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Abstract. In this paper we describe an extension of Common Lisp which allows the defini-
tion of parallel programs within that functional and object-oriented language. In particular, the
extensions are the introducing of active objects, sending synchronous and asynchronous mes-
sages between them, automatic and manual distribution of active objects to object spaces, and
transparent object managing. With these extensions object-oriented parallel programming on a
workstation cluster using different Common Lisp images is possible. These concepts are imple-
mented as an extension of Allegro Common Lisp subsumed by the name NetCLOS. Furthermore,
it is shown how NetCLOS can be used to realize parallel abstractions for implementing parallel
Al methods at a highly abstract level.

1 Introduction

One of the big problems of Artificial Intelligence (AT) is getting its applications answer in time. Parallel
computation i1s one way to solve this problem. But though there are many parallel implementations of
basic Al techniques, there are very few Al applications which use them. This drawback is ascertained
due to two reasons:

— Most of these implementations depend on special parallel hardware (e.g., [7,4,12]). This hardware
is expensive and not widely available. Furthermore, the specification of many applications excludes
the use of special hardware (e.g., personal assistant).

— Most of them are written in special parallel programming languages unknown to the application
programmer and lacking features important to develop a complete application [22]. Hence their
integration into such an application is difficult.

Especially for AT methods the proposed parallel languages and models are too different from com-
monly used languages. They do not provide the flexibility programmers need, and are not integrated
with existing languages [13]. Furthermore, in special parallel languages non-parallel aspects are not
adequately expressable.

Our goal 18 to simplify the parallel implementation of standard AT techniques. We think this means
using standard hardware (i.e., a workstation cluster) and extending a language widely used for AI
programming in a way that hides any kind of explicit parallel programming from the application
programmer. Thus, we extend Common Lisp [19] with two levels of features for parallel programming
on workstation clusters. The upper level is intended for easy use by the Al programmer inexperienced
with parallel programming, while the lower level is intended for implementing the upper level. In
the lower level an integration of an actor-like language [5] in Common Lisp and its object-oriented
part CLOS (Common Lisp Object System) is introduced (see Section 3). The upper level realizes
parallel abstractions as complex structures and operations on them (Section 4). The use of parallel
abstractions is demonstrated with a constraint filtering algorithm (Section 5). In Section 6 related
work 1is discussed. First, we give a more detailed view of our parallel programming model.
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Fig. 1. Levels of used abstractions.

3 Extending CLOS with actors

In this section we describe the lower level (NetCLOS level), which is an extension of Common Lisp
and its object-oriented part CLOS (Common Lisp Object System). Features of NetCLOS are:

— Active objects, which include data, methods, a mail queue, and a process for handling incoming
messages by calling methods.
— Message passing for synchronous and asynchronous communication between active objects.

! NetCLOS as an extension to Allegro Common Lisp is implemented and can be received from the authors.
NetCLOS is implemented using the metaobject protocol of CLOS (see [11] and [8]).
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— Synchronization operations for delaying requests.

Programming with NetCLOS is done by creating active objects and sending messages between
them, which is fully integrated in the programming style of CLOS. Distribution of active objects
to workstations is widely hidden to the user. Thus, active objects are distributed over a virtual
machine consisting of several Lisp images residing on several workstations of a cluster. To allow
flexible programming of distributed active objects automatic distributions as well as explicit moving
of active objects 1s included in NetCLOS.

There are some approaches which include parallel programming in Lisp (see e.g., [22]) but most
of them concentrate on the functional part of Lisp. In NetCLOS the object-oriented part (CLOS) is
focussed as an extendable part for parallel programming. With our new approach we introduce active
objects in the spirit of actors [5,1] in CLOS to make parallel object-oriented programming in Common
Lisp possible.

3.1 Design decisions

Following [17] we discuss three dimensions of design issues for concurrent object-oriented programming;:
object model, internal concurrency, and interaction. The decisions are inspired by the concurrent
object-oriented language ABCL/1 [21].

Object model. Because we extend an existing object-oriented language, where passive objects reside
in the language, we use a heterogeneous object model with passive and active objects. Passive
objects are normal CLOS objects, active objects are extended by a mail queue and a process. By
buffering incoming messages in a mail queue active objects synchronize concurrent calls. Passive
objects do not synchronize concurrent calls, i.e., they have to be saved by explicit synchronization
calls or are used within a single-threaded active object.

Internal concurrency. Another design decision is whether an active object can process calls se-
quentially or in parallel. If calls are processed in parallel on the same active object, i.e. on one
data source, a high communication rate will be necessary. Because of high communication costs
in a workstation cluster, data and processes should reside on the same machine. Yet we decide to
process tasks of one active object sequentially.

Interaction. In NetCLOS object identifications are used to determine the recipient of a message.
Message passing can be done in three ways: future-messages, which are easy to integrate in a func-
tional context, one-way messages (past-messages), as a more flexible but also more complicated tool
for communication, and remote procedure calls (now-messages) for synchronous communication.

3.2 CLOS - the Common Lisp Object System

CLOS belongs to the ANST Common Lisp standard [19] and defines the object-oriented part of the
language. CLOS includes classes with multiple inheritance, generic functions, declarative method
combination, and a metaobject protocol. Classes are defined by slots (instance variables or data fields)
and some superclasses. All slots of all superclasses are inherited. Instead of having a message-passing
concept as in other object-oriented languages, CLOS includes the more powerful concept of generic
functions. A generic function describes a set of methods, i.e.; a method is related to a generic function,
not to one class. Because a generic function may have more than one discriminating argument, a generic
function is related to a set of classes not to one specific class. Instead of passing a message to an object,
the generic function is called. The classes of its arguments are used to determine (at runtime) which
methods should be used to compute a value for the generic function. Declarative method combinations
describe how several applicable methods should be ordered and how their results should be combined.
This 1s done by defining different kinds of methods, e.g., before-methods are called before primary-
methods, etc. The metaobject protocol is used to extend CLOS’ behavior portably. For instance, the
slot access can be modified to be a remote slot access. So called metaclasses can be defined by the
user, which enhance the behavior of classes and objects (instances).

125



Fig. 2. Parts of an active object.

Sending messages and synchronization Active objects communicate only by using one of three
message types (similar to ABCL/1): past, now, or future-messages. Past-messages are asynchronous
one-way-messages. The caller can continue its work, after a message is sent. After calling the methods
related to the message, the recipient does not send a reply message to the caller. Past-messages are
declared by the keyword :past as in:

(defpargeneric <name> :past (<recipient-object> <argumenti> ...))

Past-messages are used to realize complex request-reply frames.

Now-messages are remote procedure calls, i.e., the caller waits until the recipient accepts the
message, computes the request, and sends the reply back. These messages are indicated by the keyword
:now. Now-messages are used to ensure that the caller is inactive while processing the message. This
can be used to realize a sequential interface to an active object or to ensure specific synchronization
conditions.

When a future-message is sent, a future 1s created. Futures can be seen as simple active objects
which can only deal with two messages: the past-message write-result and the now-message touch.
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Fig. 3. Transfer of a query via a proxy.

Distribution The distribution model of NetCLOS is based on the notion of one object space residing
on each workstation of a cluster. An object space contains all information to handle active objects,
e.g., all necessary classes and functions are known to each object space.? Every active object resides
on exactly one object space. But an active object can be referenced from each object space, not only
the local one. Thus, the identity of an active object is guaranteed over all object spaces, i.e. each
active object is unique and can be referenced from diverse object spaces. When messages are sent or
an active object is passed as argument of a message, it makes no difference if the object is locally
or remotely referenced. This holds only for active objects, other data types — like passive objects,
lists, arrays, strings, or records — are only locally referenced. If objects of such data types function
as arguments of a message, a copy is sent to the recipient, i.e., changes to those types made by the
recipient are not known to the caller. Thus, no side effects on such datatypes are allowed. The copy

2 Special features are defined for distributing new definitions of generic functions and classes and for defining
systems (sets of files), which have to be known to all object spaces.
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of such an object includes also nested objects (e.g. lists of lists). Cyclic data is handle correctly, by
creating the same cycles in the remote object. Copying is done by generating a Lisp form, which when
evaluated creates the appropriate objects, and sending the Lisp form to the recipient.

There are two alternatives for an application to distribute its active objects to object spaces:
One is to move the object explicitly by calling the function move®, the other is to use a predefined
distribution class. There are two classes for distribution: one to realize a static distribution by deriving
Task Interaction Graphs from the reference structure of the active objects to distribute and another
class distributes the active objects dynamically when they are created. For the latter only a simple
scheme is present for sending active objects to object spaces in a round robin manner. For distributing
Task Interaction Graphs we use a combination of bisection and Kernighan-Lin (see section 4.1). But
extensions of NetCLOS made by subclassing can be defined to realize more sophisticated distribution
strategies.

For moving an active object explicitly the moving behavior of its slots can be specified when
defining the active object. When specified with :follow the value of that slot (another active object)
is moved in the same object space as the active object itself. When specified with :stay the value
of the slot stays in the current object space. Instead of the value the moved active object contains a
representant value (i.e., a prozy) as slot value.

Remote references Remote references to values is realized by proxies. A proxy knows the location of
the original active object and sends a kernel message to the original active object on a proxy reference
to get the referenced value. The necessary infrastructure is internal in NetCLOS. When moving an
active object appropriate proxies are automatically created. If a slot is of type :follow a local proxy
is created which referes to the remote slot value. If a slot 1s of type :stay a remote proxy is created
which referes to the local slot value. Garbage collection is extended to handle proxy references, as the
next paragraph describes.

Object spaces An object space is realized as a Lisp image and resides on one host; it is assumed
that each host processes only one object space. An object space contains some features (some realized
as light weight processes (lwp) inside one Lisp image), which realize the functionality of a virtual
machine.

Object spaces communicate with each other by kernel messages. An object space contains one
caller-lwp for each object space it wants to communicate with. The caller-lwp packs the message to
be sent (i.e., creates a Lisp form which contains the message on evaluation) and sends it via TCP /TP
to the other object space. There, the callee object space contains an lwp for realizing a recipient-lwp
for each other object space. The recipient-lwp unpacks the message and evaluates the resulting Lisp
form.

Each object space contains an object store, which contains local and remotely referenced objects.
It ensures exactly one proxy for each remote object, and it realizes a garbage collection method for
remote objects. This is necessary, because the internal garbage collection method of Lisp is image
specific and references of proxies (residing in a remote image) to objects are not considered. Thus,
with the internal garbage collection method an object would be garbage collected even if a proxy
residing on another space refers to it. The remote garbage collection is carried out by counting remote
references to each object. When no reference to a proxy and no local reference to the related object
is present this object can be garbage collected or if the counter decrements to 0, the object can be
garbage collected by the internal garbage collector contained in each Lisp image. A problem not yet
attended to are garbage collecting cyclic reference structures.

Each object space contains furthermore an object space manager (or object server). Working with
NetCLOS starts by loading NetCLOS in a Lisp image, which creates an initial object space on the host

® In the current implementation the function move can not be used in generic functions being performed in
parallel on one active object, because the process synchronizing the mail queue is not moveable in Lisp.
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the Lisp image is started — the master host — and an initial manager — the master?. This manager
starts the virtual machine by giving it a number of hostnames®. On each host an object space is
started, is initialized by some initialization forms and the communication links are established, which
connect the object spaces to each other. Thus, a fully connected communication structure is created.
Furthermore, the manager ensures an equal global context of classes and functions. When classes and
functions are loaded in one object space, the manager sends an appropriate message to all object
spaces which ensures a loading of the same classes and functions in those other spaces. If one object
space stops working (e.g. because the Lisp image quits) it sends a specific message to each object
space, which can react appropriately and can proceed working.

Integration of NetCLOS in CLOS There are two viewpoints to consider when integrating Net-
CLOS into CLOS: the implementors view and the application programmers view. From the imple-
mentors view NetCLOS is integrated in CLOS portably, 1.e., without changing the implementation
of CLOS. Even more, by extending the existing features, a small extension of the behavior of CLOS
yields to big expressability. E.g., the slot access is extended by the possibility of defining moving be-
havior for slots. A slot access protocol inherent in CLOS is extended to handle this moving behavior
and thus, every slot access for active objects is changed. From a programmer’s point of view this is
done by the same programming interface, i.e., the slot access function does not change to, e.g., special
proxy access functions like proxy-value. Besides extending the slot access generic function meta-
classes are integrated in NetCLOS for describing generic functions to be handled as messages, i.e. for
each method call special methods for testing the active object’s location (local or remote) and select-
ing the appropriate send style (now, past, future) are automatically integrated by these metaclasses.
Furthermore, for each class ¢, whose instances can be moved, a subclass prory-c is created. This class
i1s of type prozy-class, a metaclass, which implements proxy behavior. For example, this metaclass
creates only instances, which does not contain any slots, but sends slot references as messages to a
remote instance, which contains the slots. Thus, with prozy-c the instance allocation protocol and the
slot access protocol are extended.

This approach of extending CLOS is possible because of the existence of a metaobject protocol [11],
which clearly specifies the behavior of diverse CLOS features, like slot access, method combination,
and inheritance behavior. The extensions are portable in the sense that each CLOS implementation
based on the metaobject protocol can be extended by NetCLOS. The usage of the metaobject protocol
is different to a library approach where a number of functions have to be introduced and learned before
a parallel program can be written. For further reading on this point see also [8].

Thus, from a programmer’s point of view the extensions fit well in the programming style of CLOS.
Even the programming of message passing instead of generic function calls are acceptable, because it
comes as a special generic function call (i.e., to the first argument). Some Lisp specific features have
to be handled with care, because they are not yet implemented in NetCLOS or are hard to integrate
in a distributed environment. For instance, closures cannot be moved from one host to another and
dynamically created functions are not yet handled correctly. This is due to the fact, that closures are
not part of a metaobject protocol and thus, are not accessable without touching the implementation of
Lisp. However, it is possible to define generic functions (i.e. named closures) and classes in NetCLOS,
which are distributed to all object spaces, thus every space knows the same functions and classes.
Neither are cyclic reference structures of active objects garbage collected. However, NetCLOS is used
to implement parallel object-oriented programs based on CLOS.

4 Introducing parallel abstractions for programming AI applications

Parallel programming is a difficult task, because of the possibly big number of flows of control. In
low-level parallel languages the handling of these flows is left to the programmer. To make parallel

* In the current implementation only the master can start object spaces, object spaces cannot connect to the
master from outside. Thus, client-server structures on the object space level are not yet realizable.

® The current implementation does not include a user-password handling, thus, only trusted remote hosts of
a workstation cluster can be given.
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Fig. 4. Control abstractions and their integration in application classes.

4.1 An example structure — the relaxation net

Relazation net is an abstraction implementing parallel discrete relaxation (see [7] for a similar ap-
proach). Tt consists mainly of

— a class of active objects (value nodes) acting as shared stores. Accesses to these stores are auto-
matically synchronized, i.e. this is done by the NetCLOS level. These active objects can be used
to implement the variables of a constraint net.

5 i.e. the time when the application program is written down.

130



— aclass of active objects (function nodes) which, when activated, computes a function of the content
of a set of stores. These active objects can be used to implement constraints.

— a structure class which organizes stores and functional objects into a network and provides for
iterated activation and parallel execution of the functional objects (i.e. a relaxation operation).
This relazation net can be used to implement a constraint net.

To distributed the relazation net function and value nodes are modeled as tasks of a Task Interaction
Graph. To distribute this graph on a workstation cluster we use a combination of bisection [18] and
the Kernighan-Lin algorithm [10].

The main operation on relaxation nets is a function, which computes a fixed-point. This function
can be processed in parallel if the domain of the function can be partitioned in parts and the function
itself can be partitioned in independent component functions (see [20, 7] for details and Appendix A).
To use the parallel abstraction relazation net, the application programmer implements subclasses of
the value and function node classes and the structure class relazation net, redefining some methods,
1.e. implements a normal object-oriented sequential interface. There is no need for any explicit parallel
programming (see Appendix B).

4.2 Another example — implementing distributed AI applications with NetCLOS

In distributed AT besides others the concept of communicating agents is present. Agent structures are
not yet implemented with NetCLOS, but can be realized as follows. To implement an agent an active
object can be used. On which host an agent proceeds can be fixed by the user or can be decided by
the system (realized by a simple distribution scheme of round robin, see section 3.4), e.g. each agent
can reside on a distinct object space. Furthermore, it is possible to add new agents dynamically. For
diverse agents communication schemes, e.g. direct communication of agents or blackboard architec-
tures, necessary message protocols can be implemented by NetCLOS messages. Concrete steps may be
as follows: a virtual machine consisting of n object spaces is started from the master host. Agents pos-
sibly of distinct types are created by the master and distributed to the object spaces. A past-message
e.g. do-work starts the action of each agent, which may perform different problem solving tasks. The
agents work in parallel and may communicate by further messages to each other.

5 Experimental results

We tested NetCLOS by implementing a parallel abstraction named relazation-net (see also [7]), which
contains a net-like reference structure of active objects and a fixpoint operation on that structure.
The net is distributed on a workstation cluster by the abstraction and the operation is executed in
parallel on diverse parts of the net, 1.e., distribution and parallel processing is done by the abstraction.
This abstraction is used for implementing a local propagation algorithm for constraint nets, i.e., on
this level only the sequential interface of the parallel abstraction must be known to an application
programmer.

To get a gain of parallel execution of a NetCLOS program, one has to take high communication
costs into account which are related to the infrastructure of a workstation net, e.g., an ethernet or
TCP/IP. Thus, as usual in such a case, the computation time on one host should be high enough to
compensate the communication costs. This is also the result of experiments we made. When solving a
line-diagram labeling problem [16], we only got a speed up for constraint propagation when raising the
number of constraints (see Figure 5). The speed up strongly depends on the communication traffic on
the ethernet and on the kind of workstations used, which are typically heterogeneous (e.g. from Sparc
Classics to Ultra Sparcs). The distribution strategy does not yet consider such kind of information.
Because of using a derived not a dynamic structure the constraint net is first created on one object
space and than distributed to the other. This still yields to high distribution costs, which are not
included in the presented results. Furthermore, all experiments are executable on only one machine.
However, the experiments show that one can get a speed up for constraint propagation, when using

NetCLOS.
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Fig.5. Speed-up when increasing problem size (given here in number of stairs n of diagrams like the right
one) and number of workstations. For 1000 stairs we got a speed up of 3.6 for constraint propagation on 7
machines. The number of constraints is 6n + 7 and of variables is 4n + 7.

Because NetCLOS is integrated in Common Lisp its programming environment (profiler, debug-
ger, editor etc.) can be used also for each object space separately. To illustrate parallel issues of
programming (e.g. communication costs) specific environment extension would be useful but are still
not realized (see e.g. [15]).

6 Related work

The work on NetCLOS is derived from concurrent object-oriented programming languages related to
actors [5,1,21]. Thus, the notion of active objects, proxies, asynchronous and synchronous message
passing etc. are similar. However, our main interest is to integrate such concepts in Common Lisp
and CLOS as a language used for Al applications. In NetCLOS the integration of concurrent object
programming is done in the CLOS programming style by introducing new subclasses, metaclasses,
declarative method combination, slot options, and protocols. Thus, a CLOS programmer can use
NetCLOS without learning a new parallel language.

The extension of CLOS by active objects enables parallel object-oriented programming, and thus,
parallel abstractions. Other approaches [22] introduce mainly function-oriented parallel programming
in Lisp by allowing parallel execution of functional arguments. A precondition for these approaches is
a side effect free programming style, which is not realizable in realistic Lisp applications. Furthermore,
functional approaches often generate a big number of small tasks, which increase the overhead.

Another Lisp related implementation for parallel programming is Kali Scheme [2]. Besides very
similar features like adress spaces, proxies, diverse communication primitives the main difference 1s
that in Kali Scheme first class continuations and first class procedures are supported for programming
in continuation-passing style. The integration of these concepts in Lisp without non-portable access to
the Lisp implementation is not possible, because the lack of first class continuations and a metaobject
protocol for the functional part of Lisp. However, our interest is more a practical one: First, we use
Common Lisp instead of Scheme because of its use in application programming for realizing e.g.
simulation, configuration, diagnosing, and information managment systems. Second, we use Common
Lisp and add the extension modul NetCLOS to it instead of defining a new language to make it
possible that existing Lisp programs can still be used.

Other approaches like CMLisp [6] introduces data parallel abstractions. This showed that pro-
gramming with abstractions can simplify parallel programming, but CMLisp is restricted to run on
single instruction multiple data machines (i.e. the Connection Machine 2) and thus, is hardly usable
for workstation clusters. This is similar to [7], where a relaxation operation is introduced to solve
constraint problems, but the implementation is done on a Sequent Symmetrie, not on a more common
workstation cluster.

How NetCLOS can be used for Internet programming and how CL-HTTP can support this, is part
of our current work.
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7 Conclusion

A fully integrated concept and implementation (called NetCLOS) of a parallel object-oriented lan-
guage is presented as an extension to the Common Lisp Object System (CLOS). With NetCLOS active
objects, asynchronous and synchronous message passing, synchronization features, separation of par-
allel programming and distribution aspects, and transparent remote access are introduced in CLOS.
These extensions are integrated in the CLOS programming style by extending generic functions, slot-
options and metaclasses. Thereby, a virtual machine consisting of several Lisp images residing on a
workstation cluster can be programmed. This is a new extension of Common Lisp in the direction of
a parallel object-oriented language using active objects. Other approaches (like, e.g., [22]) extend the
functional part of Lisp.

NetCLOS was used to implement a high level programming language based on abstractions for
parallelization. The main point of this structure-oriented language is to introduce control abstractions,
because multiple flows of control make parallel programming difficult. These control abstractions are
realized by giving diverse predefined classes (like parallel-array, net, series) to the application program-
mer. These classes hide specific synchronization and load balancing schemes. A constraint system is
implemented with this language where constraints and variables are distributed over a workstation
net and proceed in parallel. For distribution a Task Interaction Graph model in coordination with
bisection and the Kernighan-Lin algorithm is used. For an appropriate problem size a speed up for
constraint propagation could be achieved.

NetCLOS as an extension to Allegro Common Lisp ACL 4.3 can be received from the authors.
NetCLOS and parallel abstractions might be useful for AI programmers already working with Common
Lisp and who want to use a workstation cluster for computation. Especially distributed and parallel
applications can be tested with the virtual machine used by NetCLOS. To implement it in other
Lisp implementations than Allegro, the implementation of light weight processes and the metaobject
protocol must be assumed.

A Implementation of a parallel abstraction using NetCLOS

The implementation of a parallel abstraction (here the relaxtion net and the relaxation algorithm)
should be done by a programmer familiar with concurrent object-oriented programming. Though 1t is
easy for a CLOS-programmer to use NetCLOS some synchronizations have to be done on this level
(see e.g. wait-for, lock).

The generic function relar is implemented as a past-message, i.e. can be processed in parallel.
However, the distribution of the relaxation-net is totally separated from the object-oriented part shown
here, by subclassing appropriate control abstractions (see Section 4). In relaz-net for all function nodes
(active objects) the function relaz is called, which can be processed in parallel for each node (depending
on the distribution strategy). Value nodes are reserved by the first function node which performs lock.
apply-function is a part of the protocol for using the parallel abstraction. This function must reduce
the value-nodes. The termination of the algorithm is controled by a simple count scheme realized by
acknowledge-count (see [14]).

(defpargeneric relax-net :now (net))

(defmethod relax-net ((net relaxation-net))
(loop for f-node in (function-nodes net)
do (relax f-node)
do (incf (acknowledge-count net)))
(loop until (= (acknowledge-count net) 0)
do (wait-for (acknowledge))))

(defpargeneric relax :past (f-node))

(defmethod relax ((f-node function-node))
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(if (> (acknowledge-count f-node) 0)
(acknowledge *callerx)
(setf (parent f-node) *callerx))
(let ((values ()))
(loop for v-node in (value-nodes-by-total-order node)
do (lock v-node)
collect (get-value v-node) into values)
(setf values (apply-function f-node values))
(loop for v-node in (value-nodes-by-total-order node)
for value in values
do (write-value v-node value)
do (incf (acknowledge-count f-node))
do (unlock v-node))))

(defpargeneric write-value :now (v-node value))

(defmethod write-value ((v-node value-node) value)
(if (new-value-p v-node value)
(progn (if (> (acknowledge-count v-node) 0)
(acknowledge *callerx)
(setf (parent v-node) *callerx)))
(set-value v-node value)
(loop for f-node in (function-nodes v-node)
do (relax f-node)
do (incf (acknowledge-count v-node))))
(progn (acknowledge *caller*)
(setf (parent v-node) nil)))

(depargeneric acknowledge :past (acknowledgeable))

(defmethod acknowledge ((obj acknowledgeable))
(decf (acknowledge-count obj))
(when (and (parent obj) (= 0 (acknowledge-count obj))
(acknowledge (parent obj))
(setf (parent obj) nil))))

B Implementation of an AI application using parallel abstractions

To use a relaxation net for implementing e.g. a constraint net following implementation by an Al
application programmer should be done. The implementation consists of subclassing the classes given
by the parallel abstraction and defining new methods for specific generic functions belonging to these
classes. By the bisection-K-lin-distribution-mizin the used distribition strategy for distributing Task
Interaction Graphs is introduced. Other strategies may be inserted here.

(defclass constraint-net (relaxation-net bisection-K-lin-distribution-mixin)

O

(:metaclass netclos-obj))

(defclass constraint (function-node)
((relation :accessor relation :initarg :relation))
(:metaclass netclos-obj))

(defclass variable (value-node)
((domain :reader get-value :writer set-value
:initarg :domain))
(:metaclass netclos-obj))
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(defmethod function-node-class ((net constraint-net))
(find-class ‘constraint))

(defmethod value-node-class ((net constraint-net))
(find-class ‘variable))

(defmethod apply-function ((constraint constraint) domains)
(loop for i from O upto (length domains)
for domain in domains
collect (filter domain constraint i))))

(defmethod new-value-p ((var variable) domain)
(< (length domain) (length (get-value var))))
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