
ONTOLOGY-BASED SIMILARITY OF SOFTWARE CASES
Applying Ontology Reasoning to Software Retrieval

Lothar Hotz, Katharina Wolter
HITeC e.V., Department of Computer Science, University of Hamburg

hotz@informatik.uni-hamburg.de, wolter@informatik.uni-hamburg.de

Stephanie Knab, Arved Solth
HITeC e.V., Department of Computer Science, University of Hamburg

knab@informatik.uni-hamburg.de, solth@informatik.uni-hamburg.de

Keywords: Ontology engineering, Metamodelling, Description Logic, Taxonomical Similarity

Abstract: In this paper, we use Description Logic based classification and taxonomical similarity compu-
tations for facilitating software reuse. For this purpose we map a metamodelling-based software
representation to an ontology. The ontology is classified by a Description Logic reasoner, which
makes implicit taxonomical relations explicit. This classification is the basis for the computation
of taxonomical similarity. The approach is tested with several industrial software applications.

1 INTRODUCTION

Reusing software is still an open problem in cur-
rent software practice. Former approaches to
solve this problem concentrated on the code level.
However, the impact of reuse can be increased
when integrated earlier in the development pro-
cess, e.g. on the level of requirements. Thus, a
goal is to design an effective reuse process based
on requirements.

In this paper, we describe one step to-
wards this goal. The general reuse process of
our approach looks as follows: Starting with
an initial requirements specification a reposi-
tory is searched for similar specifications. This
repository contains former software development
projects stored in the form of software cases. A
software case comprises a problem (requirements)
and a solution (architecture, design, and imple-
mentation), similar to case-based approaches, for
example described in (Bergmann et al., 1999).
Each requirements specification is mapped to ap-
propriate elements of the solution.1 The retrieved
case is intended to be reused by modifying those
parts that need rework and keeping those parts
that can be reused without modification.

1For a complete description of a software case’s

internal structure we refer to (Śmia lek, 2006).

Retrieval of similar requirements specifica-
tions from a repository is a key prerequisite for
this reuse process. In the following, we explain
how this can be achieved by an ontology-based
similarity measure. In order to enable reuse
on the basis of meaning, the specifications need
to provide more than meaningless strings. The
words in one requirements specification need to
be linked to an ontology, where the semantics of
the words are defined. Our approach depends on
requirements specifications in a machine process-
able form as provided by the requirements specifi-
cation language RSL (Śmia lek et al., 2007), which
we use or ATTEMPO (Fuchs et al., 2005).

In this paper, this link is realized by a new
combination of formal requirements specifications
provided by the requirements specification lan-
guage RSL with ontology reasoning provided by
Description Logics (DL) (Baader et al., 2003).
The basic idea is to cover all former software cases
in an ontology (DL-model) and use the reason-
ing facilities of a Description Logic reasoner (DL-
reasoner) to classify the software cases, i.e. their
deeply structured elements. When classified, the
software cases have certain taxonomical distances
between each other. As shown for example in (Sa-
lotti and Ventos, 1998) the taxonomical distance
can be used for computing the similarity between
classes of a taxonomy, i.e. in our case between

elements of software cases. Computing the sim-
ilarity in this way takes into consideration the
semantics of used terms.

The remainder of the paper is structured as
follows: we start with the description of the re-
quirements specification language RSL (see Sec-
tion 2). This language links the words used in the
requirements specification of one software case to
WordNet (Fellbaum, 1998) as a basic ontology.
This provides the basis for our semantic-based
similarity measure. However, for applying an DL-
reasoner we had to map the requirements spec-
ifications to a DL-model (see Section 3). How
a DL-reasoner can be used for classifying a set
of requirements specifications and thus, provides
new taxonomic relations is described in Section
4. Our similarity measure compares the software
cases taking into account the new taxonomical
relationships between the cases, the meaning of
used terms, and the structure of sentences (Sec-
tion 5). We implemented the developed approach
and evaluated it with industrial software cases
taken from software development organizations.
These results are reported in Section 6. The ap-
proach is discussed in Section 7 and finally the
paper is summarized in Section 8.

2 FORMALIZING
REQUIREMENTS

Most requirements specifications are still writ-
ten in natural language. However, natural lan-
guage is potentially ambiguous, which compli-
cates automatic processing such as similarity es-
timation. Therefore, the new requirements speci-
fication language RSL was defined, which enables
precise requirements specifications and is compre-
hensible by humans at the same time. RSL is
based on the same metamodelling approach as
used for specifying the Unified Modeling Lan-
guage (UML, see (OMG, 2007)), i.e. the Meta
Object Facility (MOF, see (OMG, 2006)). The
RSL metamodel specifies the structure of valid
requirements specifications and is integrated in
a prototypical tool. The tool supports the user
writing specifications and ensures that each spec-
ification is an instance of the metamodel. In the
following, we describe the RSL elements relevant
for the scope of this paper. Each Requirements

Specification2 is part of a Software Case, which com-
bines all artifacts developed in one software devel-

2This font denotes elements defined in the RSL
metamodel.

opment project (e.g. Architectural Model, Detailed

Design Model, and Source Code). However, our sim-
ilarity measure compares the requirements spec-
ifications only. This is based on the assumption
that if two software cases have similar require-
ments their other artifacts are similar too and
thus, the reuse potential is high.

RSL allows to write requirements specifica-
tions in form of less formal NaturalLanguageHyper-

textSentences or more formal ConstrainedLanguage-

Sentences. For comparing the natural language
parts of RSL requirements specifications an In-
formation Retrieval approach is most appropriate
(see (Wolter et al., 2008)). The constrained form
of sentences has the advantage of being syntac-
tically unambiguous and semantically rich. For
this reason, our approach focuses on this part of
the specifications.

One type of ConstrainedLanguageSentences pro-
vided by RSL are Subject-Verb-Object (SVO) sen-

tences. They can be used to write SentenceLists and
ConstrainedLanguageScenarios in order to define Re-

quirements in detail. Such ConstrainedLanguageSce-

narios can for example contain sentences like: The
customer changes the order. The system confirms
the changes. etc.

In general, the metamodel defines classes,
their sub- and superclasses as well as their associ-
ations. Figure 1 shows the metamodel of SVOSen-

tences in RSL. Each SVOSentence has a Subject and
a Predicate. The Subject has a NounPhrase, which
links to a Determiner, a Modifier and a Noun via
DeterminerLink, ModifierLink and NounLink, respec-
tively. The Predicate links to a VerbPhrase be-
ing either a SimpleVerbPhrase for sentences with
one object or a ComplexVerbPhrase for sentences
containing two objects. In addition, the Simple-

VerbPhrase links a Verb via a PhraseVerbLink. While
the phrases enable different sentence structures,
the different links contain the information about
the words’ inflection within a particular sentence.
Finally, the links point to Terms, e.g. Nouns, Verbs

etc. All Terms of one specification are contained
in a Terminology which provides a software case-
specific word list.

In RSL, the meaning of Terms is defined by
linking them to WordNet3. WordNet is a se-
mantic lexicon that was developed at the Cog-
nitive Science Laboratory at Princeton Univer-
sity (Fellbaum, 1998). It groups synonymic words
(synonyms) of the English language in synonym
sets (called synsets). Amongst others, the fol-
lowing semantic relations connect synsets: hyper-

3see: wordnet.princeton.edu/

class Example: SVO-Sentence

ConstrainedLanguageSentence
SVOSentence

PhraseHyperlink
Subject

PhraseHyperl ink
Predicate

TermHyperlink
DeterminerLink

TermHyperlink
PhraseVerbLink

SimpleVerbPhrase
TermHyperlink
NounLink

Phrase
NounPhrase

Term
Noun

Term
Determiner

Phrase

«abstract»
VerbPhrase

ComplexVerbPhrase

Term
Verb

Term
Modifier

TermHyperlink
ModifierLink

verbLink 0..*
target 1

predicate*

target 1

determinerLink 0..*
target 1

nounLink 0..*
target 1

verbPhrase

0..1

object

0..1

subject*

target 1

noun 1

source0..1

determiner 0..1

source0..1

verb 1

source 1

complexVerbPhrase
0..1

simpleVerbPhrase

1

predicate

1
source1

subject

1

source 1

modifierLink 0..*
target 1

modifier 0..1

source

Figure 1: The structure of SVO-Sentences in RSL.

nyms / hyponyms (is-a, is-a invers) and holonym
/ meronym (part-of, part-of invers). For each
synset, WordNet provides definitions or example
sentences. Words with different meanings partic-
ipate in distinct synsets.

Figure 2 illustrates the general structure of
requirements documents defined with RSL and
how ambiguity problems of natural language are
solved. Terminology#1, for example, contains
the term Customer while Terminology#2 and #3
both contain the term Client. However, Customer
of Terminology#1 and Client of Terminology#2
both link to the same synset, i.e. they are syn-
onyms while the Client of Terminology#3 links
to another synset, i.e. the two terms Client have
a different meaning, they are homonyms.

3 ONTOLOGY
CONSTRUCTION

In order to use the classification facilities as
they are described in the next section, we had
to represent the requirements specifications and
their links to WordNet as a DL-model, using
ontology languages like OWL (OWL, 2004) or
KRSS (Patel-Schneider, 1993). Such languages
provide facilities to define concepts and roles (or
sometimes called properties) between two con-
cepts. A concept (given with a unique name)

Terminology #1 Terminology #2 Terminology #3

Requirements Specification #1

ClientCustomer Client

WordNet

Client, Customer: someone
who pays for goods or services

Client: a person who seeks
the advice of a lawyer

Requ. Spec. #2 Requ. Spec. #3

1. Client wants to sign up for show.
2. System checks availability of show.
3. System shows time schedule.
4. Client chooses time.
5. System shows sign-up dialog.
6. Client cancels sign-up for show.

1. Client wants to sign up for show.
2. System checks availability of show.
3. System shows time schedule.
4. Client chooses time.
5. System shows sign-up dialog.
6. Client cancels sign-up for show.

1. …
2. The Customer changes the order
of items.

3. …

1. …
2. The Customer changes the order
of items.

3. …

Person […]: (a human being) […]

Figure 2: Relations between Requirements Specifica-
tion, Terminology and WordNet.

indicates the set of individuals that belongs to
it, and a role indicates a relationship between
concepts. Concepts and roles are combined via
constructors. Typical constructors are those of
ALCHIF , i.e. Attributive Language with uni-
versal restrictions, existential qualification, con-
cept intersection (ALC), role hierarchy (H), in-
verse roles (I), and functional properties (F). As
we will see in the next section, we use ALC for
gaining a tractable description logic.

With these constructors, we can define a spe-
cialization relation between concepts, which pro-
vides superconcepts and subconcepts in a taxon-
omy. Furthermore, AL allows to distinguish be-
tween primitive (i.e. necessary) and defined (i.e.
necessary and sufficient) concepts, indicated with
implies and equivalent, respectively.

The question is now, how to use these ontology
representation facilities in order to represent re-
quirements specifications such that similar spec-
ifications have short taxonomical distances after
classification. For this task, we examine partic-
ular aspects of requirements specifications in the
following and describe how they are represented.

Mapping the RSL Metamodel The RSL
metamodel consists of 127 classes, sub- and su-
perclasses and several associations between them.
For example, the class SVOSentence has a gen-
eralization relation to ConstrainedLanguageSentence

and the association subject to class Subject and
predicate to class Predicate (see Figure 1). The
mapping is straightforward: classes of the meta-
model are represented with concepts, generaliza-
tion relations are represented with specialization
relations, and associations are represented with
roles. Furthermore, the associations of a class in
the metamodel define the class, i.e. if an object
with such relations exists, then it belongs to that
class and if an object belongs to a class it has the

relations of that class (see Figure 3, upper part).
Although navigation across associations is

bidirectional in the RSL metamodel, we do not
use inverse roles in the DL-model since the sim-
ilarity computation only requires roles directing
down from the concept representing the require-
ments specification to the synsets of WordNet.
Likewise, we can avoid a role hierarchy because
only a flat hierarchy of associations is given in the
metamodel. Finally, functional properties are not
needed for defining concepts because they relate
a class to a primitive type not to another con-
cept. Thus, we can use the description logic lan-
guage ALC instead of the more complex language
ALCHIF .

The mapping described above provides con-
cepts and roles, which have direct correspondence
to the classes and relations of the RSL meta-
model. The concepts representing the classes of
the RSL metamodel form the upper model of our
ontology. The concepts representing the elements
of specific requirements specifications are mod-
eled as specializations of these concepts, thus,
they form the lower part of our ontology.
Mapping Requirements Specifications Re-
quirements specifications of software cases are
represented through instances of classes of the
RSL metamodel. For example, each SVO sen-
tence defined in a software case is an instance
of the class SVOSentence of the metamodel and
is related to instances of the classes Subject and
Predicate. We map these instances to further
concepts in the ontology. Please note that we
map the elements of requirements specifications
to concepts and not to individuals. This is nec-
essary because taxonomical relationships cannot
be computed between individuals. However, in
our approach it is a key to compute taxonomi-
cal relationships between the elements of require-
ments specifications. For this reason, we rep-
resent the elements of a requirements specifica-
tion as subconcepts of the corresponding concept
of the upper model. Thus, each SVO sentence
of a specific software case is mapped to a con-
cept with a unique id as name and the concept
SVOSentence4 as superconcept. The concepts rep-
resenting the elements of requirements specifica-
tions are related through roles defined in the up-
per model. Furthermore, the roles specified in
the upper model define the software case concepts
(see Figure 3, middle part). Figure 4 shows a part
of a DL-model, which we created manually for il-

4This font denotes elements defined in the DL-
model.

Definition of an upper-model concept:
(equivalent SVOSentence

(and ConstrainedLanguageSentence

(some subject Subject)

(some predicate Predicate)))

Parts of the definition of the sentence:
“Client Opens a PC Window”
(equivalent SVOSentenceC2ClientOpensWindow

(and SVOSentence

(some subject SubjectC2Client)

(some predicate PredicateC2OpenWindow)))

(equivalent PredicateC2OpensWindow

(and Predicate

(some verbPhrase SimpleVerbPhraseC2Open)))

(equivalent SimpleVerbPhraseC2Open

(and SimpleVerbPhrase

(some verb PhraseVerbLinkC2Open)

(some object NounPhraseC2Window)))

(equivalent PhraseVerbLinkC2Open

(and PhraseVerbLink

(some linkedVerb VerbC2Open)))

(equivalent VerbC2Open

(and Verb

(some termLinksToWordnetEntry OpenSynset)))

(equivalent NounPhraseC2Window

(and NounPhrase

(some noun NounLinkC2Window)))

(equivalent NounLinkC2Window

(and NounLink

(some linkedNoun NounC2Window)))

(equivalent NounC2Window

(and Noun

(some termLinksToWordnetEntry WindowPCSynset)))

Parts of the definition of the sentence:
“Fireman opens a Building Window”
(equivalent SimpleVerbPhraseC7Open

(and SimpleVerbPhrase

(some verb PhraseVerbLinkC7Open)

(some object NounPhraseC7Window)))

(equivalent NounPhraseC7Window

(and NounPhrase

(some noun NounLinkC7Window)))

(equivalent NounLinkC7Window

(and NounLink

(some linkedNoun NounC7Window)))

(equivalent NounC7Window

(and Noun

(some termLinksToWordnetEntry WindowBuildingSynset)))

Definition of some synset concepts:
(implies OpenSynset VerbSynset)

(implies WindowBuildingSynset NounSynset)

(implies WindowPCSynset NounSynset)

(implies PersonSynset NounSynset)

(implies AdministratorSynset PersonSynset)

(implies ClientSynset PersonSynset)

(implies FiremanSynset PersonSynset)

Figure 3: Examples for mappings

lustration purposes. SVO sentences are coded by
a software case id starting with C and a read-
able string reflecting the text of the sentence (e.g.
SVOSentenceC2ClientOpensWindow).

This general mapping can be used to con-
vert all elements of a requirements specification
to a DL-model. However, this is not necessary
since RSL specifications contain elements that
are not relevant for our semantic-based similar-

ity measure such as NaturalLanguageHypertextSen-

tences, which only contain meaningless strings. A
further example are all TermHyperlinks (e.g. Noun-

Link). They are used to specify the inflection of
a word within a particular sentence, which is of
minor relevance for the similarity of sentences.
The same holds for function words like Deter-

miner. They constitute a significant number of
sentence element’s but have little semantic con-
tent on their own. Mapping each determiner into
a concept within the DL-model would require the
DL-reasoner to identify the equivalence of most of
the determiners. This, however, would cost sig-
nificant amount of computing time and would not
improve the similarity measure. For this reason,
we only map those RSL elements that are relevant
for our similarity calculation. TermHyperlinks e.g.
can easily be skipped by relating Phrases directly
with corresponding Terms (see Figure 1).

Figure 4: Asserted hierarchy

Mapping WordNet Elements The Word-
Net metamodel consists of several classes like
Synonym, Synset, Wordform etc. Synsets are re-
lated via the relation hyponym and hypernym in a
synset taxonomy. For the classification, only this
taxonomical relation and the fact that synsets
are distinct are needed. Thus, we only map

synsets from WordNet. They are represented
with concepts and the synset taxonomy is rep-
resented with the subconcept relation. The role
termLinksToWordNetEntry relates each term of a
requirements specification to one synset (see Fig-
ure 3). However, it is not necessary to map all
synsets of WordNet (i.e. almost 117.000) into the
ontology. For our purposes, it is only necessary
to map the synsets that have relations to a term
of a requirements specification and all the prede-
cessors of these synsets in the synset taxonomy.

4 CLASSIFYING THE
ONTOLOGY

Through the mapping described in Section 3, re-
quirements specifications of software cases are
represented with concepts and roles in a DL-
model. Since the requirements specifications con-
tain no information that directly relates the di-
verse concepts of distinct specifications, all con-
cepts are direct subconcepts of upper model
concepts (see Figure 4). Figure 5 shows the
same DL-model as Figure 4 but after classify-
ing. In Figure 4, the diverse subjects (SubjectC1-
Client, SubjectC2Administrator etc.) are direct
subclasses of the upper model concept Subject.
In this DL-model, only the synset taxonomy
provides a hierarchical structure. For example
AdministratorSynset and ClientSynset are both
of type PersonSynset (see Figure 4). The synset
taxonomy provided by WordNet and the fact that
the concepts representing a requirements speci-
fication are defined concepts and thus, strongly
related between each other allow for the classifi-
cation described in the following.

This modeling enables a DL-reasoner to use
the synset taxonomy in order to classify the con-
cepts of the requirements specifications, i.e. to
compute, which concepts are equivalent (see Fig-
ure 5, upper part in red) or, which concepts can
be taxonomically structured (see Figure 5, lower
part in blue). In Figure 5, relations of the synset
taxonomy are propagated one by one to the sub-
jects of requirements specifications of C1, C2,
and C7. Namely, SubjectC1Client, SubjectC2-
Administrator and SubjectC7Fireman are sub-
concepts of the concept SubjectC8Person due
to the fact that ClientSynset, Administrator-
Synset and FiremanSynset are subconcepts of
PersonSynset. Thus, after classifying the on-
tology, the taxonomy defined in WordNet is also
reflected in the concepts representing the specific
requirements specifications. Even more interest-

ing is the impact on structural concepts like SVO-

Sentence. In Figure 5 for example, the SVO sen-
tences of case C1 and C2 are classified as sub-
concept of the SVO sentence of case C8. This is
due to the fact, that in both sentences a specific
type of person (being either an administrator or
a client) opens a window of an operating system
while the fireman (of case C7) opens the window
of a building. Please note that Figure 5 shows
only parts of this information. This distinction
between the different meanings of window is given
through the links to distinct synsets (window: a
framework of wood or metal that contains a glass
windowpane [...] or window: ((computer science)
a rectangular part of a computer screen [...]).

This kind of classification takes the structure,
i.e. the roles between the concepts, into account.
Through this classification, a different taxonomi-
cal distance between the concepts of requirements
specifications is introduced and will lead to differ-
ent similarities. By using the WordNet link and
the provided mapping our similarity measure con-
siders the meaning of the requirements specifica-
tions.

Figure 5: Cutout of inferred hierarchy

5 SIMILARITY COMPUTATION

The goal of similarity computation is to get a
value between 0 and 1 that indicates an similarity
between a query and a software cases; 0 denot-
ing no similarity one denoting that the query is
completely contained in the software case. Please
note, that this measure is asymmetric: if a query
element is not found in a software case this re-
sults in a lower similarity value. In contrast, if a
software case contains elements that are not part

of the query, this has no negative impact on the
similarity value. This is due to the fact that addi-
tional elements in the software case are potential
for reuse and thus wanted.

The assumption made here is that the tax-
onomical distance between two concepts can be
the basis of such a similarity value. By using the
classification facilities of a DL-reasoner, implicit
taxonomical relations are made explicit.

Our similarity measure compares pairs of con-
cepts in the classified taxonomy. This compari-
son includes both the concept placement in the
taxonomical hierarchy (distance-based similarity)
and the roles and role fillers that the concepts de-
fine (role-based similarity) (see (González-Calero
et al., 1999) for a similar approach).

For computing the distance-based similarity
between two concepts, the distance of both con-
cepts to the least common subsumer (LCS) is
computed, both values are added and a value
describing that distance-based similarity is re-
turned: 1 means both concepts are in fact the
same concept, and the smaller the value, the fur-
ther away the concepts are from each other.

The basic idea of role-based similarity is that
the similarity of two concepts depends on the sim-
ilarity of their subgraphs. When comparing roles,
their most important aspects are their fillers: con-
cepts or concrete domains that specify the value
of a role. When comparing two concepts, the
function of role-based similarity is recursively ap-
plied. The recursion terminates when two con-
cepts without roles are compared; their similarity
is given by the distance-based similarity function.

The roles of both concepts are recursively
compared and similarities are summed up for ev-
ery concept. A value describing role-based sim-
ilarity is returned: 1 means both concepts have
the same roles, and the smaller the value, the less
their roles have in common.

Both aspects can be computed independently
from each other. Therefore, we defined two al-
gorithms, one computing the distance-based sim-
ilarity between two concepts and another one
comparing the common roles of concepts. The
similarity between two concept definitions is the
sum of the distance-based similarity and the role-
based similarity divided by two.

6 EXPERIMENTS

In the previous sections, we used a small run-
ning example for demonstrating our approach to
ontology-based requirements comparison. In the
following, we give an overview of the experiments

we are currently running for applying the ap-
proach to larger examples and to industrial soft-
ware cases. First, we sketch the technical setting.
Technical Setting The metamodel of RSL is
created with a standard UML tool (Enterprise
Architect) and an appropriate profile containing
the metamodel. For creating requirements speci-
fications according to the RSL metamodel, a spe-
cific software development tool is under devel-
opment. This tool was used by some industrial
partners and us for creating formalized require-
ment specifications. Internally, the tool uses a
graph representation (see (Dahm and Widmann,
2003) for details), which is also based on the RSL
metamodel. This way, a defined representation
for requirements specifications is available for our
experiments.

A JAVA-based converter maps the graph rep-
resentation of requirements specifications to an
OWL knowledge base by using the mapping de-
scribed in this paper. For debugging the OWL
knowledge base, Protégé is used. Protégé also
provides interfaces to the DL-reasoners Pellet and
Racer. For debugging inference behavior, Pellint
is applied.5

The similarity computation is a further JAVA-
component developed by us. It traverses the clas-
sified knowledge base for computing similarities
as presented in Section 5. Together with the con-
verter, this component will be integrated in the
above mentioned software development tool to-
gether with other similarity measures based on
text and graph structures. The tool is intended to
provide sophisticated reuse mechanisms in com-
bination with software transformations (Śmia lek,
2006).
Industrial Experiments We first created ex-
amples to test the similarity measure by slightly
varying requirements specifications, and manu-
ally judge the similarity of software cases. These
experiments show that the mapping described in
Section 3 provides coherent DL-models. Further-
more, we could show that the taxonomical simi-
larity measure computes the same similarity rank-
ing for these test cases as considered plausible by
us beforehand. For applying the approach in a
broader scale, 16 industrial software cases have
been created by international software organiza-
tions using the mentioned tool. The application
domains are in the area of internet banking, in-
vestment funds management, emergency systems,

5protege.stanford.edu, clarkparsia.com/
pellet, www.racer-systems.com, pellet.owldl.
com/pellint

forestry systems, financial contract systems, and
funding systems. They include 261 requirements
written in RSL in total, which map to more than
30.000 defined concepts. Those concepts are re-
duced to relevant concepts for similarity compu-
tations as described in Section 3 (see Table 1).
Current experiments still use subsets of the in-
dustrial software cases for classification due to
the complexity of the resulting ontologies. How-
ever, the general approach could be verified and
further work will extend the number of tractable
concepts.

Table 1: Sizes of industrial software cases

Upper model defined concepts 34

Software cases 16

Requirements 261

Defined concepts (complete mapping) 30184

Relevant defined concepts 8325

Relevant roles 36

7 DISCUSSION

In this paper, a new approach in the direction
of reusing software on the basis of its semantical
description is presented. For this task, a link be-
tween a formal requirements specification and an
ontology is established. This link and the map-
ping of the formal requirements specifications to
Description Logic concepts enable inferences that
classify existing requirements specifications. This
classification can be done offline before the reuse
activities start. For reusing parts of former soft-
ware cases, similarity computations on the basis
of classified concepts are applied.

When using ontologies in industrial settings
the ontology construction should be considered
as an automatic process unless a knowledge en-
gineer is continuously available within the orga-
nization. Automatic ontology construction can
be achieved through learning ontologies (which is
not considered in this paper), or by constructing
ontologies programmatically from existing data
and knowledge sources. In this paper, we exam-
ine the formal notation of requirements specifi-
cations as such a data source and developed an
automatic mapping from RSL requirements spec-
ifications to an ontology (here called DL-model).
By doing so, the modeling effort typically needed
when ontology-based approaches are applied is
reduced to linking words to WordNet elements
in order to specify the intended meaning. This
can be done by the requirements engineers who
specify the requirements, i.e. no knowledge engi-
neer is needed. Structural relations are implicit
defined by using the tool, which automatically

creates requirements specifications relying on the
given metamodel.

The use of a given ontology like WordNet
supplies an easy-to-use starting point. Although
WordNet contains more than 155.000 words and
about 117.000 synsets leading to almost 207.000
word-sense pairs, it does not contain all needed
terms for any domain at hand. This holds es-
pecially for highly domain-specific terms which
typically can be found in specifications. The re-
quirements engineers define these terms as Word-
Net extensions, i.e. they specify a taxonomical
relation. Linking words to WordNet elements and
specifing extensions if necessary is the only knowl-
edge modeling effort needed in our approach.
This however, is essential for our approach since it
provides the basis for the comparison of require-
ments specifications created for different domains,
by different persons or even in different organi-
zations. Without such a link, an alignment or
comparison of different software cases would be
difficult, one could only apply natural language
processing in order to guess the intended mean-
ings.

The approach of retrieving cases on the basis
of a similarity measure originates in case-based
reasoning (CBR) (Aamodt and Plaza, 1994).
Bergmann has described how to set up taxon-
omy similarities for various relationship types
(Bergmann, 1998). In (González-Calero et al.,
1999) and (Gomes et al., 2004) further combi-
nation of CBR and Description Logic are pre-
sented. In the paper at hand, we apply such
taxonomical similarity measures to a taxonomy,
which has been constructed by first mapping
metamodelling-based requirements specifications
to a DL-Model and then classifying this DL-
model by a Description Logic reasoner.

As a further aspect of CBR, Memory Organi-
zation Packages (MOPs) (Schank, 1982) are used
for organizing cases into significant portions for
allowing partial matching of cases. Also special-
izations are used for structuring those parts. In
this respect, our approach is similar to MOPs,
however, the structure we use is based on for-
mal concepts of a description logic, which enable
classification services provided by DL-reasoners,
whereas MOPs use a frame-based strict hierarchy.

Through the mapping given in this paper,
highly structured defined concepts are automat-
ically created from RSL requirements specifica-
tions. Description Logic inferences provide the
classification of these highly structured concepts.
By this means, the given taxonomy of Word-

Net’s synset is used for classifying all struc-
tured elements of requirements specifications (e.g.
SVOSentences) and implicitly existing taxonomi-
cal relations even between different software cases
are made explicit. We can not somehow relax the
relatively strong modeling with defined concepts,
because moving from defined to primitive con-
cepts would not allow this classification of struc-
tured concepts.

(Borgida et al., 2005) describes similarity mea-
sures for Description Logics, where diverse types
of concept definitions like nested roles are taken
into account. But composite concepts consisting
of multiple roles (like SVOSentences) are not yet
considered. However, examining concept defini-
tions in such detail could be used for improving
our similarity measure.

The current mapping of the metamodel takes
generalization relations and associations into ac-
count. Attributes to datatypes like strings or
numbers are not considered. Including those
would need Description Logics that handle con-
crete domains, and would need a similarity mea-
sure for comparing strings (e.g. based on infor-
mation retrieval). Since the tool under develop-
ment already provides such mechanisms, which
will be combined with our ontology-based simi-
larity measure, we will not go into that direction.

Compared to other specification technologies
as e.g. provided by the specification language Z
(Woodcock and Davies, 1996), our approach al-
lows specifications on the much higher require-
ments level, instead of specifiying computer pro-
grams itself. However, our requirements speci-
fication language RSL is also used for creating
architecture models and detailed design models
through transformations (Kalnins et al., 2005).
Furthermore, the link of the specification to on-
tologies enables the support through reasoners,
which is not given in other specification lan-
guages.

Finally, our approach extends simple
WordNet-based similarity measures as de-
scribed e.g. in (Pedersen et al., 2004). These
measures provide similarity values for synset
pairs only and cannot compare structured ele-
ments like SVO sentences or whole scenarios.
However, this is essential in our approach.

8 SUMMARY

In this paper, a new combination of formal
requirements specifications and description-logic
based inferences is used for facilitating software

retrieval. A formal mapping of requirements
specifications represented by means of a meta-
model to a highly differentiated DL-model is
given. This model enables a reasoner to classify
former requirements specifications. A taxonomy-
based similarity computation uses the classified
taxonomy as basis for comparing requirements
specifications. Our experience so far showed that
the approach works. We were able to map sev-
eral industrial software cases into one ontology.
Further application to industrial environments is
currently under development.

ACKNOWLEDGEMENTS

This work is partially funded by the EU:
Requirements-driven Software Development Sys-
tem (ReDSeeDS) (contract no. IST-2006-33596).
The project is coordinated by Infovide, Poland
with technical lead of Wasaw University of Tech-
nology and with University of Koblenz-Landau,
Vienna University of Technology, Fraunhofer
IESE, University of Latvia, HITeC e.V. c/o
University of Hamburg, Heriot-Watt University,
PRO DV, Cybersoft and Algoritmu Sistemos.

REFERENCES

Aamodt, A. and Plaza, E. (1994). Case-based reason-
ing: Foundational issues, methodological varia-
tions, and system approaches. Artificial Intelli-
gence Communications, 7(1):39–59.

Baader, F., Calvanese, D., McGuinness, D., Nardi,
D., and Patel-Schneider, P. (2003). The De-
scription Logic Handbook. Cambridge University
Press.

Bergmann, R. (1998). On the use of taxonomies for
representing case features and local similarity
measures. In 6th German Workshop on CBR.

Bergmann, R., Breen, S., Manago, M., Wess, S.,
Göker, M., Althoff, K.-D., and Traphöner, R.
(1999). Developing Industrial Case-Based Rea-
soning Applications - The INRECA Methodol-
ogy, volume 1612 of Lecture Notes in Artificial
Intelligence. Springer.

Borgida, A., Walsh, Thomas, J., and Hirsh, H. (2005).
Towards measuring similarity in description log-
ics. In International Workshop on Description
Logics, Edinburgh, Scotland. DL2005.

Dahm, P. and Widmann, F. (2003). GraLab - Das
Graphenlabor. Projektbericht 4.3.0, University
of Koblenz-Landau, Institute for Software Tech-
nology.

Fellbaum, C., editor (1998). WordNet: An Electronic
Lexical Database. MIT Press.

Fuchs, N. E., Höfler, S., Kaljurand, K., Rinaldi,
F., and Schneider, G. (2005). Attempto con-
trolled english: A knowledge representation lan-

guage readable by humans and machines. Lec-
ture Notes in Computer Science, 3564:213–250.

Gomes, P., Pereira, F. C., Paiva, P., Seco, N., Car-
reiro, P., Ferreira, J. L., and Bento, C. (2004).
Using wordnet for case-based retrieval of uml
models. AI Commun., 17:13–23.

González-Calero, P. A., Gómez-Albarran, M., and
Dı́az-Agudo, B. (1999). Applying DLs for re-
trieval in case-based reasoning. In Proc. of
the 1999 International Workshop on Description
Logics (DL’99).

Kalnins, A., Celms, E., and Sostaks, A. (2005). Model
transformation approach based on MOLA. In
Workshop on Model Transformations in Practice
(MTIP), MoDELS/UML ’2005.

OMG (2006). Meta Object Facility Core Specification,
version 2.0, formal/2006-01-01. Object Manage-
ment Group.

OMG (2007). Unified Modeling Language: Su-
perstructure, version 2.1.1 (non-change bar),
formal/07-02-05. Object Management Group.

OWL (2004). OWL Web Ontology Language
Overview. W3C. http://www.w3.org/TR/owl-
features.

Patel-Schneider, P. F. (1993). Description-logic
knowledge representation system specification
from the KRSS group of the ARPA knowl-
edge sharing effort. Technical report, DARPA
Knowledge Representation System Specification
(KRSS) Group of the Knowledge Sharing Initia-
tive.

Pedersen, T., Patwardhan, S., and Michelizzi, J.
(2004). WordNet::similarity - measuring the re-
latedness of concepts. In Proc. 19th National
Conference on Artificial Intelligence (AAAI-04),
page 3p.

Salotti, S. and Ventos, V. (1998). Study and formal-
ization of a case-based reasoning system using a
description logic. In EWCBR, pages 286–297.

Schank, R. C. (1982). Dynamic Memory: A Theory of
Learning in Computers and People. Cambridge
University Press.

Śmia lek, M. (2006). Mechanisms for requirements
based model reuse. In International Workshop
on Model Reuse Strategies - MoRSe, pages 17–
20.

Śmia lek, M., Ambroziewicz, A., Bojarski, J.,
Nowakowski, W., and Straszak, T. (2007). Intro-
ducing a unified requirements specification lan-
guage. In Madeyski, L., Ochodek, M., Weiss, D.,
and Zendulka, J., editors, Proc. CEE-SET’2007,
Software Engineering in Progress, pages 172–
183. Nakom.

Wolter, K., Krebs, T., and Hotz, L. (2008). Com-
bined similarity measure for determining similar-
ity of model-based and descriptive requirements.
In Artificial Intelligence Techniques in Software
Engineering (ECAI 2008 Workshop), pages 11–
15.

Woodcock, J. and Davies, J. (1996). Using Z: Spec-
ification, Refinement, and Proof. Prentice Hall
International.

