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In this paper� we demonstrate how the Metaobject Protocol of the Common Lisp Object
System can be used to program the Connection Machine� In this approach� metaobject
classes� which are responsible for internal representations of instances� map instances to
processors in various ways� With these classes parallel structures are implemented to form
a language which allows an easy usage of a parallel machine�

�� INTRODUCTION

A widely used approach to join object�oriented �O�O
 programming and parallel com�
puters consists in identifying an �object� as a main source of parallelism or concurrency�
Objects �or actors� guardians
 communicate by messaging� i�e� sending messages to each
other� Such active objects may run concurrently if they reside on di�erent processors�
Examples for systems following this approach are described in ������ Besides objects and
messages O�O programming supplies additional features that may be used for program�
ming parallel computers� These features �e�g� found in the Common Lisp Object System
�CLOS
 ��� ��
 are generic functions� multiple inheritance� method combination� and the
metaobject protocol�
In this paper� we show how CLOS can be used to program massively parallel computers

�MPCs
 especially the Connection Machine �CM��
 ���� Our goal is to hide any kind of
explicit parallel syntax to the user by extending an already well�known language with less
change of its syntax� If we can de�ne a set of appropriate data structures� whose operations
are internally parallelized� and whose user�interface is within the scope of the language� the
user is not puzzled about explicitly thinking or programming in parallel terms� These data
structures are manifested in a set of large �i�e� numerous elements
 complex structures
such as matrices� lists� sets� relations� and graphs with appropriate operations on them
�e�g� multiplication� graph traversion� transitive hull� union
� Thus� our goal is to design
a language of complex data structures �called DisGraL� distributed graph language
 and
join these structures that are problem�oriented� machine�independent� commonly usable�
and parallelizable with appropriate operations�
In a �rst approach� we concentrate on data parallel machines like the CM��� because

they have a nature di�erent from control�oriented languages� detailed knowledge of the
machine�s architecture are necessary to program them ���� Thus� complex structures
and their operations are realized by data parallel algorithms� The interface between
such abstract data structures and their data parallel realization is implemented via the
metaobject protocol� This is a way to �open languages up�� allowing users to adjust the
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design and implementation of a programming language to suit their particular needs� In
particular� in ��� a subset of CLOS is de�ned and extended with facets� dynamic slots
etc� by using the metaobject protocol of CLOS �MOP
� In a similar way� we extend
PCL �Portable CommonLoops� a portable version of CLOS
 to supply data mappings
to the CM��� i�e� known distributions of objects �e�g� ���� ���
 are supported by our
extensions� Thus� we show how the MOP can be used to implement an interface� between
CLOS and the CM��� This interface is given by language features� which smoothly �t
in the syntax of CLOS� Thus� no additional explizit parallel constructs must be known
to a user of these extensions� In this sense� the paper describes how to bridge the gap
between low level� machine�dependent� more or less e�cient parallel algorithms and high
level� abstract applications� We are not concerned with improving speci�c algorithms
or solving a speci�c problem on a parallel machine in an e�cient way� Thus� neither
e�ciency results are presented nor parallel algorithms are described� However� we assume
that there exist e�cient parallel algorithms and that there are applications that should
be solved with parallel machines�
We �rst give a short overview of terms used �Section �
� After a short description of

levels of abstraction ��
 �for a more detailed view of them we refer to ����
� we present
the developed metaobject classes for handling massively parallel constructs ��
� These
classes are used to implement complex structures as described and illustrated with a short
example in Section �� Finally� in Section � we discuss some other approaches�

�� THE CM��� O�O PROGRAMMING� AND THE MOP

The connection machine CM�� is a massively parallel single instruction multiple data
�SIMD
 computer consisting of up to ��K processors� To the user the parallel processing
unit appears as an extension of the normal environment of a standard sequential computer�
such as a Sun��� �Lisp ���� is a data parallel extension of Common Lisp for the CM���
The data parallel extensions of �Lisp include a large number of functions and macros� and
one important abstraction� the �parallel variable�� or �pvar�� A pvar is a variable that
has a separate value for each processor in the CM���
Besides widely used O�O features like classes� slots �data �elds of classes
� inheritance�

and instances� the data stores of slot values of a speci�c class� we focus on metaobject
classes� and protocols� Classes� which control representation of instances of classes are
called �metaobject classes�� With them a programmer gets access to the internal repre�
sentation of language constructs� The speci�cation of interacting objects is manifested in
a collection of generic functions called �protocol�� Protocols are specializable� modi�able
interfaces between objects� CLOS is implemented in CLOS� i�e� all features of CLOS
�e�g� classes� generic functions
 are represented as instances of prede�ned classes named
�standard metaobject classes�� These instances are called �metaobjects�� The behavior
of these metaobjects �and thus of CLOS
 is described with protocols� These protocols
describe speci�c points of the CLOS implementation to be changed by a programmer� For
example� the instance allocation protocol speci�es that allocate�instance is called when
an instance is allocated� Because these functions are generic functions they can be spe�
cialized as in an ordinary O�O program� The language implementation itself is structured
as an O�O program� Thus� extensions can be made by subclassing standard metaobject
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classes to �specialized metaobject classes�� These classes extend or override prede�ned
language behavior� e�g� to access a processor element and not an element of an array
when a slot value is refered to� In Section �� we describe the modi�cation of the instance
allocation protocol� Changing the implementation of a programming language might look
ugly and suspect� but it is not when doing it in a portable way� Because the protocols are
summarized in the quasi standard of the MOP �see ��� ���
� all implementations of CLOS
using it will understand changes of CLOS� To the user �programmer
 of a such modi�ed
CLOS the extensions are part of the language and clearly integrated in the syntax and
semantics of the language�

�� LEVELS OF ABSTRACTION

To clarify our view of parallel languages� we describe levels of abstraction and languages
�see also ����
� The usefulness of separating low�level parallel constructs from high level
problem oriented constructs is also discussed in other papers like �������� We extend
�Lisp with PCL to get an O�O interface to the data parallel CM��� Furthermore� we de�
�ne classes and metaobject classes to map data to parallel machines� This level is called
�CLOS� With this extension� classes and operations for regular structures like vector� ma�
trix� set and irregular structures are de�ned� Irregular structures such as relation� graph�
tree� and list change dynamically and are not constant in size or are arbitrarily distributed�
Thus� it is not possible to map these structures one�to�one to regular internal constructs�
However� it is possible to implement such structures on the CM�� ���� ���� Operations
on irregular structures are de�ned on the entire structure� not on single objects� Our
approach integrates these structures and operations in a set of classes and methods that
is called DisGraL� The main issue with DisGraL is the need to de�ne problems in terms
of complex structures and operations� i�e� the programmer does not think in parallel or
sequential structures but in complex ones� DisGraL is the basis for a tool for implement�
ing various Arti�cial Intelligence �AI
 applications such as vision� neural nets� and the
selection problem on parallel computers� In Section �� we give one example� which gives
a short insight of the tool�

�� CLASSES AND METAOBJECT CLASSES FOR THE CM��

In this section� we present one class and three specialized metaobject classes� one of
them is used to implement the complex structure relation�class �see Section �
� These
classes describe distinct mappings of instances �i�e� data holding structures of O�O lan�
guages
 to processors� re�ecting our data parallel approach� They are part of �CLOS�
As mentioned above� the instance allocation protocol is specialized by these classes� The
standard protocol speci�es that allocate�instance results in an array for storing slot values�
By indicating slots to be not CLOS slots but parallel ones� the standard protocol does
no longer allocate storage on the sequential machine� Instead storage is allocated on the
CM�� by a specialized method for allocate�instance� which uses �LISP functions� The
distribution can be done in various ways� depending on the desired data distribution�

pvar�per�instance�class This class is an ordinary CLOS class� Each instance of this
class represents one pvar� The pvar is allocated during initialization of a new in�
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Figure �� a
 � d
� Specialized parallel metaobject classes� Pi stands for Processors� Si for
Slots� and Ii for Instances�

stance and initialized with a given content� e�g� elements of a sequential array or
a particular number� Thus� the initialization protocol is extended to allocate the
appropriate pvar depending on the given content� In Figure � a
� a two dimensional
pvar is shown which corresponds to one instance representing a matrix�

parallel�class This metaobject class maps each instance of a class to a processor� i�e�
all slot values of an instance are stored on the same processor� In Figure � b
 a
column illustrates one instance by its slot values Si� Each instance Ii corresponds
to one processor Pi� This data mapping is similar to that used in PARKA ����� The
di�erence of course is that PARKA is a direct implementation in �Lisp and uses no
O�O programming�

parallel�slot�class The metaobject class parallel�class maps an instance as a whole to
a processor� With parallel�slot�class particular slots �called parallel slots
 of an in�
stance are mapped to processors� while other slots are normal CLOS slots� Thus�
one or more slots of an instance may belong to a pvar� This is indicated in Fig�
ure � c
� slots S�� S�� and S� are parallel slots� Pvars for parallel slots are allocated
when a class is de�ned� By extending the instance structure protocol by the func�
tion get�processor that computes a processor for a given slot value� the distribution
of data can be controlled� The default behavior maps each slot value to a distinct
processor� Other kinds of data mappings can be implemented by specializing this
function� Thus� get�processor is a parallel extension to the inherited� sequential
protocol� With it� particular load balancing methods may be implemented�

distributed�slots�class Besides the vertical storing of instances done by parallel�class�
they may be stored horizontally� i�e� each slot value of an instance is located in a
distinct processor� This is useful for large instances with many slots �compare the
implementation in ����
� Again as in pvar�per�instance one pvar is allocated for each
instance and the desired slot values are stored in distinct processors� Accesses to slot
values are implemented by specializing the instance structure protocol� Figure � d

illustrates this metaobject class�
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Summarizing these proposed class de�nitions� parallel constructs are allocated during
class de�nition and speci�c processors are referenced during instantiation of such a class�
For this� the initilization protocol and the instance allocation protocol are specialized� To
refer to the right slot values on the CM�� additionally the instance structure protocol is
modi�ed� Thus� this modi�ed method establishes a part of the interfaces between CLOS
and the CM��� All parallel constructs such as declaration and allocation of processors
and pvars or usage of machine�dependent operations are hidden by metaobject classes and
their specializations of MOP functions� Thus� these metaobject classes modify the internal
representation of CLOS structures to connect CLOS with �Lisp�s parallel functions�
After this mapping of data �instances
 to processors the next step is to de�ne operations

on parallel structures� Besides extending functions of the MOP additional protocols are
attached to complex structures� In Section �� we describe a small part of them�

�� COMPLEX STRUCTURES

We see a complex structure as a kind of object that represents a large data structure
whose elements are related in a speci�c kind �e�g� matrices� graphs� relations� lists
� In this
sense� complex structures are abstract data types given by our language and not de�ned
by a user �i�e� an application programmer using a parallel language
� The notion is� that
speci�c �large
 data structures are necessary to program a parallel machine� and should
be part of a parallel language� because of di�cult� possibly machine�dependent imple�
mentations of such structures� The selection of necessary complex structures is guided by
AI applications� In this section� we describe one example of a complex structure	 a class
for handling relations �relation�class
� Relations are used in knowledge representation for
describing concepts and their connections�
The class relation�class is a direct subclass of parallel�slot�class� i�e� relation�class is an

other specialized metaobject class �because parallel�slot�class is one
� Thus� each parallel
slot is associated with a parallel structure but additionally it is interpreted as a relation
between classes as domain and range of the relation� Consider the following shortened
de�nition of the class �or concept
 PC	

�defclass PC ��

��has�parts �relation�values �CPU harddisk display�

�allocation parallel��

��metaclass relation�class��

The parallel allocation speci�cation �allocation parallel is inherited from parallel�slot�
class� Instances of PC are organized by relation�class� which is indicated through ��meta�
class relation�class�� �relation�values describes three new relation elements for the relation
has�parts� i�e� between PC and CPU� harddisk� and display respectively� De�ning a fur�
ther class� say comfortable�PC with an additional part �e�g� �relation�values �keyboard�

extends the relation has�parts by four new relation elements	 three inherited from PC and
a new one� Thus� the parallel structure representing the parallel slot is extended� and no
additional parallel structure is created� All other slots of comfortable�PC are inherited by
CLOS inheritance and their relations are similarly extended� i�e� corresponding parallel
structures are shared by diverse classes� After the classes are de�ned a parallel structure
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contains all created relation elements of one relation�� Instances of a class are represented
by markings of the class� relation elements� i�e� they describe subsets of the relations
speci�ed by the class� Markings are parallel structures� too� e�g� boolean�pvars�
Parallel operations on complex structures are de�ned by generic functions� We dis�

tinguish between simple generic functions on single elements of complex structures and
complex generic functions on a whole complex structure� Examples of simple generic func�
tions are comparing functions �like max and min
 and element functions �like position�of�
element and apply�to�elements� which applies a function to each element of a structure
��
Besides arithmetic functions �like mult� add� and sub
 and creating functions �like make�
instance� shift�to�parallel�structure
 complex functions are e�g� focussing functions� gen�
erating functions� reduce functions� or structure speci�c functions as transitive hull and
subsumption for relations� or clique graph computation for graphs� For a short descrip�
tion of some of these function classes we refer to ����� These operations are de�ned by
generic functions� i�e� they build a protocol for complex structures� For example� the sub�
sumption is de�ned as simple intersection of instances� and implemented by comparing
relation elements in parallel� This prede�ned behavior might be specialized for speci�c
applications�
To demonstrate the usage of the described classes and functions we present a possible

implementation for solving the selection problem� �We can only emphasize main issues�
details are avoided�
 Within this problem� a domain is represented by concepts and
relations� which describe a large set of possible real world objects �here called �con�gu�
rations�
� We have already seen the concept PC with its relation has�parts� Imagining a
number of such concepts representing a greater number of real PC�s� we want to select a
suitable� complete PC when a demand of a user is present� We assume� the demand is in
the scope of the domain� i�e� it uses the same relations as our domain describes�
Our approach is to de�ne relations and concepts by relation�class as described above�

Thus� parallel structures for relations are allocated and the protocol for relation�class can
be used� The demand is represented by an instance having all desired relations� which
are marked on the desired relation elements� This instance is simply compared with the
de�ned relations by using the subsumption function� which tests intersections� as described
above� Thus� parallelism is achieved for relation elements described by one or �in the
case of sharing parallel structures
 of some relations� When all relations are checked� the
computed markings determine the chosen concepts� They describe the con�gurations that
subsume the demand� The presented representation is one of a multitude of alternatives�

	� RELATED WORK

Our approach combines diverse methods and constructs� i�e� O�O programming� high�
level structures guided by AI applications� massively parallel machines� and an implemen�
tation technique made possible by a MOP� Thus� it is related to many other approaches�
which usually concentrate on one or two of these terms�
As mentioned above O�O languages proposed for parallel machines are mostly related

�With this implementation one gets parallelism on one relation� to improve that� one can hold several
relations in one parallel structure which is not discussed here�
�In ���� and ���� similar functions are proposed for applying to parallel�sets and paralations�
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to distributed machines� where message�passing is mapped to communicating processors�
Because the MOP speci�es all kinds of O�O features �i�e� not only generic function invoca�
tion� which corresponds roughly to message�passing� but also instance storage allocation�
inheritance and so on
 it is possible to modify CLOS in speci�c places� and only there�
Thus� it is not necessary to de�ne a whole new language� but pointed modi�cations are
possible� However� other O�O languages de�ned for massively parallel machines are in�
troduced in ���� and ����� But in ���� only elementwise functions are proposed and in ����
a sequential model lies on top� i�e� no new programming styles are supported� as with
our complex structures� In ���� the message�passing language pC�� is presented� which
introduces structures named �collections� that are similar to our complex structures� The
collections selected there are mostly related to linear algebra� But� the approach of hid�
ing low level implementations in class hierarchies� is the same as in DisGraL� The main
di�erences of course are distinct implementation techniques� Because the MOP is part of
CLOS� no additional programming environment �as described in ����
 is used� Instead of
compiling DisGraL we use the MOP as an interface between O�O programming and the
machine�dependent language �Lisp� Thus� we do not give a compiling scheme for� say�
complex structures �as it is done for pC��
 but take possibly high machine�dependent
programs of a parallel language and use them to implement complex structures� By this
means� existing parallel programs and speci�c implementation techniques are integrated�
Summarizing this� implementing the sequential language CLOS �as it is done by �Lisp

�which is ordinary Common Lisp plus some parallel constructs
 and our adding of PCL

and getting access to parallel machine internals �as it is done by �Lisp�s parallel con�
structs
 enables the implementation of high level abstractions in a known syntactic and
semantic environment� The re�ecting properties of CLOS �i�e� the possibility to manipu�
late language features within the language itself
 enables incorporating parallel constructs
by using a clean interface� This is also emphasized in �����


� CONCLUSION

We presented an O�O language for programming massively parallel machines� This
language is implemented by using the Metaobject Protocol of CLOS� Instead of concen�
trating on message�passing� we use multiple features of CLOS� such as generic functions�
multiple inheritance� and its special implementation with the MOP� We show that it is
easy to implement an interface between CLOS and the CM�� by using this open language
implementation� Because we focus on this interface� traditional problems of parallel com�
puting �e�g� load balancing� synchronization
 are not discussed� Instead� we described
some metaobject classes that produce various kinds of object �or instance
 distribution�
With them� we implement diverse abstract data types� which are part of our proposed
language� With an example taken from AI we demonstrate the usage of the language�
The extensions made� lead to a new easy understandable language� because new features
are integrated precisely in the syntax and semantics of CLOS� Because the MOP is con�
cerned with sequential operations� yet small additional protocols are �t in to support
parallel features like load balancing� The integration of further parallel protocols �e�g� for
handling sparse matrices
 will be done in the future� To develop an appropriate tool� we

�In our case multiple inheritance leads to heterarchies�
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will examine diverse areas of AI to �nd commonly usable structures and operations for
programming parallel machines� If implemented appropriatly� these abstractions might
be useful to program other machines like multiple instruction multiple data or distributed
machines�
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