Multi-author books prepared in IATEX




Parallel Processing for Artificial Intelligence
L. Kanal, V. Kumar, H. Kitano, and C. Suttner, editors 1
©Elsevier Science Publishers B.V. All rights reserved

An Object-Oriented Approach for

Programming the
Connection Machine

Lothar Hotz

Universitdt Hamburg, Fachbereich Informatik, Bodenstedtstrasse 16, 22765
Hamburg, Germany, e-mail: hotz@informatik.uni-hamburg.de

Abstract

In this paper, we describe an approach using object-oriented program-
ming for massively parallel computers. We show how to integrate high
level structures and operations to support various applications in the area
of Artificial Intelligence.

1. Programming Model

At present, programming massively parallel computers (MPC) demands
much experience and a detailed knowledge of the machine’s architecture.
Especially data parallel machines like the Connection Machine (CM-2)
[9, 35] and their programming languages have a nature different from
control-oriented languages [37]. Our goal is to design a language of complex
data structures (called DisGral, distributed graph language) and join these
structures that are problem-oriented, machine-independent, commonly us-
able, and parallelizable with operations. DisGral establishes an abstrac-
tion of parallel constructs, as they are introduced in parallel languages
like POOL [2], *LISP [23], etc. This is done by focussing on large data
structures (e.g. matrices, sets and pointer structures, such as lists, trees,
and graphs) and operations on them (e.g. multiplication, graph traversion,
spanning trees, union). With these constructs the user (programmer) of
DisGral need not think or program in parallel terms.

For the design of DisGral, we use object-oriented (O-O) programming,
with its proved properties of reusability, extensibility, robustness, and ab-
straction [25, 17]. To integrate the parallel structures mentioned above, we
extend the notion of an object by the notion of a complex structure. An



2 L. Hotz

object might have such a predefined complex structure like a matrix or a
graph. The main point is that the structure that is formed by a multitude
of objects is a supported feature of DisGral as well as objects are. Com-
plex structures are first-class objects of the language and are processed with
parallel algorithms. Thus, data parallelism as described in [18, 14], instead
of control-oriented parallelism as described in [34, 36, 2, 33, 12, 26, 15] is
supported. We do see distribution of instances of a class, which manifest
data stores of an O-O language, as the main source of parallelism, but
not message-passing, which would lead to actor languages like HAL [12].
The global view on objects (as manifested in complex structures) makes it
possible to hide low-level, parallel constructs in complex operations.

The main point of our approach is to bring together basic operations
which are used in implementations of Artificial Intelligence methods or
more general, in data parallel algorithms as they are described e.g. in [32,
5, 19]. A good example is the function reduce (described below). Shortly
speaking, this function multiplies a matrix with itself, by using problem-
dependent combining and joining functions instead of multiplication and
addition. Thus, it can be used e.g. to compute path consistency of a set
of time intervals (as described in [1]) or to compute all shortest paths of a
graph given by an adjacency matrix (as described in [29]). Another example
is the data structure graph used by the function generate. Both are used
to explore a domain-dependent graph (generated by scalable generation
functions), e.g. for various search problems.

Due to the underlying implementation of DisGralL, these data structures
and operations are processed in parallel. An important point of our im-
plementation is the use of the Metaobject Protocol of the Common Lisp
Object System (CLOS) [16, 17] combined with parallel algorithms for im-
plementing operations (e.g. [6, 10, 3]). [17] describes a way to “open
languages up”, allowing users to adjust the design and implementation of
a programming language to suit their particular needs. This is achieved
by structuring the language implementation itself as an O-O program via
metaobject protocols. The adjustment of classes and generic functions is
done by specializing given classes (named metaobject classes). In our ap-
proach, class metaobject classes map instances of complex structures in
a suitable way to the processors, e.g. by using special clustering methods
(e.g.[4]). Operations, such as diverse search methods for implementing gen-
erate, are implemented by generic function metaobject classes, which use
given parallel algorithms (e.g. [21, 30, 22]).

Other approaches (e.g. [18, 14]) also introduce O-O languages for pro-
gramming MPC, but do not support complex data structures and oper-
ations for them. In [18] only elementwise functions (i.e. constructs that
apply functions to each element of a complex structure) no functions on



An Object-Oriented Approach for Programming the Connection Machine 3

complex structures as a whole are given. In [14] a sequential model lies
on top, i.e. no new programming styles are supported, as in our case
complex structures are. However, the usefulness of separating low parallel
constructs from high level problem-oriented constructs is also mentioned
in [18, 14, 6, 24].

2. A more detailed view

To clarify our approach, we describe levels of different languages. We il-
lustrate these levels with a piece of code taken from a computer vision
program, which filters a picture (a float matrix) by using the iterative
Jacobi method (see [7] for a detailed description of implementing such al-
gorithms). We describe several levels of abstraction: Machine-dependent
languages, O-O extensions, classes and methods for complex structures,
and the application level.

The lowest level is built by languages like *LISP, C*, CRAY C, which
mainly support regular structures like vectors, and matrices, i.e. the ele-
ments of a complex structure are regularly distributed over the processors.
In *LISP a parallel variable (pvar) roughly represents these structures.
Some languages supply operations like multiplication (FORTRAN 90) or
scan (¥LISP) to process these structures. Consider following *LISP Code:

(*defun compute-right-side (picture-pvar)
(declare (type single-float-pvar picture-pvar))
(*set picture-pvar

(VAR
(+!! (news!! picture-pvar 1 0)
(news!! picture-pvar 0 1))

(11 6.0))))

picture-pvaris declared as a single float pvar. Functions postfixed with ”!!”

or prefixed with ”*” are *LISP functions. news!! shifts a matrix according
to a given distance, e.g. the result of the first call to news!! is a pvar with
elements shifted one point in the first dimension (this is similar to cshift in
FORTRAN 90). The *LISP functions are specified for typed pvars, which
are handled as a datatype like integer or float. Thus, integers (like 6.0)
have to be converted to pvars using function !!. *set is used to change the
values in the processors. The resulting code is CM-2 specific.

By defining operations on matrices, languages like FORTRAN 90 already
introduce an abstract data type!, but can’t go further because no language
mechanism is given to integrate this feature in the language. With an
0-0 language one gets a base for a unique view to different data types.

n [6] a code reduction between two and three is mentioned when FORTRAN 90
instead of FORTRAN 77 is used.



4 L. Hotz

Thus, the next level is the incorporation of O-O features such as classes,
inheritance, instances, generic functions, methods, method combination,
and metaobjects. We do this by extending *LISP with PCL to get an
0O-0O interface to the data parallel CM-2. With this extension one can
define classes that map data structures to the parallel machine and specify
methods that implement parallel algorithms for operations on these data
structures. Especially metaobject classes, which may be defined in PCL,
organize the internal representation of instances of a class and are used to
manifest this level. To implement the complex structures proposed in the
next level we use specialized metaobject classes that supply different kinds
of data mappinge.g. storing instances in different processors or distributing
slots of one instance to different processors (see [11]).

The first easy classes and methods are those defined on regular data
structures like vectors and matrices to integrate parallel languages in the
0-0 approach. Besides arithmetic operations, we introduce structure ma-
nipulating operations like translation or bisection of a matrix. In our ex-
ample, the above mentioned function is now defined as a method for the
application class picture-class, which is a subclass of the predefined class
matriz:

(defmethod compute-right-side ((the-picture picture-class))
(div
(add (shift the-picture ’(1 0))

(shift the-picture ’(0 1)))
6.0))

This code is similar to the first piece of code except for the following
distinctions:
a) the-picture is no more a pvar (i.e. a *LISP dependent structure) but an
instance of a class specified by subclassing a predefined class (here matriz
as mentioned above). Thus, the application programmer might define its
own methods and subclasses for it. But more important, she can use meth-
ods defined for the class matriz (e.g. div, add, and shift). This is achieved
by using the O-O feature of inheritance.
b) The *LISP specific ”!”-functions are replaced by generic functions (here
by add, div, and shift), which are part of the class matriz, and can handle
any combination of numbers and matrices as arguments. The main point
is, that the functions are not only replaced, but useful operations on ma-
trices are implemented by *LISP functions by using the O-O feature of
generic functions. Especially the possibility of defining generic functions
on multiple arguments, not only on one class as in other O-O languages,
makes it easy to implement different methods for different kinds of argu-
ment combinations.
¢) All parallel managment functions, such as declarations, allocation of



An Object-Oriented Approach for Programming the Connection Machine 5

processors, and setting of processors (in the previous example done with
*set) are done by the underlying implementation of predefined methods.

In this easy case, one-to-one mappings from operations to *LISP func-
tions are used. The next step is to define useful operations on matrices and
other complex structures e.g.:

(div (join-elements picture
:pattern ’((1 0) (0 1))
:with #’add)
6.0)

The user (application programmer) of operations like join-elements does no
longer think in ”low-level” constructs like news!! or shift but can think in
application terms like ” At each point of my picture I want to join specific
neighbours by using the function add’. Thus, she takes join-elements,
selects a pattern, and gets a joined result.

A next sort of classes describes irregular data structures such as relation,
graph, tree, or list. They are not constant in size and may be arbitrarily
distributed. Thus, it is not possible to map theses structures one-to-one to
regular internal constructs. However, it is easy to implement such struc-
tures on the CM-2 [31, 4, 27, 20, 8]. Operations on irregular structures
are defined on the entire structure, not on single objects. Our approach
integrates these structures and operations in a set of classes and methods
that is called distributed graph language (DisGral).

The last level is the application level, which is implemented by using
complex structures, not parallel or sequential operations. Thus, the previ-
ous level must supply suitable complex structures to make an easy imple-
mentation of applications possible. Typical applications are those already
realized for parallel computers e.g. implementation of libraries for linear
algebra operations [7], knowledge representation [5], case-based reasoning
[32], search algorithms [22, 13, 30, 28].

The main issue with the proposed abstractions is the need to define prob-
lems in terms of complex structures and operations, i.e. the programmer
does not think in parallel or sequential structures but in complex ones.
In other languages these constructs are supported by libraries as in [25],
but are not part of the language itself if supported at all. Thus, porting
of DisGral to another machine (like MIMD, distributed machines) would
involve the porting of complex structures.

Next, we describe how instances, the datastores of an O-O language, are
mapped to processors of a data parallel machine [11]. Instances of regu-
lar classes correspond to data structures of the low level implementation
language *LISP, i.e. parallel variables (pvars). An instance of an irregu-
lar class (i.e. a class describing a complex structure) consists of instances



6 L. Hotz

which are part of this complex structure. Such an instance might corre-
spond to one processor, i.e. all slot values of one instance are stored in
the same processor.? Thus, these instances can be processed in parallel -
a vertical distribution of instances. A third alternative to parallelize in-
stances is given by parallel-slots, i.e. one or more slots of a class belong
to a complex structure. In this case, not the whole instance, but only slot
values of parallel-slots are stored in parallel processors. Thus, these parts of
instances are processed in parallel. A further alternative is the distribution
of each slot value of one instance to another processor, i.e. a horizontal dis-
tribution of instances (see [19]). For all kinds of such alternatives, classes
or metaobject classes are defined in DisGral, which distribute instances
and slot values in the suitable way.

For these classes, operations are defined by generic functions, i.e. a
collection of distinct methods which implement parallel algorithms with
respect to the types (classes) of their arguments. We distinguish between
simple generic functions on single elements of complex structures and com-
plex generic functions on a whole complex structure. Examples of simple
generic functions are comparing functions (like maz and min) and element
functions (like position-of-element and apply-to-elements, which applies a
function to each element of a structure)®. Besides arithmetic functions
(like mult, add, and sub) and creating functions (like make-instance, shift-
to-parallel-structure) complex functions are e.g.:

Focussing functions: apply-shadowed-function hides elements of a com-
plex structure by a domain-dependent predicate :hide-predicate.
Thus, only active elements (i.e. elements for which the predicate
is true) are applied to a function in parallel.

Generating functions: generate creates a dynamic structure (e.g. a
graph). The graph is defined by a root, a successor function, and
a comparison predicate. generate uses the successor function to ex-
pand the graph until a given goal node is reached.

Reduce function: reduce combines fixed elements of a complex struc-
ture and changes them. It computes new values for each element by
combining specific elements. Thus, it takes two domain-dependent
functions as arguments: a :combine-function for combining elements
and a :join-function for joining the new value with the old value of
the element. For vectors reduce corresponds to the *LISP function

2The mentioned mapping to processors supports the programmers model of instances
but may be changed by the implementation e.g. by clustering graph nodes when
necessary.

3In [18] and [30] similar functions are proposed for applying to parallel-sets and
paralations.



An Object-Oriented Approach for Programming the Connection Machine 7

scan. In the two-dimensional case reduce corresponds to matrix mul-
tiplication with given functions, i.e. each column is combined with
each row and the cross point of both is joined. A graph combines
each neighbour of a node and joins the result with the old value of a
node.

Functions that are given as arguments to the mentioned complex func-
tions are sequential functions, i.e. ordinary functions implemented in LISP.
But, they are applied to all active elements of a complex structure in paral-
lel. Thus, our implementation compiles them into parallel versions. This is
done by a generic function metaobject class that uses knowledge concerning
the specific use of the function, e.g. a generating function for graphs.

3. Conclusion

We described a new combination of the parallel language *LISP with the
object-oriented language CLOS for the Connection Machine.* Further-
more, the developed system showed that the Metaobject Protocol is a
powerful method to change the predefined behavior of an O-O language
for parallel implementations. We propose to define a language for large
data structures instead of programming with explizit parallel language
constructs. Classes and methods were implemented to support the rep-
resentation of some small examples. To develop an appropriate tool for
implementing various Al applications such as case-based reasoning, low-
level vision, neural nets, or for the selection problem, we will examine
these areas to find common usable structures and operations.

References

[1] J. F. Allen. Temporal reasoning and planning. In J. F. Allen, H. A. Kautz,
R.N. Pelavin, and J.D. Tenenberg, editors, Reasoning about Plans, chapter 1,
pages 1-67. Morgan Kaufmann, San Jose, CA, July 1991.

[2] J. K. Annot and P. A. M. den Haan. POOL and DOOM: The object oriented
Approach. In P. C. Treleaven, editor, Parallel Computers, Object Oriented,
Functional, Logic, pages 47 79. Wiley & Sons, 1988.

[3] L. E. Cannon. 4 cellular computer to implement the Kalman filter algorithm.
PhD thesis, Montana State Univ., 1969.

[4] D. Dahl. Mapping and Compiled Communication on the Connection Ma-
chine System. In Proc. of the 5th Distributed Memory Computing Confer-
ence IEFE Computer Society, pages 756—766, Charleston, South Carolina,
April 1990.

4At least to our knowledge.



(5]

[6]

[9]
[10]

[11]

[12]

[13]

[14]
[15]
[16]
[17]

[18]

[21]

[22]

References

M. Evett and J. Hendler. Achieving Computationally Effective Knowledge
Representation via Massively Parallel Lisp Implementation. In Proc. Furopal
90, pages 1 13, 1990.

G. C. Fox. Hardware and Software Architectures for Irregular Problem Ar-
chitectures. In R. Voigt, P. Mehrotra, and J. Saltz, editors, Unstructured Sci-
entific Computation on Scalable Multiprocessors, pages 125-160. The MIT
Press, 1992.

T. L. Freeman and C. Phillips. Parallel Numerical Algorithms. Prentice Hall,
1992.

S. W. Hammond and R. Schreiber. Mapping Unstructured Grid Problems
to the Connection Machine. In R. Voigt, P. Mehrotra, and J. Saltz, editors,
Unstructured Scientific Computation on Scalable Multiprocessors, pages 11
29. The MIT Press, 1992.

W. D. Hillis. The Connection Machine. MIT Press, Cambridge, MA, 1985.
W. D. Hillis and JR. G. L. Steele. Data Parallel Algorithms. Communica-
tions of the ACM, 29(12):1170-1183, December 1986.

L. Hotz. Programming the Connection Machine by using the Metaobject
Protocol. In G. R. Joubert, D. Tystram, and F. J. Peters, editors, ParCo’93:
Conference on Parallel Computing, Proc. of the International Conference,
Grenoble, France. Elsevier Science Publishers, 1993. To appear.

C. Houck and G. Algha. HAL:A High-level Actor Language and Its Dis-
tributed Implementation. In Proc. Int. Conf. on Parallel Processing 92,
pages 11-158 — 11-165, 1992.

S. Huang and L. S. Davis. Parallel Tterative A* Search: An Admissible
Distributed Heuristic Search Algorithm. In Proc. of the Int. Joint Conf. on
Artificial Intelligence ‘89, pages 23 29, 1989.

J.-M. Jézéquel. EPEE: an Eiffel Environment to Program Distributed Mem-
ory Parallel Computers. In Proc. ECOOP °92, pages 197-212, 1992.

L. V. Kale and S. Krishnan. Charm++: Portable Concurrent Object Ori-
ented System Based On C++. Technical report, University of Illinois, 1991.
S. E. Keene. Object-Oriented Programming in Common Lisp. Addison-
Wesley Publishing Company, 1989.

G. Kiczales, D. G. Bobrow, and J. des Rivieres. The Art of the Metaobject
Protocol. MIT Press, Cambridge, MA, 1991.

M. F. Kilian. Object-Oriented Programming for Massively Parallel Ma-
chines. In Proc. Int. Conf. on Parallel Processing *91, pages 11-227 — 11-230,
1991.

J. L. Kolodner and R. Thau. Design and Implementation of a Case Memory.
Technical Report R1.88-1, Georgia Institute of Technology, 1988.

S. G. Kratzer. Massively Parallel Sparse-Matrix Computations. In R. Voigt,
P. Mehrotra, and J. Saltz, editors, Unstructured Scientific Computation on
Scalable Multiprocessors, pages 179 186. The MIT Press, 1992.

W. Lau and V. Singh. An Object-Oriented Class Library for Scalable Parallel
Heuristic Search. In Proc. ECOOP ’92, pages 252-267, 1992.

G. Li and B. W. Wah. Parallel Tterative Refining A* Search. In Proc. Int.



[23]

[24]

[34]
[35]
[36]

37]

References 9

Conf. on Parallel Processing ’91, pages II 608 1II 615, 1991.

*Lisp. Getting Started in *Lisp, Version 6.1. Thinking Machines Corpora-
tion, Cambridge, MA, 1991.

H. Masuhara, S. Matsuoka T Watanabe, and A. Yoneyawa. Object-Oriented
Concurrent Reflective Languages can be Implemented Efficiently. In Proc.
OOPSLA ’92, ACM SIGPLAN, pages 127 — 144, 1992.

B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

E. Moss. Panel Discussion: Object-Oriented Concurrency. In OOPSLA Ad-
dendum to the Proceedings, volume 23 of ACM SIGPLAN Notices, pages
119 — 127, 1987.

S. S. Nielsen and S. A. Zenios. Data Structures for Network Algorithms on
Massivley Parallel Architectures. Parallel Computing, 18:1033 1052, 1992.
C. Powley, C. Ferguson, and R. E. Korf. Depth-first heuristic search on a
Simd machine. Artificial Intelligence, 60:199-242, 1993.

G. Rote. Path Problems in Graphs. Computing, 7:159-189, 1990.

G. Sabot. The Paralation Model. MIT Press, Cambridge, MA, 1988.

J. A. Solworth. Programming Language Constructs for Highly Parallel Op-
erations on Lists. The Journal of Supercomputing, 2:331-347, 1988.

C. Stanfill and David Waltz. Toward Memory-based Reasoning. Communi-
cations of the ACM, 29(12):1213-1227, December 1986.

K. Takashio and M. Tokoro. Drol: An Object-Oriented Programming Lan-
guage for Distributed Real-Time Systems. In Proc. OOPSLA 92, ACM
SIGPLAN, pages 276 — 294, 1992.

P. C. Treleaven, editor. Parallel Computers, Object Oriented, Functional,
Logic. Wiley & Sons, 1988.

L. W. Tucker and G. G. Robertson. Architecture and Applications of the
connection machine. Computer, pages 26 38, August 1988.

A. Yonezawa and M. Tokoro, editors. Object-Oriented Concurrent Program-
ming. MIT Press, Cambridge, MA, 1987.

C. K. Yuen. Parallel Lisp Systems. Chapman & Hall, 1993.



