
Distributing Constraints on Workstation Clusters by using a

Structure�Oriented Programming Model

Lothar Hotz� Michael Trowe a �

aUniversit�at Hamburg
Labor f�ur K�unstliche Intelligenz
Fachbereich Informatik
Vogt�K�olln�Str���� D���	�
 Hamburg� Germany
e�mail� fhotz� troweg�kogs�informatik�uni�hamburg�de

In this paper we describe an extension to COMMON LISP which allows the de
nition of
parallel programms at a highly abstract level� This is realized by introducing a structure�
oriented programming model� The use of the programming model is demonstrated with
an implementation of constraints on a network of workstations�

�� Motivation

One of the big problems of Arti
cial Intelligence �AI� is getting its applications to
deliver their answers in time� Parallel computation is one way to solve this problem� But
though there are many parallel implementations of basic AI techniques� there are very
few AI applications which use them� This is true due to two reasons�

� Most of these implementations depend on special parallel hardware �e�g� ���� �����
This hardware is expensive and not widely available� Furthermore� the speci
cation
of many applications excludes the use of special hardware �e�g� personal assistant��

� Most of them are written in special parallel programming languages unknown to
the application programmer and lacking features important to develop a complete
application ������ Hence their integration into such an application is di�cult�

Our goal is to simplify the parallel implementation of standard AI techniques� We
think this means using standard hardware and extending a language widely used for AI
programming in a way that hides any kind of explicit parallel programming from the
application programmer� So we extended COMMON LISP with two levels of features for
parallel programming on workstation clusters� The upper level is intended for easy use
by the AI programmer inexperienced with parallel programming� while the lower level is
intended for implementation of the upper level� We tested our approach implementing
parallel constraint 
ltering�

�This research has been supported by the Bundesminister f�ur Bildung� Wissenschaft� Forschung und
Technologie �BMBF� under the grant �� IN ��	 D �� INDIA 
 Intelligente Diagnose in der Anwendung



object spaces

active objects

proxy

object
server

LISP-Images on workstations
Implementation

NetCLOS level

Structure-oriented
programming level

Given ressources LISP, CLOS, concurrent LISP processes,
streams & socket communication
Network of workstations

Application constraint net consisting of constraints and
variables

value node
function node

propagation net

variable

constraint

constraint net
{3 4}

{4 7 8 12} {2 3 5}

{4 5}

{7 8}

{3}

a+b=c x=y

x

y

a
b

c

{4 5}

a+b=c x=y

x

y

a
b

c

{3}

constraint propagation

a) b)

Figure �� a� Example of constraint propagation� b� Levels of used abstractions�

�� Parallel programming using abstract datatypes � the programming model

Our programming model consists of two levels �Figure �b��� The top level is the
structure�oriented programming level� Datatypes representing complex structures and
operations on them are introduced on this level� These may e�g� be an arbritray net� a
tree or graph structure� These abstractions are designed and selected to support the devel�
opment of AI methods� In our example the structure relaxation�net is used to implement
constraint nets �section ���
The second level� called NetCLOS�� is used to implement the structures of the 
rst level�

It extends COMMON LISP with features for parallel and distributed object�oriented pro�
gramming� The parallel and the distribution aspect of the implementation of a structure
can be described independently� The parallel programming is done with active objects�
These have their own processes and communicate via synchronous and asynchronous mess�
sage passing �for a similar model see ����� To distribute these objects over the workstation
cluster� objects can be created on every workstation and moved from one workstation to
the other� A runtime environment enables distributed garbage collection and transparent
remote message passing�
This way we can divide the implementation of the structure types into two steps� A

machine�independent description of the potential parallelism using active objects� and a
description of the mapping of these objects to the workstation cluster�

�NetCLOS as an extension to ALLEGRO COMMON LISP is implemented and can be received from the
authors� NetCLOS is implemented using the metaobject protocol of CLOS �see �
� and �����



�� An example structure � the relaxation net

Relaxation net is an abstraction implementing parallel discrete relaxation �see ��� for a
similar approach�� It consists mainly of

� a class of objects �value nodes� acting as shared stores� Accesses to these stores
are automatically synchronized� i�e� this is done by the next lower� NetCLOS level�
These objects can be used to implement the variables of the constraint net�

� a class of objects �function nodes� which� when activated� compute a function of the
content of a set of stores� These objects can be used to implement the constraints�

� A structure class which organizes stores and functional objects into a network and
provides for iterated activation and parallel execution of the functional objects �i�e�
a relaxation operation�� This relaxation net can be used to implement a constraint
net�

To use parallel relaxation� the application programmer writes subclasses to the classes
above� rede
ning some methods� There is no need for any explicit parallel programming�
The relaxation net is then partitioned and distributed over the workstation cluster auto�
matically� but the programmer can replace the default load�balancing strategy with an
application�speci
c one to optimize performance�

�� Implementing parallel constraint �ltering

Constraints are used to describe conditions on variables of a problem description �Figure
�a��� They determine which combinations of variable values are admissible� Constraints
can be given by 
nite sets of tuples �like in CONSAT ���� but also by function de
ni�
tions� which are evaluated when constraints are processed� By variables used in multiple
constraints a net is constructed� where the size depends on the problem size� Solving a
constraint net means 
nding a value for each variable so that no constraint is violated�
To reduce the e�ort to 
nd a solution� the method of constraint 
ltering is often used

��
��� This process consists of the repeated application of a 
ltering operation� removing
all locally inconsistent values from the domain of possible values of the variables� In
CONSAT a variation of this 
ltering scheme is also used to compute global solutions�
We used the structure type relaxation net to implement parallel constraint 
ltering�

implementing variables as value nodes� constraints as function nodes and constraint nets
as relaxation nets� We tested this implementation on our local workstation cluster and
a constraint net for the ��dimensional interpretation of line drawings �
�� First experi�
ments showed that there is slight overhead related to the abstractions used� but much
related to distribution �i�e� computing a partition� and communication �i�e� moving ob�
jects around�� In the near future experiments with constraints solving a simulation task
for analog electrical circuits will be carried out�

�� Conclusions

Our work presents the 
rst approach for high�level parallel programming on a work�
station cluster in COMMON LISP� Using structure types made it easy to parallelize



important AI techniques on a workstationcluster� Extending Allegro COMMON LISP
enables us to integrate them into complex Applications� At the moment we use them to
parallelize central parts of a diagnosis application for fork list trucks�

REFERENCES

�� M� Dixon� J� de Kleer� Massively Parallel Assumption�based Truth Maintenance�
Proceedings of the AAAI ��� �������� �����

�� H� W� Guesgen� CONSAT� A System for Constraint Satisfaction� Notes in Arti�cial

Intelligence� �����
�� K� Ho� High�Level Abstractions for Symbolic Parallel Programming� PhD thesis�

University of California at Berkeley� �����
�� L� Hotz and G� Kamp� Programming the Connection Machine by using the Metaob�

ject Protocol� In Parallel Computing� Trends and Applications� North Holland� �����
Elsevier Science Publishers�

	� L� Hotz� An Object�Oriented Approach for Programming the Connection Machine� In
H� Kitano� editor� Second International Workshop on Parallel Processing for Arti�cial

Intelligence� PPAI���� Elsevier Science Publishers� �����
�� G� Kiczales� D� G� Bobrow� and J� des Rivieres� The Art of the Metaobject Protocol�

MIT Press� Cambridge� MA� �����

� D� L� Waltz� Generating semantic descriptions from drawings of scenes with shadows�

Technical Report AI�TR��
�� MIT Laboratory for Computer Science� Cambridge�
MA� ��
��

�� A� Yonezawa� J� Briot� and E� Shibayama� Object�Oriented Concurrent Programming
in ABCL��� SIGPLAN Notices� ��������	������ �����

�� C� K� Yuen� Parallel Lisp Systems� Chapman � Hall� �����


