Parallel Abstractions -
Structure-Oriented Programming

Lothar Hotz
Labor fiir Kiinstliche Intelligenz
Fachbereich Informatik
Universitat Hamburg

Abstract In this paper, we describe parallel
abstractions for implementing parallel AI methods
at a highly abstract level. A programming model
is introduced which replaces explicit parallel pro-
gramming with a structure-oriented programming
approach. In this approach control abstractions are
introduced which intern are used to implement ap-
plications. For demonstrating the applicability of
the programming model an example from the field
of comstraint propagation is presented.

Keywords: Parallel Programming Models, Parallel
Data Types, Object-Oriented Technology, Artificial
Intelligence

1 Parallel programming using
parallel abstractions — the
programming model

Parallel programming is a difficult task, be-
cause of the possibly big number of parallel
flows of control. In low-level parallel languages
the handling of these flows (i.e. distribution,
synchronization etc.) is left to the program-
mer. This makes parallel programming diffi-
cult and complex. To make parallel program-
ming easier, we introduce a layer between low-
level constructs and the application program-
ming level - the structure-oriented program-
ming level (see Figure 1). The main task of
this level is the abstraction of parallel flows of
control.

The possibilities for parallelizing multiple
flows of control are directly related to the struc-

ture of the data to be processed. If flows op-
erate on same data, they have to be synchro-
nized. These flows depend on each other. If the
data being processed is not stored in a common
data structure, i.e. if the data is unstructured,
the dependency structure is difficult to handle.
Manual parallelizing or more or less automatic
code analysis have to be applied. If the data
are structured, the flows can be bundled into
operations. If those operations are defined on
data as a whole, synchronization can be done
within these operations. Thus, operations on
structures do have structure dependent paral-
lelization facilities. That means, if the data
has a certain structure certain flows of con-
trol can be used to operate on that structure.
Thus, structures and operations on them ab-
stract parallel flows, i.e. are parallel abstrac-
tions. Parallel abstractions representing com-
plex structures and operations on them are in-
troduced on the structure-oriented level, exam-
ples are an arbitrary net, a tree or graph struc-
ture.

With this approach parallel data types of
various kind are introduced for implementing
applications. Parallel data types used in lan-
guages like in Fortran90, NESL [2], or Parala-
tion Lisp [16] are mainly based on parallel ar-
rays. In those approaches other data types like
trees and graphs have to be mapped to parallel
arrays in a more or less awkward way. Thus,
introducing further parallel data types besides
parallel arrays is obvious.

For pragmatically determining what paral-
lel abstractions are useful for implementing ap-

constraint net consisting of constraints and
variables

Application

Structure-griented | Propagation net

programming level value node

function node

object spaces

NetCLOS level

active objects

Given ressources LISP, CLOS, concurrent LISP processes,
streams & socket communication

Network of workstations

Figure 1: Levels of used abstractions.

plications, we consider a discipline where par-
allel processing is not common but can have
substantial contribution for improving perfor-
mance: Artificial Intelligence (AI). Thus, the
structure-oriented level (upper level) is in-
tended for easy use by AI programmers inexpe-
rienced with parallel programming, while the
lower level is intended for implementing the up-
per level. This implementation can be done by
parallel or structure programmers experienced
with parallel programming.

The lower level, an integration of an actor-
like language [5] in Common Lisp and its
object-oriented part CLOS (Common Lisp Ob-
ject System) [13, 19] is shortly described in
Section 2, for a more detailed view see [11].
In Section 3, a schema of parallel abstractions
for programming AT applications is introduced.
In two examples, structures are used to imple-
ment constraint nets and qualitative simula-
tions (Section 4). In Section 5, related work is
discussed.

2 Short description of the
lower level — NetCLOS

The lower level (see [11]), called NetCLOS!,
is used to implement the structures of the up-
per level on a workstation cluster. It extends
Common Lisp with features for parallel and

'NetCLOS is implemented as an extension to Alle-
gro Common Lisp by using the metaobject protocol of
CLOS (see [9, 13]).

distributed object-oriented programming. The
parallel and the distribution aspect of the im-
plementation of a structure can be described
independently. The parallel programming is
done with active objects. These have their own
processes and communicate via synchronous
and asynchronous message passing (for a sim-
ilar model see [1, 22]).

The distribution model of NetCLOS is based
on the notion of one object space (implemented
with a lisp image) residing on each workstation
of a cluster. An object space contains all infor-
mation to handle active objects, e.g., all nec-
essary classes and functions are known to each
object space. Every active object resides on
exactly one object space. But an active object
can be referenced from each object space, not
only the local one. Thus, the identity of an ac-
tive object is guaranteed over all object spaces,
i.e. each active object is unique and can be ref-
erenced from diverse object spaces. When mes-
sages are sent or an active object is passed as
argument of a message, it makes no difference
whether the object is locally or remotely refer-
enced. To distribute these active objects over
a workstation cluster, active objects can be
created on every workstation and moved from
one workstation to the other. A runtime envi-
ronment enables distributed garbage collection
and transparent remote message passing.

This way, we can divide the implementa-
tion of the structure types into two steps: A
machine-independent description of the poten-
tial parallelism using active objects; and a de-
scription of the mapping of these active objects
to the workstation cluster.

In the current implementation of NetCLOS,
we focus on a workstation cluster. We think
for other parallel architectures other paral-
lel extensions may be useful. One example
is *Lisp [14] which introduces parallel mech-
anisms for array processors. Its integration
with CLOS (named *CLOS) is described in
[8]. However, the structure-oriented program-
ming level would be implemented with *CLOS
or NetCLOS depending on the underlying ar-
chitecture, but the upper level does not change
for application programmers. Thus, a porta-

bility of application programms written with
structures is ensured.

With NetCLOS, basic concurrent and dis-
tributed abstractions are introduced in CLOS.
The structure-oriented level is oriented towards
application programmers, and aims at defin-
ing a high level parallel programming lan-
guage. Furthermore, both levels are imple-
mented as open extendable protocols by us-
ing diverse objects for handling the concur-
rency mechanisms (like message-handler, ob-
ject spaces etc.). Thus, we follow a reflective
approach for object-based parallel program-
ming (see [3] for further classifications).

3 Introducing parallel ab-
stractions for programming
AT applications

Consider the control abstractions described in
Figure 2. A program with a single flow is a
sequential program. Programs with multiple
flows can be of different types - independent or
dependent flows. The flows are independent of
each other if there are no common used data.
Furthermore, the relations between data are
expressed in structures, i.e. are explicitly given
by operations, e.g. parent functions in trees.
An arbitrary access of elements, e.g. array-
elements via indices, is not seen as an explicit
relation because it is not manifested in a struc-
ture. Thus, self-destructive operations on e.g.
arrays are only possible in operations defined
for the control abstraction array, but cannot
be done by application programmers.

We distinguish three types of dependency
structures. A fized dependency structure is
known at developers time? and thus, can be ex-
pressed by static data structures. A derived de-
pendency structure is not known at developers
time but functions can be given which are used
to compute the dependency structure. This
computation is done before the parallel pro-
cessing takes place. If the dependency struc-

%j.e. the time when the application program is writ-
ten down.

Control abstraction
Multiple flows

IAgent-structure)

Structure-oriented level

Figure 2: Control abstractions and their inte-
gration in application classes.

ture is computed during the parallel processing
we speak of a dynamic dependency structure.

Each dependency structure demands a dis-
tinct load balancing and synchronization strat-
egy. With this scheme not concurrency and
distribution mechanisms are described with
classes but structure of data. Concurrency
mechanisms are introduced for classes of the
structure-oriented level and may be totally dif-
ferent for distinct classes. This is no drawback,
because experiences show that a structure of
synchronization classes is difficult to specify
and moreover to reuse, because of the high
interdependency between the synchronization
conditions for different methods [3].

For programming, complex structure classes
are introduced, which belong to specific depen-
dency structures. For image processing e.g.,
each pixel can be computed independently and
the size and type of the structure is known in
advance. Therefore, a parallel array is used
to implement an image. For constraint filter-
ing e.g., the structure of a constraint net is not
known at developers time but can be computed
before parallel processing. Thus, the parallel
abstraction used for a constraint net, i.e. a re-
laxzation net, has a derived dependency struc-
ture.

A further example is given by the abstrac-
tion parallel bag. A typical communication
scheme for computing a best search is a server-
client algorithm. A server distributes the work
to be done to several clients at hand. A di-

rect implementation with parallel constructs
would mix parallel constructs with applica-
tion specific functions. Thus, it would only
be useful for the specific problem of computing
best search. An abstraction of the server-client
communication scheme would enable multiple
applications to make use of it. The abstraction
parallel bag hides the necessary communication
scheme (a NetCLOS program) to an applica-
tion programmer. The view at a parallel bag
is as follows: A bag is present, where balls can
be put into. A ball contains an object, some
arguments and a function-name. When a ball
is put into the bag, the ball is evaluated by
the bag. The bag will call the function with
the object and the arguments and put the re-
sult in the ball. If the evaluation of the ball is
completed, the ball jumps out of the bag and
the programmer can catch it. If multiple balls
are put into the bag, the parallel bag probably
will evaluate them in parallel. Thus, for an ap-
plication programmer following functions are
given: create-bag, create-ball, put-ball,
get-next-result. The selection of the best
ball have to be done in this scheme by the ap-
plication programmer. The abstraction han-
dles the distribution of balls on the parallel
machine and calls the function of each ball for
computing the result. Furthermore, when the
structure programmer implements the abstrac-
tion, he/she can be sure, that the objects to be
parallelized (the balls) are independent of each
other.

4 Using parallel abstractions
for implementing a con-
straint net and qualitative
simulations

We tested our programming model by im-
plementing a parallel abstraction named
relazation-net with NetCLOS. Relazation net
is an abstraction implementing parallel dis-
crete relaxation (see [7] for a similar approach).
It consists mainly of

e 3 class of active objects named value nodes

acting as shared stores. Accesses to these
stores are automatically synchronized, i.e.
this is done by the NetCLOS level (im-
plemented by the structure programmer).
These active objects can be used to im-
plement the variables of a constraint net,
which is realized by the application pro-
grammer.

e a class of active objects named function
nodes which, when activated, compute a
function of the content of a set of stores.
These active objects can be used to imple-
ment constraints.

e a structure class which organizes stores
and functional objects into a network and
provides for iterated activation and paral-
lel execution of the functional objects (i.e.
a relaxation operation). This relazation
net can be used to implement a constraint
net.

To distribute the relazation net, function and
value nodes are modeled as tasks of a Task In-
teraction Graph. To distribute this graph on
a workstation cluster we use a combination of
bisection [17] and the Kernighan-Lin algorithm
[12]. The distribution is realized by the library
CHACO [4]. The use of such a library reflects
the fact, that results coming from distributed
systems are not reimplemented for our needs,
but are used and connected to our environment
when necessary.

The main operation on relaxation nets is
the function relaz, which computes a fix point.
This function can be processed in parallel if
the domain of the function can be partitioned
in parts and the function itself can be par-
titioned in independent component functions
(see [7, 21] for details). To use the parallel ab-
straction relazation met, the application pro-
grammer implements subclasses of the value
and function node classes and the structure
class relazation net and redefines some meth-
ods, i.e. implements a normal object-oriented
sequential interface. There is no need for any
explicit parallel programming, only the sequen-
tial interface of the parallel abstraction must
be known to an application programmer.

Thus, the relaxation-net contains a net-like
reference structure of active objects and a fix
point operation on that structure. The net
is distributed on a workstation cluster by the
abstraction and the operation is executed in
parallel on diverse parts of the net, i.e., distri-
bution and parallel processing is done by the
abstraction. This abstraction is used for im-
plementing a local propagation algorithm for
constraint nets by using relaz [20].

To get a gain through parallel processing,
one has to take high communication costs into
account which are related to the infrastruc-
ture of a workstation net, e.g., an ethernet
or TCP/IP. Thus, as usual in such a case,
the computation time on one host should be
high enough to compensate the communication
costs. This is also the result of experiments
we made. When solving a line-diagram label-
ing problem [15], we only got a speed-up for
constraint propagation when raising the num-
ber of constraints. For n=1000 stairs we got
a speed-up of 3.6 for constraint propagation
on 7 machines. The number of constraints is
6n+ 7 and of variables is 4n+ 7. The speed-up
strongly depends on the communication traffic
on the ethernet and on the kind of worksta-
tions used, which are typically heterogeneous
(e.g. from Sparc Classics to Ultra Sparcs). The
distribution strategy does not yet consider such
kind of information. Because of using a derived
not a dynamic structure the constraint net is
first created on one object space and than dis-
tributed to the other. This still yields to high
distribution costs. However, the experiments
show that one can get a speed-up for constraint
propagation, when using parallel abstractions
and NetCLOS.

In another example, we examined qualita-
tive simulations of electric circuits of fork-lift
trucks. For a diagnosing task of such a tech-
nical system our conception requires the sim-
ulation of all single and some selected multi-
ple faults of technical systems. The simula-
tion is done qualitatively because faults like
”lossy wire” cannot expressed quantitatively
[10]. However, the necessary simulations can
be considered independently and therefore are

easy to parallelize. But alternative distribu-
tions of the task are possible. For example,
each simulation of a fault can be seen as one
task, or all simulations of one component (like
a resistor or a wire) can be seen as one task.
With an parallel abstraction describing such
alternatives we could easily evaluate them and
got a quite useful speed-up of 3.4 when using
4 workstations and a component wise distribu-
tion.

5 Related work

Another approach which introduces data par-
allel abstractions is CMLisp [6]. This showed
that programming with abstractions can sim-
plify parallel programming, but CMLisp is re-
stricted to run on single instruction multiple
data machines (i.e. the Connection Machine
2) and thus, is hardly usable for workstation
clusters. This is similar to [7], where a re-
laxation operation is introduced to solve con-
straint problems, but the implementation is
done on a Sequent Symmetrie, not on a more
common workstation cluster.

Formal approachs on the topic of parallel
data types are based on Bird-Meertens For-
malism [18] or skeleton languages [23]. In [18]
for so called categorical data types a basic set
of higher order functions (such as map, filter,
reduct) is defined, which can be mapped to
distinct parallel architectures. However, our
approach gives a pragmatic way to implement
parallel data types in an object-oriented envi-
ronment and show their usage. How those par-
allel data types are related to categorical data
types have to be examined in further research.

6 Conclusion

A high level programming model based on ab-
stractions for parallelizing is described. The
main point of this structure-oriented model
is to introduce control abstractions, because
multiple flows of control make parallel pro-
gramming difficult. These control or paral-
lel abstractions are realized by giving diverse

predefined classes (like parallel-array, net, se-
ries) to the application programmer. These
classes hide specific synchronization and load
balancing schemes. With these parallel ab-
stractions, not only common used parallel data
types like parallel arrays but further parallel
data types like lists, trees, and graphs are in-
troduced. Beside other applications, a con-
straint system is implemented with this model
where constraints and variables are distributed
over a workstation net and proceed in paral-
lel. For distribution a Task Interaction Graph
model in coordination with bisection and the
Kernighan-Lin algorithm is used. For an ap-
propriate problem size a speed-up for con-
straint propagation could be achieved.

References

[1] G. A. Agha. Concurrent object-oriented
programming. Communications of the
ACM, 33(9), 125-141, September 1990.

[2] Guy Blelloch. NESL: A Nested Data-
Parallel Language. CMU-CS-93-129, April
1993.

[3] J. P. Briot, and R. Guerraoui. A Classi-
fication of Various Approaches for Object-
Based Parallel and Distributed Program-
ming. To appear in LNAT 1624, 1999.

[4] Chaco. The Chaco user’s guide: Version
2.0. Tech. Rep. SANDY94-2692, Sandia
National Laboratories, Albuquerque, NM,
July 1995.

[6] C. Hewitt. Viewing Control Structures as
Patterns of Passing Messages. Artificial In-
telligence 8, 323-364, 1977.

[6] W. D. Hillis. The Connection Machine.
MIT Press, Cambridge, MA, 1985.

[7] K. Ho. High-Level Abstractions for Sym-
bolic Parallel Programming. PhD thesis,
University of California at Berkeley, 1994.

[8] L. Hotz. An Object-Oriented Approach
for Programming the Connection Machine.

In H. Kitano (editor), Second International
Workshop on Parallel Processing for Arti-
ficial Intelligence, PPAI’93. Elsevier Sci-
ence, Publishers, 1993.

[9] L. Hotz and G. Kamp. Programming the
Connection Machine by using the Metaob-
ject Protocol. Parallel Computing, Trends

and Applications, North Holland, 1994. El-
sevier Science Publishers.

[10] L. Hotz, P. Struss and T. Guckenbiehl
(edt.). Intelligent Diagnosis in Industrial
Applications. Shaker Verlag, 2000.

[11] L. Hotz and M. Trowe. NetCLOS - Par-
allel Programming in Common Lisp. In
Proceedings of the International Confer-
ence on Parallel and Distributed Processing
Techniques and Applications, PDPTA’99,
H. R. Arabnia (edt.), Volume IV, 2034 —
2040, CSREA Press, 1999.

[12] B. Kernighan and S. Lin. An Effi-
cient Heuristic Procedure for Partitioning
Graphs. Bell System Technical Journal 29,
121-133, 1970.

[13] G. Kiczales, D. G. Bobrow, and J. des Riv-
ieres. The Art of the Metaobject Protocol.
MIT Press, Cambridge, MA, 1991.

[14] *Lisp. Getting Started in *Lisp, Version
6.1. Thinking Machines Corporation, Cam-
bridge, MA, 1991.

[15] P. Norvig. Paradigms of Artificial Intelli-
gence Programming: Case Studies in Com-
mon Lisp. Morgan Kaufman, San Mateo,
California, 1995.

[16] G. Sabot. The Paralation Model. MIT
Press, Cambridge, MA, 1988.

[17] H. Simon. Partitioning of Unstructured
Problems for Parallel Processing. Proc.
Conference on Parallel Methods on Large
Scale Structured Analysis and Physics Ap-
plications. Pergammon Press, 1991.

[18] D. B. Skillicorn. Foundations of Parallel
Programming. Cambridge University Press,
1994.

[19] G. L. Steele. Common Lisp The Language
Second Edition. Digital Press, 1990.

[20] E. Tsang Foundations of Constraint Sat-
isfaction. Academic Press, 1993.

[21] M. Trowe. An Abstraction for Paral-
lel Programming in Lisp on a Workstation
Cluster. Diplomarbeit in German. Univer-
sitat Hamburg, 1998.

[22] A. Yonezawa and J.-P. Briot and E.
Shibayama. Object-Oriented Concurrent
Programming in ABCL/1. ACM SIGPLAN
Notices, 21(11), 259268, 1986.

[23] A. Zavanella. Skeletons and BSP: Per-
formance Portability for Parallel Program-
ming. PH.D. Thesis, Pisa, 1999.

