
What Can the ConIPF Methodology Offer for

Requirements-driven Reuse-oriented Software

Development?

Lothar Hotz1 and Thorsten Krebs1

HITeC c/o Universität Hamburg, Department Informatik
Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
{hotz|krebs}@informatik.uni-hamburg.de

Abstract. A vision in software development is to start from a require-
ments specification and automatically derive software products that re-
alize these requirements. This short paper summarizes the tasks needed
to implement this vision and discusses what the ConIPF methodology
(Configuration in Industrial Product Families) can offer as a starting
point for related research activities.

1 Introduction

In this paper we outline some first ideas to support the creation of a sophisti-
cated requirements-driven, reuse-oriented software development framework. The
major tasks of this development framework are: a modeling language to capture
the requirements specification and transformation languages to transform the
requirements stepwise into product architecture, detailed design and code arti-
facts, and a query engine for retrieving software cases that have been previously
developed and stored. This includes the definition of a query language and iden-
tification of a similarity measure, and a methodology for describing the complete
life-cycle of software cases. Thus, the methodology covers aspects of customer
requirements, product architecture, detailed design and code artifacts. A case
is defined with the modeling language and stored and retrieved with the query
engine [1].

The ConIPF methodology (Configuration in Industrial Product Families) [2]
covers several aspects that can deal as a starting point for supporting these
tasks. This methodology enables automated development of products starting
from given customer requirements and using a repository of reusable artifacts.

The remainder of this paper is organized as follows. In Section 2 we generally
describe the problem current software development struggles with. Section 3
summarizes the ConIPF methodology. Section 4 explains the tasks and our first
ideas for solving those in more detail. Finally, Section 5 gives a conclusion.

2 The Problem

It is a common trend that software systems become more and more complex. This
is due to increasing customer requirements and advancing technical possibilities



in using technical and electronic systems. Companies invest huge amounts in
software development in order to stay competitive.

Reuse has long been identified as a key in enhancing software development.
But due to the complexity and amount of software systems produced, software
development projects tends to ignore previous products. This is because different
personal is working on the projects, previous solutions are forgotten about in long
development cycles, and most notably because it is hard to measure similarity.

3 Introduction to the ConIPF Methodology

ConIPF combines the research fields of software product lines and structure-
based configuration. The product line engineering helps to design, implement
and derive similar but distinct products. This is achieved by different compo-
sitions of the reusable artifacts with respect to technical possibilities and given
customer requirements. In structure-based configuration, configuration models

are used, which contain a textual description of the artifacts, their capabilities
(features), properties and relations to other artifacts. Thus, a configuration model
describes commonality and variability as well as restrictions within and between
artifacts of a product family. With the configuration model, all potentially deriv-
able products are implicitly specified. The use of configuration tools automates
product derivation and consistency tests on the basis of the configuration model.

Furthermore, the ConIPF methodology provides a SPEM-based derivation
process1. This process distinguishes between configuration activities and realiza-

tion activities. During configuration activities decisions about the product are
made manually or automatically by the configuration tool. Those decisions are
covered in a product description. During realization activities the product de-
scription is mapped to a product implementation. The configuration activities
are formally specified with structure-based configuration techniques, whereas
the realization activities are organization-specific and not mapped to specific
implementation techniques.

4 Tasks and Approaches

4.1 Requirement Specification Language Definition

In the ConIPF methodology, the Asset Modeling for Product Lines (AMPL)
language enables modeling of features and their structure and characteristics as
well as their relations to other assets types, like software or hardware artifacts.
Features are prominent or distinctive, user-visible aspects of the products [3] –
this means they represent the products functionality. There are features common
to all products and optional features that together make up commonality and
variability of the product family.

1 Software Process Engineering Meta model (SPEM), see
http://www.omg.org/technology/documents/formal/spem.html



This representation can give input for developing a requirements specifica-
tion. But it has to be analyzed if the expressivity of feature models suffices to
describe customer requirements. For example there may be reasons for strong
and weak requirements, which are requirements that have to be and should
be fulfilled, respectively (see e.g. [4]). Additionally, functional requirements can
specify aspects like ”choose the cheapest version” or that ”power consumption
of all components should not exceed a certain limit”. It is apparent that sophis-
ticated representation facilities are needed to capture this kind of requirements.

4.2 Modeling and Transformation Languages for Software Cases

AMPL allows to model features and reusable artifacts in hierarchical structures.
With this, the commonality and variability of products can be represented. The
artifacts selected during product configuration and their characteristics and re-
lations to other assets (like features) describe the solution of a software case.

For achieving such a solution, AMPL defines a mapping between the feature
layer and an artifact layer. This mapping describes a ”realizes”-relation between
the two knowledge entities. Artifacts realize features, and vice-versa features
are realized by artifacts. Since multiple artifacts may be needed to realize some
specific functionality and an artifact may realize multiple features, this relation
is a n-to-m relation. When a feature is selected for a product, the corresponding
artifacts are automatically selected, too. Thus, the mapping keeps track of the
transformation history between customer selections and architecture or design
decisions.

Furthermore, the AMPL language contains facilities to model subsystems
that can consist of hardware and software artifacts. This might be a valuable
input for defining architecture and / or design patterns for identifying groups of
code that are commonly used together or form logical units.

These representation facilities can be used as a starting point for modeling
the layers of a software case. The representation of the product architecture and
its detailed design and the transformations between the steps from requirements
to architecture, from architecture to design, and from design to code are an open
issue. It is apparent that a simple mapping between the layers is not sufficient
for unambiguously transforming one layer into the next layer.

4.3 Software Case Query Language

A major part of human expertise is believed to be past experiences. Case-based
reasoning provides a model for representing experience in so-called cases (i.e.
former software development problems and their solutions) and reusing them
for solving new developments ([5]). There are two challenges: how to represent
software cases (see 4.2) and how to retrieve them from a case base and identify
which case fits best to a given new situation. Similarity has to be defined for
this task.

Appropriate cases should be identified based on the customer requirements,
not only the code artifacts of the solution. Thus, the requirements specification



of the current case has to be compared to the requirements specifications of the
stored cases. Using feature models to represent customer requirements, they are
modeled in hierarchical structures. These structures can be used to identify sim-
ilarity more precisely. For example a subfeature of another feature is very similar
to the latter because they are both of the same type (one is a specialization of
the other). Two siblings are also similar because both inherit characteristics of
their common parent. Two features in different places of the tree structure do
not have anything in common.

4.4 Software Development Methodology

For enabling practitioners to use the requirements specification language, the
modeling and transformation languages and the retrieval mechanisms, a method-
ology is needed that describes how to use these techniques. As described in Sec-
tion 3 the ConIPF methodology provides several techniques that can be used
for variability handling. However, including model-driven software development
approaches, probably as specific realization activities is a challenge.

5 Summary

The ConIPF methodology provides several mechanism for deriving products. To
summarize, the following questions arose: Can features be used for modeling
complex requirements? How can variability aspects (like represented in AMPL)
be integrated with model-driven approaches? How can similarity of software
cases be measured?

Acknowledgments

This research has been supported by the European Community under the grant
IST-2006-33596, Requirements-Driven Software Development System (ReDSeeDS).

References

1. Smialek, M.: Can use cases drive software factories? In: 2nd International Workshop
on Use Case Modeling (WUsCaM-05) – (MoDELS 2005), Montego Bay, Jamaica
(2005)

2. Hotz, L., Wolter, K., Krebs, T., Deelstra, S., Sinnema, M., Nijhuis, J., MacGregor,
J.: Configuration in Industrial Product Families - The ConIPF Methodology. IOS
Press, Berlin (2006)

3. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021 (1990)

4. Thäringen, M.: Wissensbasierte Erfassung von Anforderungen. In Günter, A., ed.:
Wissensbasiertes Konfigurieren. Infix (1995)

5. Sasikumar, M.: Case-based Reasoning for Software Reuse. In: Knowledge
Based Computer Systems-Research and Applications (International Conference on
Knowledge-Based Computer Systems), Bombai, India, Narosa Publishing House,
London (1996) 31–42


