
Parallel Programming in Common Lisp using Actors and

Parallel Abstractions�

Lothar Hotz and Michael Trowe

Universit�at Hamburg
Labor f�ur K�unstliche Intelligenz

Fachbereich Informatik
Vogt�K�olln�Str���� D���	�
 Hamburg� Germany

hotz�informatik�uni�hamburg�de

Abstract� In this paper we describe an extension of Common Lisp which allows the de�ni�
tion of parallel programs within that functional and object�oriented language� In particular� the
extensions are the introducing of active objects� sending synchronous and asynchronous mes�
sages between them� automatic and manual distribution of active objects to object spaces� and
transparent object managing� With these extensions object�oriented parallel programming on a
workstation cluster using dierent Common Lisp images is possible� These concepts are imple�
mented as an extension of Allegro Common Lisp subsumed by the name NetCLOS� Furthermore�
it is shown how NetCLOS can be used to realize parallel abstractions for implementing parallel
AI methods at a highly abstract level�

� Introduction

One of the big problems of Arti�cial Intelligence �AI� is getting its applications answer in time� Parallel
computation is one way to solve this problem� But though there are many parallel implementations of
basic AI techniques� there are very few AI applications which use them� This drawback is ascertained
due to two reasons�

� Most of these implementations depend on special parallel hardware �e�g�� �	� 
� ���� This hardware
is expensive and not widely available� Furthermore� the speci�cation of many applications excludes
the use of special hardware �e�g�� personal assistant��

� Most of them are written in special parallel programming languages unknown to the application
programmer and lacking features important to develop a complete application ���� Hence their
integration into such an application is di�cult�

Especially for AI methods the proposed parallel languages and models are too di�erent from com�
monly used languages� They do not provide the �exibility programmers need� and are not integrated
with existing languages ���� Furthermore� in special parallel languages non�parallel aspects are not
adequately expressable�

Our goal is to simplify the parallel implementation of standard AI techniques� We think this means
using standard hardware �i�e�� a workstation cluster� and extending a language widely used for AI
programming in a way that hides any kind of explicit parallel programming from the application
programmer� Thus� we extend Common Lisp ��� with two levels of features for parallel programming
on workstation clusters� The upper level is intended for easy use by the AI programmer inexperienced
with parallel programming� while the lower level is intended for implementing the upper level� In
the lower level an integration of an actor�like language �� in Common Lisp and its object�oriented
part CLOS �Common Lisp Object System� is introduced �see Section ��� The upper level realizes
parallel abstractions as complex structures and operations on them �Section 
�� The use of parallel
abstractions is demonstrated with a constraint �ltering algorithm �Section ��� In Section � related
work is discussed� First� we give a more detailed view of our parallel programming model�

� This research has been supported by the Bundesminister f�ur Bildung� Wissenschaft� Forschung und Tech�
nologie �BMBF� under the grant �� IN 	�� D �� INDIA � Intelligente Diagnose in der Anwendung



Fig� �� Levels of used abstractions�

� Extending CLOS with actors

In this section we describe the lower level �NetCLOS level�� which is an extension of Common Lisp
and its object�oriented part CLOS �Common Lisp Object System�� Features of NetCLOS are�

� Active objects� which include data� methods� a mail queue� and a process for handling incoming
messages by calling methods�

� Message passing for synchronous and asynchronous communication between active objects�

� NetCLOS as an extension to Allegro Common Lisp is implemented and can be received from the authors�
NetCLOS is implemented using the metaobject protocol of CLOS �see ���� and �����

��




� Synchronization operations for delaying requests�

Programming with NetCLOS is done by creating active objects and sending messages between
them� which is fully integrated in the programming style of CLOS� Distribution of active objects
to workstations is widely hidden to the user� Thus� active objects are distributed over a virtual
machine consisting of several Lisp images residing on several workstations of a cluster� To allow
�exible programming of distributed active objects automatic distributions as well as explicit moving
of active objects is included in NetCLOS�

There are some approaches which include parallel programming in Lisp �see e�g�� ���� but most
of them concentrate on the functional part of Lisp� In NetCLOS the object�oriented part �CLOS� is
focussed as an extendable part for parallel programming� With our new approach we introduce active
objects in the spirit of actors ���� in CLOS to make parallel object�oriented programming in Common
Lisp possible�

��� Design decisions

Following ��	 we discuss three dimensions of design issues for concurrent object�oriented programming�
object model� internal concurrency� and interaction� The decisions are inspired by the concurrent
object�oriented language ABCL�� ����

Object model� Because we extend an existing object�oriented language� where passive objects reside
in the language� we use a heterogeneous object model with passive and active objects� Passive
objects are normal CLOS objects� active objects are extended by a mail queue and a process� By
bu�ering incoming messages in a mail queue active objects synchronize concurrent calls� Passive
objects do not synchronize concurrent calls� i�e�� they have to be saved by explicit synchronization
calls or are used within a single�threaded active object�

Internal concurrency� Another design decision is whether an active object can process calls se�
quentially or in parallel� If calls are processed in parallel on the same active object� i�e� on one
data source� a high communication rate will be necessary� Because of high communication costs
in a workstation cluster� data and processes should reside on the same machine� Yet we decide to
process tasks of one active object sequentially�

Interaction� In NetCLOS object identi�cations are used to determine the recipient of a message�
Message passing can be done in three ways� future�messages� which are easy to integrate in a func�
tional context� one�way messages �past�messages�� as a more �exible but also more complicated tool
for communication� and remote procedure calls �now�messages� for synchronous communication�

��� CLOS � the Common Lisp Object System

CLOS belongs to the ANSI Common Lisp standard ��� and de�nes the object�oriented part of the
language� CLOS includes classes with multiple inheritance� generic functions� declarative method
combination� and a metaobject protocol� Classes are de�ned by slots �instance variables or data �elds�
and some superclasses� All slots of all superclasses are inherited� Instead of having a message�passing
concept as in other object�oriented languages� CLOS includes the more powerful concept of generic
functions� A generic function describes a set of methods� i�e�� a method is related to a generic function�
not to one class� Because a generic function may have more than one discriminating argument� a generic
function is related to a set of classes not to one speci�c class� Instead of passing a message to an object�
the generic function is called� The classes of its arguments are used to determine �at runtime� which
methods should be used to compute a value for the generic function� Declarative method combinations
describe how several applicable methods should be ordered and how their results should be combined�
This is done by de�ning di�erent kinds of methods� e�g�� before�methods are called before primary�

methods� etc� The metaobject protocol is used to extend CLOS� behavior portably� For instance� the
slot access can be modi�ed to be a remote slot access� So called metaclasses can be de�ned by the
user� which enhance the behavior of classes and objects �instances��

���



Fig� �� Parts of an active object�

Sending messages and synchronization Active objects communicate only by using one of three
message types �similar to ABCL���� past� now� or future�messages� Past�messages are asynchronous
one�way�messages� The caller can continue its work� after a message is sent� After calling the methods
related to the message� the recipient does not send a reply message to the caller� Past�messages are
declared by the keyword �past as in�

�defpargeneric �name� �past ��recipient�object� �argument�� �����

Past�messages are used to realize complex request�reply frames�
Now�messages are remote procedure calls� i�e�� the caller waits until the recipient accepts the

message� computes the request� and sends the reply back� These messages are indicated by the keyword
�now� Now�messages are used to ensure that the caller is inactive while processing the message� This
can be used to realize a sequential interface to an active object or to ensure speci�c synchronization
conditions�

When a future�message is sent� a future is created� Futures can be seen as simple active objects
which can only deal with two messages� the past�message write�result and the now�message touch�

���



Fig� �� Transfer of a query via a proxy�

Distribution The distribution model of NetCLOS is based on the notion of one object space residing
on each workstation of a cluster� An object space contains all information to handle active objects�
e�g�� all necessary classes and functions are known to each object space�� Every active object resides
on exactly one object space� But an active object can be referenced from each object space� not only
the local one� Thus� the identity of an active object is guaranteed over all object spaces� i�e� each
active object is unique and can be referenced from diverse object spaces� When messages are sent or
an active object is passed as argument of a message� it makes no di�erence if the object is locally
or remotely referenced� This holds only for active objects� other data types � like passive objects�
lists� arrays� strings� or records � are only locally referenced� If objects of such data types function
as arguments of a message� a copy is sent to the recipient� i�e�� changes to those types made by the
recipient are not known to the caller� Thus� no side e�ects on such datatypes are allowed� The copy

� Special features are de�ned for distributing new de�nitions of generic functions and classes and for de�ning
systems �sets of �les�� which have to be known to all object spaces�

��	



of such an object includes also nested objects �e�g� lists of lists�� Cyclic data is handle correctly� by
creating the same cycles in the remote object� Copying is done by generating a Lisp form� which when
evaluated creates the appropriate objects� and sending the Lisp form to the recipient�

There are two alternatives for an application to distribute its active objects to object spaces�
One is to move the object explicitly by calling the function move�� the other is to use a prede�ned
distribution class� There are two classes for distribution� one to realize a static distribution by deriving
Task Interaction Graphs from the reference structure of the active objects to distribute and another
class distributes the active objects dynamically when they are created� For the latter only a simple
scheme is present for sending active objects to object spaces in a round robin manner� For distributing
Task Interaction Graphs we use a combination of bisection and Kernighan�Lin �see section 
���� But
extensions of NetCLOS made by subclassing can be de�ned to realize more sophisticated distribution
strategies�

For moving an active object explicitly the moving behavior of its slots can be speci�ed when
de�ning the active object� When speci�ed with �follow the value of that slot �another active object�
is moved in the same object space as the active object itself� When speci�ed with �stay the value
of the slot stays in the current object space� Instead of the value the moved active object contains a
representant value �i�e�� a proxy� as slot value�

Remote references Remote references to values is realized by proxies� A proxy knows the location of
the original active object and sends a kernel message to the original active object on a proxy reference
to get the referenced value� The necessary infrastructure is internal in NetCLOS� When moving an
active object appropriate proxies are automatically created� If a slot is of type �follow a local proxy
is created which referes to the remote slot value� If a slot is of type �stay a remote proxy is created
which referes to the local slot value� Garbage collection is extended to handle proxy references� as the
next paragraph describes�

Object spaces An object space is realized as a Lisp image and resides on one host� it is assumed
that each host processes only one object space� An object space contains some features �some realized
as light weight processes �lwp� inside one Lisp image�� which realize the functionality of a virtual
machine�

Object spaces communicate with each other by kernel messages� An object space contains one
caller�lwp for each object space it wants to communicate with� The caller�lwp packs the message to
be sent �i�e�� creates a Lisp form which contains the message on evaluation� and sends it via TCP�IP
to the other object space� There� the callee object space contains an lwp for realizing a recipient�lwp
for each other object space� The recipient�lwp unpacks the message and evaluates the resulting Lisp
form�

Each object space contains an object store� which contains local and remotely referenced objects�
It ensures exactly one proxy for each remote object� and it realizes a garbage collection method for
remote objects� This is necessary� because the internal garbage collection method of Lisp is image
speci�c and references of proxies �residing in a remote image� to objects are not considered� Thus�
with the internal garbage collection method an object would be garbage collected even if a proxy
residing on another space refers to it� The remote garbage collection is carried out by counting remote
references to each object� When no reference to a proxy and no local reference to the related object
is present this object can be garbage collected or if the counter decrements to �� the object can be
garbage collected by the internal garbage collector contained in each Lisp image� A problem not yet
attended to are garbage collecting cyclic reference structures�

Each object space contains furthermore an object space manager �or object server�� Working with
NetCLOS starts by loading NetCLOS in a Lisp image� which creates an initial object space on the host

� In the current implementation the function move can not be used in generic functions being performed in
parallel on one active object� because the process synchronizing the mail queue is not moveable in Lisp�

���



the Lisp image is started � the master host � and an initial manager � the master�� This manager
starts the virtual machine by giving it a number of hostnames�� On each host an object space is
started� is initialized by some initialization forms and the communication links are established� which
connect the object spaces to each other� Thus� a fully connected communication structure is created�
Furthermore� the manager ensures an equal global context of classes and functions� When classes and
functions are loaded in one object space� the manager sends an appropriate message to all object
spaces which ensures a loading of the same classes and functions in those other spaces� If one object
space stops working �e�g� because the Lisp image quits� it sends a speci�c message to each object
space� which can react appropriately and can proceed working�

Integration of NetCLOS in CLOS There are two viewpoints to consider when integrating Net�
CLOS into CLOS� the implementors view and the application programmers view� From the imple�
mentors view NetCLOS is integrated in CLOS portably� i�e�� without changing the implementation
of CLOS� Even more� by extending the existing features� a small extension of the behavior of CLOS
yields to big expressability� E�g�� the slot access is extended by the possibility of de�ning moving be�
havior for slots� A slot access protocol inherent in CLOS is extended to handle this moving behavior
and thus� every slot access for active objects is changed� From a programmer�s point of view this is
done by the same programming interface� i�e�� the slot access function does not change to� e�g�� special
proxy access functions like proxy�value� Besides extending the slot access generic function meta�
classes are integrated in NetCLOS for describing generic functions to be handled as messages� i�e� for
each method call special methods for testing the active object�s location �local or remote� and select�
ing the appropriate send style �now� past� future� are automatically integrated by these metaclasses�
Furthermore� for each class c� whose instances can be moved� a subclass proxy�c is created� This class
is of type proxy�class� a metaclass� which implements proxy behavior� For example� this metaclass
creates only instances� which does not contain any slots� but sends slot references as messages to a
remote instance� which contains the slots� Thus� with proxy�c the instance allocation protocol and the
slot access protocol are extended�

This approach of extending CLOS is possible because of the existence of a metaobject protocol ����
which clearly speci�es the behavior of diverse CLOS features� like slot access� method combination�
and inheritance behavior� The extensions are portable in the sense that each CLOS implementation
based on the metaobject protocol can be extended by NetCLOS� The usage of the metaobject protocol
is di�erent to a library approach where a number of functions have to be introduced and learned before
a parallel program can be written� For further reading on this point see also ���

Thus� from a programmer�s point of view the extensions �t well in the programming style of CLOS�
Even the programming of message passing instead of generic function calls are acceptable� because it
comes as a special generic function call �i�e�� to the �rst argument�� Some Lisp speci�c features have
to be handled with care� because they are not yet implemented in NetCLOS or are hard to integrate
in a distributed environment� For instance� closures cannot be moved from one host to another and
dynamically created functions are not yet handled correctly� This is due to the fact� that closures are
not part of a metaobject protocol and thus� are not accessable without touching the implementation of
Lisp� However� it is possible to de�ne generic functions �i�e� named closures� and classes in NetCLOS�
which are distributed to all object spaces� thus every space knows the same functions and classes�
Neither are cyclic reference structures of active objects garbage collected� However� NetCLOS is used
to implement parallel object�oriented programs based on CLOS�

� Introducing parallel abstractions for programming AI applications

Parallel programming is a di�cult task� because of the possibly big number of �ows of control� In
low�level parallel languages the handling of these �ows is left to the programmer� To make parallel

� In the current implementation only the master can start object spaces� object spaces cannot connect to the
master from outside� Thus� client�server structures on the object space level are not yet realizable�

� The current implementation does not include a user�password handling� thus� only trusted remote hosts of
a workstation cluster can be given�

���



Fig� �� Control abstractions and their integration in application classes�

��� An example structure � the relaxation net

Relaxation net is an abstraction implementing parallel discrete relaxation �see �	 for a similar ap�
proach�� It consists mainly of

� a class of active objects �value nodes� acting as shared stores� Accesses to these stores are auto�
matically synchronized� i�e� this is done by the NetCLOS level� These active objects can be used
to implement the variables of a constraint net�

� i�e� the time when the application program is written down�

���



� a class of active objects �function nodes� which� when activated� computes a function of the content
of a set of stores� These active objects can be used to implement constraints�

� a structure class which organizes stores and functional objects into a network and provides for
iterated activation and parallel execution of the functional objects �i�e� a relaxation operation��
This relaxation net can be used to implement a constraint net�

To distributed the relaxation net function and value nodes are modeled as tasks of a Task Interaction
Graph� To distribute this graph on a workstation cluster we use a combination of bisection ��� and
the Kernighan�Lin algorithm ����

The main operation on relaxation nets is a function� which computes a �xed�point� This function
can be processed in parallel if the domain of the function can be partitioned in parts and the function
itself can be partitioned in independent component functions �see ���� 	 for details and Appendix A��
To use the parallel abstraction relaxation net� the application programmer implements subclasses of
the value and function node classes and the structure class relaxation net� rede�ning some methods�
i�e� implements a normal object�oriented sequential interface� There is no need for any explicit parallel
programming �see Appendix B��

��� Another example � implementing distributed AI applications with NetCLOS

In distributed AI besides others the concept of communicating agents is present� Agent structures are
not yet implemented with NetCLOS� but can be realized as follows� To implement an agent an active
object can be used� On which host an agent proceeds can be �xed by the user or can be decided by
the system �realized by a simple distribution scheme of round robin� see section ��
�� e�g� each agent
can reside on a distinct object space� Furthermore� it is possible to add new agents dynamically� For
diverse agents communication schemes� e�g� direct communication of agents or blackboard architec�
tures� necessary message protocols can be implemented by NetCLOS messages� Concrete steps may be
as follows� a virtual machine consisting of n object spaces is started from the master host� Agents pos�
sibly of distinct types are created by the master and distributed to the object spaces� A past�message
e�g� do�work starts the action of each agent� which may perform di�erent problem solving tasks� The
agents work in parallel and may communicate by further messages to each other�

� Experimental results

We tested NetCLOS by implementing a parallel abstraction named relaxation�net �see also �	�� which
contains a net�like reference structure of active objects and a �xpoint operation on that structure�
The net is distributed on a workstation cluster by the abstraction and the operation is executed in
parallel on diverse parts of the net� i�e�� distribution and parallel processing is done by the abstraction�
This abstraction is used for implementing a local propagation algorithm for constraint nets� i�e�� on
this level only the sequential interface of the parallel abstraction must be known to an application
programmer�

To get a gain of parallel execution of a NetCLOS program� one has to take high communication
costs into account which are related to the infrastructure of a workstation net� e�g�� an ethernet or
TCP�IP� Thus� as usual in such a case� the computation time on one host should be high enough to
compensate the communication costs� This is also the result of experiments we made� When solving a
line�diagram labeling problem ���� we only got a speed up for constraint propagation when raising the
number of constraints �see Figure ��� The speed up strongly depends on the communication tra�c on
the ethernet and on the kind of workstations used� which are typically heterogeneous �e�g� from Sparc
Classics to Ultra Sparcs�� The distribution strategy does not yet consider such kind of information�
Because of using a derived not a dynamic structure the constraint net is �rst created on one object
space and than distributed to the other� This still yields to high distribution costs� which are not
included in the presented results� Furthermore� all experiments are executable on only one machine�
However� the experiments show that one can get a speed up for constraint propagation� when using
NetCLOS�

���



Fig� �� Speed�up when increasing problem size �given here in number of stairs n of diagrams like the right
one� and number of workstations� For ���� stairs we got a speed up of ��� for constraint propagation on 

machines� The number of constraints is �n� 
 and of variables is �n� 
�

Because NetCLOS is integrated in Common Lisp its programming environment �pro�ler� debug�
ger� editor etc�� can be used also for each object space separately� To illustrate parallel issues of
programming �e�g� communication costs� speci�c environment extension would be useful but are still
not realized �see e�g� �����

� Related work

The work on NetCLOS is derived from concurrent object�oriented programming languages related to
actors ����� ��� Thus� the notion of active objects� proxies� asynchronous and synchronous message
passing etc� are similar� However� our main interest is to integrate such concepts in Common Lisp
and CLOS as a language used for AI applications� In NetCLOS the integration of concurrent object
programming is done in the CLOS programming style by introducing new subclasses� metaclasses�
declarative method combination� slot options� and protocols� Thus� a CLOS programmer can use
NetCLOS without learning a new parallel language�

The extension of CLOS by active objects enables parallel object�oriented programming� and thus�
parallel abstractions� Other approaches ��� introduce mainly function�oriented parallel programming
in Lisp by allowing parallel execution of functional arguments� A precondition for these approaches is
a side e�ect free programming style� which is not realizable in realistic Lisp applications� Furthermore�
functional approaches often generate a big number of small tasks� which increase the overhead�

Another Lisp related implementation for parallel programming is Kali Scheme ��� Besides very
similar features like adress spaces� proxies� diverse communication primitives the main di�erence is
that in Kali Scheme �rst class continuations and �rst class procedures are supported for programming
in continuation�passing style� The integration of these concepts in Lisp without non�portable access to
the Lisp implementation is not possible� because the lack of �rst class continuations and a metaobject
protocol for the functional part of Lisp� However� our interest is more a practical one� First� we use
Common Lisp instead of Scheme because of its use in application programming for realizing e�g�
simulation� con�guration� diagnosing� and information managment systems� Second� we use Common
Lisp and add the extension modul NetCLOS to it instead of de�ning a new language to make it
possible that existing Lisp programs can still be used�

Other approaches like CMLisp �� introduces data parallel abstractions� This showed that pro�
gramming with abstractions can simplify parallel programming� but CMLisp is restricted to run on
single instruction multiple data machines �i�e� the Connection Machine �� and thus� is hardly usable
for workstation clusters� This is similar to �	� where a relaxation operation is introduced to solve
constraint problems� but the implementation is done on a Sequent Symmetrie� not on a more common
workstation cluster�

How NetCLOS can be used for Internet programming and how CL�HTTP can support this� is part
of our current work�

���



� Conclusion

A fully integrated concept and implementation �called NetCLOS� of a parallel object�oriented lan�
guage is presented as an extension to the Common Lisp Object System �CLOS�� With NetCLOS active
objects� asynchronous and synchronous message passing� synchronization features� separation of par�
allel programming and distribution aspects� and transparent remote access are introduced in CLOS�
These extensions are integrated in the CLOS programming style by extending generic functions� slot�
options and metaclasses� Thereby� a virtual machine consisting of several Lisp images residing on a
workstation cluster can be programmed� This is a new extension of Common Lisp in the direction of
a parallel object�oriented language using active objects� Other approaches �like� e�g�� ���� extend the
functional part of Lisp�

NetCLOS was used to implement a high level programming language based on abstractions for
parallelization� The main point of this structure�oriented language is to introduce control abstractions�
because multiple �ows of control make parallel programming di�cult� These control abstractions are
realized by giving diverse prede�ned classes �like parallel�array� net� series� to the application program�
mer� These classes hide speci�c synchronization and load balancing schemes� A constraint system is
implemented with this language where constraints and variables are distributed over a workstation
net and proceed in parallel� For distribution a Task Interaction Graph model in coordination with
bisection and the Kernighan�Lin algorithm is used� For an appropriate problem size a speed up for
constraint propagation could be achieved�

NetCLOS as an extension to Allegro Common Lisp ACL 
�� can be received from the authors�
NetCLOS and parallel abstractions might be useful for AI programmers already working with Common
Lisp and who want to use a workstation cluster for computation� Especially distributed and parallel
applications can be tested with the virtual machine used by NetCLOS� To implement it in other
Lisp implementations than Allegro� the implementation of light weight processes and the metaobject
protocol must be assumed�

A Implementation of a parallel abstraction using NetCLOS

The implementation of a parallel abstraction �here the relaxtion net and the relaxation algorithm�
should be done by a programmer familiar with concurrent object�oriented programming� Though it is
easy for a CLOS�programmer to use NetCLOS some synchronizations have to be done on this level
�see e�g� wait�for� lock��

The generic function relax is implemented as a past�message� i�e� can be processed in parallel�
However� the distribution of the relaxation�net is totally separated from the object�oriented part shown
here� by subclassing appropriate control abstractions �see Section 
�� In relax�net for all function nodes
�active objects� the function relax is called� which can be processed in parallel for each node �depending
on the distribution strategy�� Value nodes are reserved by the �rst function node which performs lock�
apply�function is a part of the protocol for using the parallel abstraction� This function must reduce
the value�nodes� The termination of the algorithm is controled by a simple count scheme realized by
acknowledge�count �see ��
��

�defpargeneric relax�net �now �net��

�defmethod relax�net ��net relaxation�net��

�loop for f�node in �function�nodes net�

do �relax f�node�

do �incf �acknowledge�count net���

�loop until �
 �acknowledge�count net� ��

do �wait�for �acknowledge����

�defpargeneric relax �past �f�node��

�defmethod relax ��f�node function�node��

���



�if �� �acknowledge�count f�node� ��

�acknowledge �caller��

�setf �parent f�node� �caller���

�let ��values ����

�loop for v�node in �value�nodes�by�total�order node�

do �lock v�node�

collect �get�value v�node� into values�

�setf values �apply�function f�node values��

�loop for v�node in �value�nodes�by�total�order node�

for value in values

do �write�value v�node value�

do �incf �acknowledge�count f�node��

do �unlock v�node����

�defpargeneric write�value �now �v�node value��

�defmethod write�value ��v�node value�node� value�

�if �new�value�p v�node value�

�progn �if �� �acknowledge�count v�node� ��

�acknowledge �caller��

�setf �parent v�node� �caller����

�set�value v�node value�

�loop for f�node in �function�nodes v�node�

do �relax f�node�

do �incf �acknowledge�count v�node����

�progn �acknowledge �caller��

�setf �parent v�node� nil���

�depargeneric acknowledge �past �acknowledgeable��

�defmethod acknowledge ��obj acknowledgeable��

�decf �acknowledge�count obj��

�when �and �parent obj� �
 � �acknowledge�count obj��

�acknowledge �parent obj��

�setf �parent obj� nil����

B Implementation of an AI application using parallel abstractions

To use a relaxation net for implementing e�g� a constraint net following implementation by an AI
application programmer should be done� The implementation consists of subclassing the classes given
by the parallel abstraction and de�ning new methods for speci�c generic functions belonging to these
classes� By the bisection�K�lin�distribution�mixin the used distribition strategy for distributing Task
Interaction Graphs is introduced� Other strategies may be inserted here�

�defclass constraint�net �relaxation�net bisection�K�lin�distribution�mixin�

��

��metaclass netclos�obj��

�defclass constraint �function�node�

��relation �accessor relation �initarg �relation��

��metaclass netclos�obj��

�defclass variable �value�node�

��domain �reader get�value �writer set�value

�initarg �domain��

��metaclass netclos�obj��

��




�defmethod function�node�class ��net constraint�net��

�find�class constraint��

�defmethod value�node�class ��net constraint�net��

�find�class variable��

�defmethod apply�function ��constraint constraint� domains�

�loop for i from � upto �length domains�

for domain in domains

collect �filter domain constraint i����

�defmethod new�value�p ��var variable� domain�

�� �length domain� �length �get�value var����

References

�� G� A� Agha� Concurrent object�oriented programming� Communications of the ACM� ������ ��	�����
September �����

�� H� Cejtin and S� Jajannathan and R� Kelsey� Higher�Order Distributed Objects� Toplas� ���	�� September
���	�

�� Chaco� The Chaco user
s guide� Version ��� Tech� Rep� SAND�������� Sandia National Laboratories�
Albuquerque� NM� July ���	�

�� M� Dixon� J� de Kleer� Massively Parallel Assumption�based Truth Maintenance� Proceedings of the AAAI
��� �������� �����

	� C� Hewitt� Viewing Control Structures as Patterns of Passing Messages� Arti�cial Intelligence �� ��������
��

�

�� W� D� Hillis� The Connection Machine� MIT Press� Cambridge� MA� ���	�

� K� Ho� High�Level Abstractions for Symbolic Parallel Programming� PhD thesis� University of California

at Berkeley� �����
�� L� Hotz and G� Kamp� Programming the Connection Machine by using the Metaobject Protocol� Parallel

Computing� Trends and Applications� North Holland� ����� Elsevier Science Publishers�
�� J� Kahl� L� Hotz� H� Milde and S� Wessel� Automatic Generation of Decision Trees for Diagnosis� The

Mad�System� Int Conf on Information Technology and Knowledge Systems� Vienna� Budapest� August�
September �����

��� B� Kernighan and S� Lin� An E�cient Heuristic Procedure for Partitioning Graphs� Bell System Technical
Journal ��� �������� ��
��

��� G� Kiczales� D� G� Bobrow� and J� des Rivieres� The Art of the Metaobject Protocol� MIT Press� Cambridge�
MA� �����

��� H� Kitano �editor�� Second International Workshop on Parallel Processing for Arti�cial Intelligence�
PPAI
��� Elsevier Science Publishers� �����

��� C� V� Lopes� and G� Kiczales� D� A Language Framework for Distributed Programming�
PARC Technical report� February �
� SPL�
���� P�
����
� Xerox PARC� Palo Alto� Ca�
http���www�parc�xerox�com�spl�projects�aop�tr�d�htm� ���
�

��� N� Lynch� Distributed Algorithms� Morgan Kaufmann� �����
�	� S� M� Miriyala� G� Agha and Y� Sami Visualizing Actor Programs using Predicate Transition Nets�

http���yangtze�cs�uiuc�edu�� �����
��� P� Norvig� Paradigms of Arti�cial Intelligence Programming� Case Studies in Common Lisp Morgan

Kaufman� San Mateo� California� ���	�
�
� M� Papathomas� Concurrency in Object�Oriented Programming Languages� O� Nierstrasz and D�

Tsichritzis� �edt��� Object�Oriented Software Composition Prentice Hall� ���	�
��� H� Simon� Partitioning of Unstructured Problems for Parallel Processing� Proc Conference on Parallel

Methods on Large Scale Structured Analysis and Physics Applications� Pergammon Press� �����
��� G� L� Steele� Common Lisp The Language Second Edition� Digital Press� �����
��� M� Trowe� An Abstraction for Parallel Programming in Lisp on a Workstation Cluster� Diplomarbeit in

German� Universit�at Hamburg� �����
��� A� Yonezawa and J��P� Briot and E� Shibayama� Object�Oriented Concurrent Programming in ABCL���

ACM SIGPLAN Notices� ������� �	������ �����
��� C� K� Yuen� Parallel Lisp Systems� Chapman � Hall� �����

���


