
�

Programming the Connection Machine by using the Metaobject Protocol

Lothar Hotz� Gerd Kamp

Universit�at Hamburg� Fachbereich Informatik�
Bodenstedtstrasse ��� ����� Hamburg� Germany�
e�mail	 hotz
informatik�uni�hamburg�de

In this paper� we demonstrate how the Metaobject Protocol of the Common Lisp Object
System can be used to program the Connection Machine� In this approach� metaobject
classes� which are responsible for internal representations of instances� map instances to
processors in various ways� With these classes parallel structures are implemented to form
a language which allows an easy usage of a parallel machine�

�� INTRODUCTION

A widely used approach to join object�oriented �O�O
 programming and parallel com�
puters consists in identifying an �object� as a main source of parallelism or concurrency�
Objects �or actors� guardians
 communicate by messaging� i�e� sending messages to each
other� Such active objects may run concurrently if they reside on di�erent processors�
Examples for systems following this approach are described in ������ Besides objects and
messages O�O programming supplies additional features that may be used for program�
ming parallel computers� These features �e�g� found in the Common Lisp Object System
�CLOS
 ��� ��
 are generic functions� multiple inheritance� method combination� and the
metaobject protocol�
In this paper� we show how CLOS can be used to program massively parallel computers

�MPCs
 especially the Connection Machine �CM��
 ���� Our goal is to hide any kind of
explicit parallel syntax to the user by extending an already well�known language with less
change of its syntax� If we can de�ne a set of appropriate data structures� whose operations
are internally parallelized� and whose user�interface is within the scope of the language� the
user is not puzzled about explicitly thinking or programming in parallel terms� These data
structures are manifested in a set of large �i�e� numerous elements
 complex structures
such as matrices� lists� sets� relations� and graphs with appropriate operations on them
�e�g� multiplication� graph traversion� transitive hull� union
� Thus� our goal is to design
a language of complex data structures �called DisGraL� distributed graph language
 and
join these structures that are problem�oriented� machine�independent� commonly usable�
and parallelizable with appropriate operations�
In a �rst approach� we concentrate on data parallel machines like the CM��� because

they have a nature di�erent from control�oriented languages� detailed knowledge of the
machine�s architecture are necessary to program them ���� Thus� complex structures
and their operations are realized by data parallel algorithms� The interface between
such abstract data structures and their data parallel realization is implemented via the
metaobject protocol� This is a way to �open languages up�� allowing users to adjust the



�

design and implementation of a programming language to suit their particular needs� In
particular� in ��� a subset of CLOS is de�ned and extended with facets� dynamic slots
etc� by using the metaobject protocol of CLOS �MOP
� In a similar way� we extend
PCL �Portable CommonLoops� a portable version of CLOS
 to supply data mappings
to the CM��� i�e� known distributions of objects �e�g� ���� ���
 are supported by our
extensions� Thus� we show how the MOP can be used to implement an interface� between
CLOS and the CM��� This interface is given by language features� which smoothly �t
in the syntax of CLOS� Thus� no additional explizit parallel constructs must be known
to a user of these extensions� In this sense� the paper describes how to bridge the gap
between low level� machine�dependent� more or less e�cient parallel algorithms and high
level� abstract applications� We are not concerned with improving speci�c algorithms
or solving a speci�c problem on a parallel machine in an e�cient way� Thus� neither
e�ciency results are presented nor parallel algorithms are described� However� we assume
that there exist e�cient parallel algorithms and that there are applications that should
be solved with parallel machines�
We �rst give a short overview of terms used �Section �
� After a short description of

levels of abstraction ��
 �for a more detailed view of them we refer to ����
� we present
the developed metaobject classes for handling massively parallel constructs ��
� These
classes are used to implement complex structures as described and illustrated with a short
example in Section �� Finally� in Section � we discuss some other approaches�

�� THE CM��� O�O PROGRAMMING� AND THE MOP

The connection machine CM�� is a massively parallel single instruction multiple data
�SIMD
 computer consisting of up to ��K processors� To the user the parallel processing
unit appears as an extension of the normal environment of a standard sequential computer�
such as a Sun��� �Lisp ���� is a data parallel extension of Common Lisp for the CM���
The data parallel extensions of �Lisp include a large number of functions and macros� and
one important abstraction� the �parallel variable�� or �pvar�� A pvar is a variable that
has a separate value for each processor in the CM���
Besides widely used O�O features like classes� slots �data �elds of classes
� inheritance�

and instances� the data stores of slot values of a speci�c class� we focus on metaobject
classes� and protocols� Classes� which control representation of instances of classes are
called �metaobject classes�� With them a programmer gets access to the internal repre�
sentation of language constructs� The speci�cation of interacting objects is manifested in
a collection of generic functions called �protocol�� Protocols are specializable� modi�able
interfaces between objects� CLOS is implemented in CLOS� i�e� all features of CLOS
�e�g� classes� generic functions
 are represented as instances of prede�ned classes named
�standard metaobject classes�� These instances are called �metaobjects�� The behavior
of these metaobjects �and thus of CLOS
 is described with protocols� These protocols
describe speci�c points of the CLOS implementation to be changed by a programmer� For
example� the instance allocation protocol speci�es that allocate�instance is called when
an instance is allocated� Because these functions are generic functions they can be spe�
cialized as in an ordinary O�O program� The language implementation itself is structured
as an O�O program� Thus� extensions can be made by subclassing standard metaobject



�

classes to �specialized metaobject classes�� These classes extend or override prede�ned
language behavior� e�g� to access a processor element and not an element of an array
when a slot value is refered to� In Section �� we describe the modi�cation of the instance
allocation protocol� Changing the implementation of a programming language might look
ugly and suspect� but it is not when doing it in a portable way� Because the protocols are
summarized in the quasi standard of the MOP �see ��� ���
� all implementations of CLOS
using it will understand changes of CLOS� To the user �programmer
 of a such modi�ed
CLOS the extensions are part of the language and clearly integrated in the syntax and
semantics of the language�

�� LEVELS OF ABSTRACTION

To clarify our view of parallel languages� we describe levels of abstraction and languages
�see also ����
� The usefulness of separating low�level parallel constructs from high level
problem oriented constructs is also discussed in other papers like �������� We extend
�Lisp with PCL to get an O�O interface to the data parallel CM��� Furthermore� we de�
�ne classes and metaobject classes to map data to parallel machines� This level is called
�CLOS� With this extension� classes and operations for regular structures like vector� ma�
trix� set and irregular structures are de�ned� Irregular structures such as relation� graph�
tree� and list change dynamically and are not constant in size or are arbitrarily distributed�
Thus� it is not possible to map these structures one�to�one to regular internal constructs�
However� it is possible to implement such structures on the CM�� ���� ���� Operations
on irregular structures are de�ned on the entire structure� not on single objects� Our
approach integrates these structures and operations in a set of classes and methods that
is called DisGraL� The main issue with DisGraL is the need to de�ne problems in terms
of complex structures and operations� i�e� the programmer does not think in parallel or
sequential structures but in complex ones� DisGraL is the basis for a tool for implement�
ing various Arti�cial Intelligence �AI
 applications such as vision� neural nets� and the
selection problem on parallel computers� In Section �� we give one example� which gives
a short insight of the tool�

�� CLASSES AND METAOBJECT CLASSES FOR THE CM��

In this section� we present one class and three specialized metaobject classes� one of
them is used to implement the complex structure relation�class �see Section �
� These
classes describe distinct mappings of instances �i�e� data holding structures of O�O lan�
guages
 to processors� re�ecting our data parallel approach� They are part of �CLOS�
As mentioned above� the instance allocation protocol is specialized by these classes� The
standard protocol speci�es that allocate�instance results in an array for storing slot values�
By indicating slots to be not CLOS slots but parallel ones� the standard protocol does
no longer allocate storage on the sequential machine� Instead storage is allocated on the
CM�� by a specialized method for allocate�instance� which uses �LISP functions� The
distribution can be done in various ways� depending on the desired data distribution�

pvar�per�instance�class This class is an ordinary CLOS class� Each instance of this
class represents one pvar� The pvar is allocated during initialization of a new in�



�

S1S1

S2

S3

PVAR

S1
S2
S3
S4
S5
S6
S7

P1 P2 P3 P4

P2 P3 P4

P2 P3 P4P1

P1 I1
I2
I3
I4
I5
I6
I7

a) pvar-per-instance-class c) parallel-slot-classb) parallel-class d) distributed-slots-class

I2 I3 I4I1 S2S1 S3 S4

P1 P2 P4P3

I4I3I2I1

Figure �� a
 � d
� Specialized parallel metaobject classes� Pi stands for Processors� Si for
Slots� and Ii for Instances�

stance and initialized with a given content� e�g� elements of a sequential array or
a particular number� Thus� the initialization protocol is extended to allocate the
appropriate pvar depending on the given content� In Figure � a
� a two dimensional
pvar is shown which corresponds to one instance representing a matrix�

parallel�class This metaobject class maps each instance of a class to a processor� i�e�
all slot values of an instance are stored on the same processor� In Figure � b
 a
column illustrates one instance by its slot values Si� Each instance Ii corresponds
to one processor Pi� This data mapping is similar to that used in PARKA ����� The
di�erence of course is that PARKA is a direct implementation in �Lisp and uses no
O�O programming�

parallel�slot�class The metaobject class parallel�class maps an instance as a whole to
a processor� With parallel�slot�class particular slots �called parallel slots
 of an in�
stance are mapped to processors� while other slots are normal CLOS slots� Thus�
one or more slots of an instance may belong to a pvar� This is indicated in Fig�
ure � c
� slots S�� S�� and S� are parallel slots� Pvars for parallel slots are allocated
when a class is de�ned� By extending the instance structure protocol by the func�
tion get�processor that computes a processor for a given slot value� the distribution
of data can be controlled� The default behavior maps each slot value to a distinct
processor� Other kinds of data mappings can be implemented by specializing this
function� Thus� get�processor is a parallel extension to the inherited� sequential
protocol� With it� particular load balancing methods may be implemented�

distributed�slots�class Besides the vertical storing of instances done by parallel�class�
they may be stored horizontally� i�e� each slot value of an instance is located in a
distinct processor� This is useful for large instances with many slots �compare the
implementation in ����
� Again as in pvar�per�instance one pvar is allocated for each
instance and the desired slot values are stored in distinct processors� Accesses to slot
values are implemented by specializing the instance structure protocol� Figure � d

illustrates this metaobject class�



�

Summarizing these proposed class de�nitions� parallel constructs are allocated during
class de�nition and speci�c processors are referenced during instantiation of such a class�
For this� the initilization protocol and the instance allocation protocol are specialized� To
refer to the right slot values on the CM�� additionally the instance structure protocol is
modi�ed� Thus� this modi�ed method establishes a part of the interfaces between CLOS
and the CM��� All parallel constructs such as declaration and allocation of processors
and pvars or usage of machine�dependent operations are hidden by metaobject classes and
their specializations of MOP functions� Thus� these metaobject classes modify the internal
representation of CLOS structures to connect CLOS with �Lisp�s parallel functions�
After this mapping of data �instances
 to processors the next step is to de�ne operations

on parallel structures� Besides extending functions of the MOP additional protocols are
attached to complex structures� In Section �� we describe a small part of them�

�� COMPLEX STRUCTURES

We see a complex structure as a kind of object that represents a large data structure
whose elements are related in a speci�c kind �e�g� matrices� graphs� relations� lists
� In this
sense� complex structures are abstract data types given by our language and not de�ned
by a user �i�e� an application programmer using a parallel language
� The notion is� that
speci�c �large
 data structures are necessary to program a parallel machine� and should
be part of a parallel language� because of di�cult� possibly machine�dependent imple�
mentations of such structures� The selection of necessary complex structures is guided by
AI applications� In this section� we describe one example of a complex structure	 a class
for handling relations �relation�class
� Relations are used in knowledge representation for
describing concepts and their connections�
The class relation�class is a direct subclass of parallel�slot�class� i�e� relation�class is an

other specialized metaobject class �because parallel�slot�class is one
� Thus� each parallel
slot is associated with a parallel structure but additionally it is interpreted as a relation
between classes as domain and range of the relation� Consider the following shortened
de�nition of the class �or concept
 PC	

�defclass PC ��

��has�parts �relation�values �CPU harddisk display�

�allocation parallel��

��metaclass relation�class��

The parallel allocation speci�cation �allocation parallel is inherited from parallel�slot�
class� Instances of PC are organized by relation�class� which is indicated through ��meta�
class relation�class�� �relation�values describes three new relation elements for the relation
has�parts� i�e� between PC and CPU� harddisk� and display respectively� De�ning a fur�
ther class� say comfortable�PC with an additional part �e�g� �relation�values �keyboard�

extends the relation has�parts by four new relation elements	 three inherited from PC and
a new one� Thus� the parallel structure representing the parallel slot is extended� and no
additional parallel structure is created� All other slots of comfortable�PC are inherited by
CLOS inheritance and their relations are similarly extended� i�e� corresponding parallel
structures are shared by diverse classes� After the classes are de�ned a parallel structure



�

contains all created relation elements of one relation�� Instances of a class are represented
by markings of the class� relation elements� i�e� they describe subsets of the relations
speci�ed by the class� Markings are parallel structures� too� e�g� boolean�pvars�
Parallel operations on complex structures are de�ned by generic functions� We dis�

tinguish between simple generic functions on single elements of complex structures and
complex generic functions on a whole complex structure� Examples of simple generic func�
tions are comparing functions �like max and min
 and element functions �like position�of�
element and apply�to�elements� which applies a function to each element of a structure
��
Besides arithmetic functions �like mult� add� and sub
 and creating functions �like make�
instance� shift�to�parallel�structure
 complex functions are e�g� focussing functions� gen�
erating functions� reduce functions� or structure speci�c functions as transitive hull and
subsumption for relations� or clique graph computation for graphs� For a short descrip�
tion of some of these function classes we refer to ����� These operations are de�ned by
generic functions� i�e� they build a protocol for complex structures� For example� the sub�
sumption is de�ned as simple intersection of instances� and implemented by comparing
relation elements in parallel� This prede�ned behavior might be specialized for speci�c
applications�
To demonstrate the usage of the described classes and functions we present a possible

implementation for solving the selection problem� �We can only emphasize main issues�
details are avoided�
 Within this problem� a domain is represented by concepts and
relations� which describe a large set of possible real world objects �here called �con�gu�
rations�
� We have already seen the concept PC with its relation has�parts� Imagining a
number of such concepts representing a greater number of real PC�s� we want to select a
suitable� complete PC when a demand of a user is present� We assume� the demand is in
the scope of the domain� i�e� it uses the same relations as our domain describes�
Our approach is to de�ne relations and concepts by relation�class as described above�

Thus� parallel structures for relations are allocated and the protocol for relation�class can
be used� The demand is represented by an instance having all desired relations� which
are marked on the desired relation elements� This instance is simply compared with the
de�ned relations by using the subsumption function� which tests intersections� as described
above� Thus� parallelism is achieved for relation elements described by one or �in the
case of sharing parallel structures
 of some relations� When all relations are checked� the
computed markings determine the chosen concepts� They describe the con�gurations that
subsume the demand� The presented representation is one of a multitude of alternatives�

	� RELATED WORK

Our approach combines diverse methods and constructs� i�e� O�O programming� high�
level structures guided by AI applications� massively parallel machines� and an implemen�
tation technique made possible by a MOP� Thus� it is related to many other approaches�
which usually concentrate on one or two of these terms�
As mentioned above O�O languages proposed for parallel machines are mostly related

�With this implementation one gets parallelism on one relation� to improve that� one can hold several
relations in one parallel structure which is not discussed here�
�In ���� and ���� similar functions are proposed for applying to parallel�sets and paralations�



�

to distributed machines� where message�passing is mapped to communicating processors�
Because the MOP speci�es all kinds of O�O features �i�e� not only generic function invoca�
tion� which corresponds roughly to message�passing� but also instance storage allocation�
inheritance and so on
 it is possible to modify CLOS in speci�c places� and only there�
Thus� it is not necessary to de�ne a whole new language� but pointed modi�cations are
possible� However� other O�O languages de�ned for massively parallel machines are in�
troduced in ���� and ����� But in ���� only elementwise functions are proposed and in ����
a sequential model lies on top� i�e� no new programming styles are supported� as with
our complex structures� In ���� the message�passing language pC�� is presented� which
introduces structures named �collections� that are similar to our complex structures� The
collections selected there are mostly related to linear algebra� But� the approach of hid�
ing low level implementations in class hierarchies� is the same as in DisGraL� The main
di�erences of course are distinct implementation techniques� Because the MOP is part of
CLOS� no additional programming environment �as described in ����
 is used� Instead of
compiling DisGraL we use the MOP as an interface between O�O programming and the
machine�dependent language �Lisp� Thus� we do not give a compiling scheme for� say�
complex structures �as it is done for pC��
 but take possibly high machine�dependent
programs of a parallel language and use them to implement complex structures� By this
means� existing parallel programs and speci�c implementation techniques are integrated�
Summarizing this� implementing the sequential language CLOS �as it is done by �Lisp

�which is ordinary Common Lisp plus some parallel constructs
 and our adding of PCL

and getting access to parallel machine internals �as it is done by �Lisp�s parallel con�
structs
 enables the implementation of high level abstractions in a known syntactic and
semantic environment� The re�ecting properties of CLOS �i�e� the possibility to manipu�
late language features within the language itself
 enables incorporating parallel constructs
by using a clean interface� This is also emphasized in �����


� CONCLUSION

We presented an O�O language for programming massively parallel machines� This
language is implemented by using the Metaobject Protocol of CLOS� Instead of concen�
trating on message�passing� we use multiple features of CLOS� such as generic functions�
multiple inheritance� and its special implementation with the MOP� We show that it is
easy to implement an interface between CLOS and the CM�� by using this open language
implementation� Because we focus on this interface� traditional problems of parallel com�
puting �e�g� load balancing� synchronization
 are not discussed� Instead� we described
some metaobject classes that produce various kinds of object �or instance
 distribution�
With them� we implement diverse abstract data types� which are part of our proposed
language� With an example taken from AI we demonstrate the usage of the language�
The extensions made� lead to a new easy understandable language� because new features
are integrated precisely in the syntax and semantics of CLOS� Because the MOP is con�
cerned with sequential operations� yet small additional protocols are �t in to support
parallel features like load balancing� The integration of further parallel protocols �e�g� for
handling sparse matrices
 will be done in the future� To develop an appropriate tool� we

�In our case multiple inheritance leads to heterarchies�



�

will examine diverse areas of AI to �nd commonly usable structures and operations for
programming parallel machines� If implemented appropriatly� these abstractions might
be useful to program other machines like multiple instruction multiple data or distributed
machines�

REFERENCES

�� P� C� Treleaven� editor� Parallel Computers� Object Oriented� Functional� Logic� Wiley 	 Sons�
�
���

�� A� Yonezawa and M� Tokoro� editors� Object�Oriented Concurrent Programming� MIT Press� Cam�
bridge� MA� �
�
�

�� C� Houck and G� Algha� HAL� A High�level Actor Language and Its Distributed Implementation�
In Proc� Int� Conf� on Parallel Processing ���� pages II���� � II����� �

��

�� E� Moss� Panel Discussion� Object�Oriented Concurrency� In OOPSLA Addendum to the Proceed�

ings� volume �� of ACM SIGPLAN Notices� pages ��
 � ��
� �
�
�
�� L� V� Kale and S� Krishnan� Charm��� Portable Concurrent Object Oriented System Based On

C��� Technical report� University of Illinois� �

��
�� S� E� Keene� Object�Oriented Programming in Common Lisp� Addison�Wesley Publishing Company�

�
�
�

� G� Kiczales� D� G� Bobrow� and J� des Rivi�eres� The Art of the Metaobject Protocol� MIT Press�

Cambridge� MA� �

��
�� W� D� Hillis� The Connection Machine� MIT Press� Cambridge� MA� �
���

� C� K� Yuen� Parallel Lisp Systems� Chapman 	 Hall� �

��
��� L� Hotz� An Object�Oriented Approach for Programming the Connection Machine� In H� Kitano�

editor� Second International Workshop on Parallel Processing for Arti�cial Intelligence� PPAI��	�
Elsevier Science Publishers� �

�� To appear�

��� �Lisp� Getting Started in 
Lisp� Version ���� Thinking Machines Corporation� Cambridge� MA�
�

��

��� R� P� Gabriel� Book Review� G� Kiczales� J� des Rivi�eres� and D� G� Bobrow� The Art of the
Metaobject Protocol� Arti�cial Intelligence� ����������� �

��

��� M� F� Kilian� Object�Oriented Programming for Massively Parallel Machines� In Proc� Int� Conf�

on Parallel Processing ���� pages II���
 � II����� �

��
��� J��M� J�ez�equel� EPEE� an Ei�el Environment to Program Distributed Memory Parallel Computers�

In Proc� ECOOP ���� pages �

����� �

��
��� G� C� Fox� Hardware and Software Architectures for Irregular Problem Architectures� In R� Voigt�

P� Mehrotra� and J� Saltz� editors� Unstructured Scienti�c Computation on Scalable Multiprocessors�
pages �������� The MIT Press� �

��

��� H� Masuhara� S� Matsuoka T Watanabe� and A� Yoneyawa� Object�Oriented Concurrent Re�ective
Languages can be Implemented E�ciently� In Proc� OOPSLA ���� ACM SIGPLAN� pages ��
 �
���� �

��

�
� D� Dahl� Mapping and Compiled Communication on the Connection Machine System� In Proc� of the

th Distributed Memory Computing Conference IEEE Computer Society� pages 
���
��� Charleston�
South Carolina� April �

��

��� S� S� Nielsen and S� A� Zenios� Data Structures for Network Algorithms on Massivley Parallel
Architectures� Parallel Computing� ������������� �

��

�
� M� Evett� J� Hendler� and L� Spector� Parka� Parallel Knowledge Representation on the Connection
Machine� Technical Report UMIACS�TR�
����� University of Maryland� �

��

��� J� L� Kolodner and R� Thau� Design and Implementation of a Case Memory� Technical Report
RL����� Georgia Institute of Technology� �
���

��� G� Sabot� The Paralation Model� MIT Press� Cambridge� MA� �
���
��� J� K� Lee� S� Yang� S� Narayana� and D� Gannon� Compiling an Object�Oriented Parallel Language

for Parallel Machines� In Proc� of ���� International Conference on Parallel and Distributed Systems�
pages ��� � ���� Hsinchu� Taiwan� December �

��


