points set by the user: Instead of selecting a value at a
given point, the evolution of the model can be started
by the developer for integrating a new or modified ar-
tifact in the partial configuration. Another example is
given when the user does not accept system decisions.
Thus, an evolution process is explicitly started by the
user to change the model for making another decision
than the model indicates. Thus, evolution as a kind of
value determination method is introduced.

4.2. Evolve the configuration model

All dependencies of new concepts (features, artifacts,
customer requirements) to existing ones must be specified.
Having a model, the context where a new concept will be
included, can be computed on the basis of this model. For
instance, the related constraints of a depending aggregate
or a part-of decomposition hierarchy can be presented to
the developer for consideration during the evolution of the
model.

4.3. Supporting the evolution of features, customer
requirements and artifacts by a knowledge-
base approach

By analyzing the knowledge base, following information
used for development, can be presented to the developer.
The underlying idea is to present those parts of the model,
which can be used in special development situations, to the
developer.

� Present already defined concepts with their parameters
and relations.

4



� Present the specialization relations of all, of some se-
lected or of some depending concepts. In the last case
subgraphs, which describe a specialization context of
a given concept are computed, e.g. the path to the root
concept with direct successors of each node.

� Present the decomposition details of a given relation of
all, of some selected or of some depending concepts.
In the last case subgraphs which describe the decom-
position context of a given concept are computed, e.g.
all aggregates, which the concept are part-of and all
transitive parts which the concept has.

� Given a concept, present all concepts which are in re-
lation to it by analyzing the constraints, i.e. also a sub-
graph is computed. Because constraints relate param-
eters of concepts the subgraph presents not only con-
cepts but also relations between parameters.

� Given a concept, present all strategies where a param-
eter or relation of the concept is configured.

� Given a new concept description (with parameters and
relations), compute a place in the specialization hierar-
chy for putting the concept into.

Knowledge modeling can be seen as a specific kind of
evolution. If no given model exists, knowledge modeling
is an evolution of the always given upper model. The men-
tioned services can be used for bringing up the first model of
the existing artifacts, features and customer requirements.
Thus, by supporting the evolution task, the task of knowl-
edge modeling is also be supported.

4.4. Conflict resolution with an evolved model

When the model is changed, e.g. because new artifacts
are included, the changes must be consistent with the model
and already carried out inferences stored in the partial con-
figuration. What kind of resolution techniques are useful,
still has to be developed. One trivial approach is to start the
total process again with the new model and the old tasks,
and make all decisions of the user automatically. Thus,
test the new model with the user needs if they are consis-
tent. This can be done automatically, because the user in-
put is stored in the partial configuration, only the impacts
of the inference machine (e.g. constraint propagation) have
to be computed again, based on the new model. Another
approach is to start some kind of reconfiguration or repair
technique, which changes the partial configuration accord-
ing to the new model.

4.5. Evolve the real components

Last but not least the new components have to be build.
The new source code can be implemented by using existing

tools for developing and changing software systems.

4.6. The kb-pd-process with the evolution task in-
cluded

Summarizing, the kb-pd-process where evolution is
included looks like the following:

Until no more strategy is found:

1. Select a strategy.

2. Compute the agenda according to the focus.

3. Until the agenda is empty or a termination criteria of the strategy is
satisfied:

� Select an agenda entry.
� Perform a value determination method or evolution is started

by the user.
� (Optionally) execute the global mechanisms.
� If a conflict occurs, evaluate conflict resolution knowledge or

start evolution for changing the model.

5. Related Work

There are some approaches which try to automate soft-
ware processes [17, 18]. The main distinction to the ap-
proach proposed in this paper is the different kind of
knowledge representation. Instead of using rule-based sys-
tems, which have deficiencies when used for large domains
[9, 11, 20], a basic concern of the language we propose
is to separate distinct types of knowledge (like conceptual
knowledge for describing components and their variabil-
ity and procedural knowledge for describing the process
of derivation). A product derivation process with distinct
knowledge types is implemented in the tools EngCon [1]
and KONWERK [8, 10]. A requirement which is e.g. not
followed in [4], where information about components is
mixed with information about binding times in UML dia-
grams. One has to distinguish the knowledge representation
and the presentation of the knowledge to the user. For pre-
senting it might be useful to mix some knowledge types at
certain situations (as described in 4.3). But for maintain-
ability and adequacy reasons it is of specific importance to
separate them.

In [16] a support for human developers, which is not
based on automated software processes, is proposed. E.g.
representations are mainly designed for human readability
instead of machine interpretation. As a promising approach,
structured plain text based on XML notations are consid-
ered. Thus, the combination of formal structured knowl-
edge and unstructured knowledge should be achieved. On
the one hand XML is a mark-up language, where the main
problem is to create a document type definition that de-
scribes the documents to be used for representing software.
One could see the language described in Section 3 as a spec-
ification for such a DTD. Thus, in our opinion for formally

5



describing configuration knowledge in a structured way the
necessary type definitions are already known. On the other
hand, if unstructured knowledge should be incorporated,
one should also define tools which can handle them in more
than a syntactic way (e.g. similarity-based methods or data-
mining techniques) to get a real benefit of those kinds of
representations.

6. Conclusion

Modeling knowledge about features, customer require-
ments, and artifacts and a tool-based usage of such a model
yields to a partially automated product derivation process.
Partially means that goal descriptions and user interactions
are still possible, but logical impacts are drawn by the infer-
ence engine. It was shown, how such a product derivation
process can be defined. Furthermore, the evolution of arti-
facts is introduced in the process and can be supported by
using the knowledge which is explicit in the model.

7. Acknowledgments

This research has been supported by the European Com-
munity under the grant IST-2001-34438, ConIPF - Config-
uration in Industrial Product Families.

References

[1] V. Arlt, A. Günter, O. Hollmann, T. Wagner, and L. Hotz.
EngCon - Engineering & Configuration. In Proc. of AAAI-
99 Workshop on Configuration, Orlando, Florida, July 19
1999.

[2] T. Asikainen, T. Soininen, and Männistö. Towards Manag-
ing Variability using Software Product Family Architecture
Models and Product Configurators. In Proc. of Software
Variability Management Workshop, pages 84–93, Gronin-
gen, The Netherlands, February 13-14 2003.

[3] J. Bosch. Design & Use of Software Architectures: Adopting
and Evolving a Product Line Approach. Addison-Wesley,
May 2000.

[4] M. Clauss. Generic Modeling using UML Extensions for
Variability. In DSVL 2001. Jyvaskylae University Printing
House, Jyvaskylae, Finland, 2001.

[5] P. Clements and L. Northrop. Software Product Lines: Prac-
tices and Patterns. Addison-Wesley, 2002.

[6] R. Cunis, A. Günter, I. Syska, H. Peters, and H. Bode.
PLAKON - an Approach to Domain-independent Construc-
tion. In Proc. of Second Int. Conf. on Industrial and Engi-
neering Applications of AI and Expert Systems IEA/AIE-89,
pages 866–874, June 6-9 1989.

[7] A. Ferber, J. Haag, and J. Savolainen. Feature Interaction
and Dependencies: Modeling Features for Re-engineering
a Legascy Product Line. In Proc. of 2nd Software Product
Line Conference (SPLC-2), Lecture Notes in Computer Sci-
ence, pages 235–256, San Diego, CA, USA, August 19-23
2002. Springer Verlag.

[8] A. Günter. Wissensbasiertes Konfigurieren. Infix, St. Au-
gustin, 1995.

[9] A. Günter and R. Cunis. Flexible Control in Expert Sys-
tems for Construction Tasks. Journal Applied Intelligence,
2(4):369–385, 1992.

[10] A. Günter and L. Hotz. KONWERK - A Domain Inde-
pendent Configuration Tool. Configuration Papers from the
AAAI Workshop, pages 10–19, July 19 1999.

[11] A. Günter and C. Kühn. Knowledge-based Configuration
- Survey and Future Directions. In F. Puppe, editor, XPS-
99: Knowledge Based Systems, Proceedings 5th Biannual
German Conference on Knowledge Based Systems, Springer
Lecture Notes in Artificial Intelligence 1570, Würzburg,
March 3-5 1999.

[12] A. Hein, J. MacGregor, and S. Thiel. Configuring Soft-
ware Product Line Features. In Proc. of ECOOP 2001 -
Workshop on Feature Interaction in Composed systems, Bu-
dapest, Hungary, June, 18 2001.

[13] A. Hein, M. Schlick, and R. Vinga-Martins. Applying Fea-
ture Models in Industrial Settings. In Proc. of First Software
Product Line Conference - Workshop on Generative Tech-
niques in Product Lines, Denver, USA, August, 29th 2000.

[14] L. Hotz and A. Günter. Using Knowledge-based Configura-
tion for Configuring Software? In Proc. of the Configuration
Workshop on 15th European Conference on Artificial Intelli-
gence (ECAI-2002), pages 63–65, Lyon, France, July 21-26
2002.

[15] L. Hotz and T. Vietze. Innovatives Konfigurieren in tech-
nischen Domänen. In Proceedings: S. Biundo und W.
Tank (Hrsg.): PuK-95 - Beiträge zum 9. Workshop Planen
und Konfigurieren, Kaiserslautern, Germany, February 28 -
March 1 1995. DFKI Saarbrücken.

[16] R. Kneuper. Supporting Software Processes Using Knowl-
edge Management. In Handbook of Software Engineering
and Knowledge Engineering, volume 2, Singapore, 2002.
World Scientific.

[17] L. Osterweil. Software Processes are Software too. In Pro-
ceedings of the 9th International Conference on Software
Engineering (ICSE9), 1987.

[18] H. D. Rombach and M. Verlage. Directions in Software Pro-
cess Research. In Advances in Computers, volume 41, 1995.

[19] M. Schlick and A. Hein. Knowledge Engineering in Soft-
ware Product Lines. In Proc. of ECAI 2000 - Workshop
on Knowledge-Based Systems for Model-Based Engineer-
ing, Berlin, Germany, August, 22nd 2000.

[20] E. Soloway and al. Assessing the Maintainabiliy of XCON-
in-RIME: Coping with the Problem of very large Rule-
bases. In Proc. of AAAI-87, pages 824–829, Seattle, Wash-
ington, USA, July 13-17 1987.

6


