Deriving Topological Representations from Edge Images

Ullrich Kéthe

University of Hamburg, Cognitive Systems Group
Vogt-Kolln-Str. 30, 22527 Hamburg, Germany
koethe@informatik.uni-hamburg.de

Abstract: In order to guarantee consistent descriptions of image structure, it is
desirable to base such descriptions on topological principles. Thus, we want to
be able to derive topological representations from segmented images. This pa-
per discusses two methods to achieve this goal by means of the recently intro-
duced XPMaps. First, it improves an existing algorithm that derives topological
representations from region images and crack edges, and second, it presents a
new algorithm that can be applied to standard 8-connected edge images.

1 Introduction

Many authors have argued that image segmentation should produce a topological
image representation [2, 9, 11, 17]. Otherwise, it would be impossible to consistently
answer basic questions such as “Which regions are neighbors of each other?”, “Which
regions are contained in another one?”, or “Where precisely is the mutual boundary
between two neighboring regions?” The connectivity paradox is the most infamous
example for the inconsistencies that occur if a naive image representation is used [11].

A topological representation defines a finite topological space made up of regions,
arcs, and points (also called 2-, 1-, and O-cells, or faces, edges, and nodes) which
encode a particular partitioning of the image plane. Several structures have been
proposed to encode such a partitioning, including cellular complexes [11], combinato-
rial maps [7], and the Khalimsky grid [8]. In a recent paper, I've introduced the
concept of an extended planar map (XPMap) that subsumes the important characteris-
tics of these structures and provides a unified approach to topological image represen-
tation [10].

In this paper, I’d like to fill a gap that remained open in the previous article: How
can one actually derive a topological representation from a set of pixels? Or, put
differently: How can we modify well known segmentation algorithms so that they
produce the desired XPMap representation? Previous authors, e.g. [2, 17] have ap-
proached this problem solely on the basis of crack edges, that is, edges that are
located between the pixels. We will review this work below. However, many standard
image segmentation algorithms (such as Canny’s algorithm and the watershed algo-
rithm) do not locate edges between pixels, but mark edges on the pixels themselves.
As far as I can tell, an algorithm to transform this kind of edge image into a topologi-
cal representation without resorting to heuristics (as in [14, 15]) does not yet exist.
The development of such an algorithm is the main contribution of this paper.

2 Finite Topological Spaces and Topological Transformations

2.1 XPMaps

From the point of view of finite topology, image segmentation is the partitioning of
the image plane into points, arcs, and regions. In principle, these entities can be
defined by geometric means: A point can be defined by its 2D coordinate. An arc is a
mapping of the open interval (0, 1) onto the image plane, such that the images of 0
and 1 coincide with two of the points and no arc crosses another one or itself. And
regions can be defined as the connected components of the complement of the bound-
ary set, i.e. the complement of the union of points and arcs.

However, the topology of the partitioning is only implicitly represented by this
geometric definition. In the context of image analysis, making the topology explicit is
much more desirable. A separation between topology and geometry can be achieved
by means of abstract topological representations such as the XPMaps introduced in
[10]. XPMaps are based on combinatorial maps [7]:

Definition 1: A combinatorial map is a triple (D, o, o) where D is a set of darts
(also known as half-edges), o is a permutation of the darts, and « is an involu-
tion (a permutation with cycle length 2) of the darts. A combinatorial map is
said to be trivial if it doesn’t contain any dart. By definition, the trivial map
contains a single face, the infinite face (which corresponds to the entire plane).

The cycles or orbits of the « involution define the edges (1-cells) of the map, and the
orbits of the o permutation are its nodes (0-cells). The mapping p= ¢« is also a
permutation whose orbits correspond to the faces (2-cells). A k-cell is said to bound
an m-cell if £ < m and the orbits associated with either cell have at least one dart in
common. A combinatorial map fulfills the axioms of a topological space, if open sets
are defined as follows: a set O of cells is open if, whenever cell ¢ belongs to O, all
cells bound by ¢ do also belong to O.

A combinatorial map is p/anar (encodes a partitioning of the plane) if the numbers
n, e, fof nodes, edges and faces respectively fulfill Euler’s equation:

n—e+f=2 €))

However, this equation only applies if the map’s boundary set, i.¢. the graph defined
by considering only nodes and edges, is connected. Thus, combinatorial maps cannot
represent partitionings of the plane with disconnected boundaries, such as a wall with
windows. But disconnected boundaries are common in image analysis, so that the
map concept must be extended in order to handle this case:

Definition 2: An extended planar map (XPMap) is a tuple (C, ¢y, exterior, con-
tains) where C is a set of non-trivial planar combinatorial maps (the compo-
nents of the XPMap), ¢ is a trivial map that represents the infinite face of the
XPMap, exterior is a relation that labels one face of each component in C as the
exterior face, and contains is a relation that assigns each exterior face to exactly
one non-exterior face or the infinite face.

Figure 1 shows an example of an XPMap. Details can be found in [10].

Components: Cy=Infinite, C,, C,

Darts: C,= {1,1°,2,2°, ..., 5,5} (black)
C,=1{6,6".7,7 8,8} (gray)

Edges: E,= (1,1°), E;=(2,2°), ..., Eg= (8,8)

Nodes: N; = (1°,4),...,N;= (3", 5,4"),
Ns=(5), ... Ng= (7", 8)

Faces: Infinite, F1=(1,4,5,5,3°,2%),
F,=(1"2,3,4°), F3=(6",7.8"),F,=(6,8,7)

Exterior: exterior(C,) = Fy, exterior(C,) = F;

Contains: Infinite contains F;, F, cont. F5

F,=Infinite

Fig. 1: Example of an XPMap (for clarity, only some edges and nodes are labeled in the
drawing, and only the ¢ orbits [opposite arrows] and the & orbit for node N, are shown).

Since an XPMap may contain multiple components, Euler’s equation has to be modi-

fied to take this into account:

n—e+f-c=1 @)

where ¢ denotes the number of components.

XPMaps can be modified by means of Euler operators. These operators are
named so because they guarantee that Euler’s equation remains valid after the
modification. Thus, Euler operators are able to transform a valid XPMap into another
valid XPMap. In the present context of image segmentation, four operators are of
primary interest (see figure 2, detailed algorithms and proofs can be found in [10]):

MERGE FACES, REMOVE BRIDGE: These operators remove an edge. They first re-
move the edge’s darts from their o-orbits and then delete the edge’s a-orbit and
the darts. The desired modification of the ¢ -orbits follows automatically. Re-
moval of a bridge (an edge that bounds only one face) creates a new XPMap
component, so the exterior and contains relations must be adjusted as well.

Fig. 2: Illustration of the Euler operators “Merge Faces”, “Remove Bridge”, “Remove
Isolated Node™, “Merge Edges” (left to right, top to bottom).

{
)] (=
) @)(E

1
Fig. 3: Segmentation by Euler operators: 1) original image; 2) associated Khalimsky grid
(one 2-cell per pixel); 3) after 7 applications of Merge Faces; 4) 1 application of Remove
Bridge and Remove Isolated Node; 5) 13 applications of Merge Edges

REMOVE ISOLATED NODE: Sometimes the new component resulting from “Remove
Bridge” consists of a single node. “Remove Isolated Node™” deletes this compo-
nent from the XPMap and updates the contains relations accordingly.

MERGE EDGES: Edge removal usually causes many nodes to have degree 2, i.e. to
bound exactly two edges. These nodes are called /inks. “Merge Edges” simpli-
fies an XPMap by replacing a connected sequence edge-link-edge with a single
edge.

All these operators reduce the number of cells. To use them for segmentation, we
must start with an over-segmentation which is then successively reduced to the
desired segmentation.

2.2 Creating a Topological Partitioning by Euler Operators

The simplest way to define a topologically consistent over-segmentation is to associ-
ate a face with every pixel. This is formalized by means of the Khalimsky grid [8]:

Definition 3: A Khalimsky grid is defined on Z* by denoting points with two even
coordinates as faces, points with two odd coordinates as nodes, and mixed
points as edges. Nodes bound their eight neighbors (four edges and four faces),
and edges bound the two neighboring faces.

If open sets are defined as in the previous section Khalimsky grids also fulfill the
axioms of a topological space. It is also easy to see that a Khalimsky grid defines a
combinatorial map: we associate two darts with every edge, one pointing in increasing
x or y direction respectively, the other pointing into the opposite direction. These pairs
form the orbits of the « involution. The orbits of the o permutation are defined by
taking the four darts starting at the same node and sorting them in mathematically
positive order. For any image there exists a corresponding Khalimsky grid such that
the pixel at image coordinate (x, y) corresponds to the face at Khalimsky coordinate
(2x, 2y).

Figure 3 illustrates how an image segmentation can be obtained by applying a se-
quence of Euler operators to a Khalimsky grid. However, as images get larger, this
method becomes inefficient. Therefore, we will not pursue this approach in the
present paper. Instead, we will investigate two alternative algorithms that derive
topological representations directly from traditional image segmentations.

3 The Crack Insertion Algorithm

Topological segmentation on the basis of Euler operators, as outlined in the previous
sections, is a good way to theoretically prove the topological properties of the result-
ing representations. However, it is somewhat laborious as a practical algorithm. In
practice, the Crack Insertion Algorithm is the easiest way to derive a topological
representation. In similar form, phase 1 of the algorithm has been used in the segmen-
tation methods of [2, 3, 17]. However, phase 2 (derivation of an explicit topological
representation) was only carried out in [2].

The algorithm starts from a region image, i.e. a complete image partitioning into
4-connected components. Region images typically result from region growing (e.g.
[1]), split-and-merge (e.g. [12]) or 4-connected components labeling of binary im-
ages. As the name suggests, crack edges are located berween neighboring pixels, if
those pixels’ labels differ. In a region image, the crack edges are only coded implic-
itly because the image does not contain addressable entities which represent the
cracks. The crack insertion algorithm makes the cracks explicit by inserting appropri-
ate entities into the data representation (phase 1). After this an XPMap representation
can easily be derived (phase 2). Compare figure 4 for illustration:

Phase 1: Crack Insertion
Given: Region image with labeled 4-connected components, size w X 4.

1. Create an image of size 2w — 1) x (24 — 1). Following [3], we will call this
image the super grid. Copy the labels from position (x, y) of the region image
to position (2x, 2y) in the super grid.

2. For each cell in the super grid with coordinates (2m, 2n + 1): If the cell’s two
vertical neighbors have the same label, copy this label into the cell. Otherwise,
mark the cell with a special edge label.

3. For each cell in the super grid with coordinates (2m + 1, 25): If the cell’s two
horizontal neighbors have the same label, copy this label into the cell. Other-
wise, mark the cell with a special edge label.

4. For each cell in the super grid with coordinates (2m+1, 2n+1): If any of the 4-
neighbors was labeled as an edge, mark the cell with a special node label. Oth-
erwise, copy the label of the neighbors (which is necessarily unique).

Phase 1 results in 4-connected regions whose cells have identical labels, and 4-
connected boundaries, whose cells are labeled as edges and nodes (the proof of 4-
connectedness is straightforward). Now, phase 2 derives an XPMap from the labeled
super grid:

Phase 2; Derivation of an XPMap from a Labeled Super Grid

Given: Labeled super grid resulting from phase 1.

1. Augment the super grid with a one cell wide border whose cells are labeled as
nodes if their coordinates are both odd, and as edges otherwise. This results in
a super grid of size 2w + 1) X 2k + 1).

2. Find the connected components of the boundary set (that is, of the set of cells
marked as edges and nodes). For each component thus found create a compo-
nent in the XPMap to be build.

oDoo moo SIEE! SiEiE!
~ 0o & -~ QifE -~]O[EiE—~ IDIGI5)
000 0Oioid JOioig] 10000

1 2 3 4 5

Fig. 4: Application of the Crack Insertion Algorithm: 1) 3x3 region image; 2) Labeling
of the even coordinate pixels in the associated super grid; 3) Labeling of the mixed
coordinate pixels (the special edge label is indicated by a black line), 4) Labeling of the
odd coordinate pixels and addition of the outer boundary (the special node label is
indicated by a black ball), 5) Elimination of joints by “Merge Edges”. Note that, in
contrast to figure 3, Euler operators cannot eliminate pixels from a super grid. Instead,
pixels get re-labeled with their new cell type. In this case, black balls (nodes) are
changed into black dots (odd coordinate pixels that belong to an edge).

3. For each component;
3.1. For each edge in the component: Create a pair of darts and insert it as an

orbit into the component’s « involution. The two darts of a pair are dis-
tinguished by their orientation (north/south and east/west respectively).

3.2. For each node in the component: Create an orbit in the component’s o
permutation that contains the darts adjacent to the node in counter-
clockwise order.

4. Establish the exferior relation of each component. In case of the outermost
component (the one that is adjacent to the super grid’s border) the exterior face
is always the infinite face (which is not explicitly represented in the super
grid). To find the exterior face of the other components, traverse the super grid
in scan-line order. When the scan first encounters a node of a particular com-
ponent, the cell seen just before belongs to the sought for exterior face.

5. Establish the contains relation as follows: for each region, list the components
where the present region was designated as the exterior face.

Since ¢ = o« it is not necessary to explicitly derive the ¢ permutation from the
super grid — it is already uniquely defined by o and o It should be noted that the
algorithm is essentially equivalent to a segmentation by means of Euler operators, as
outlined in the last section: If we started with a Khalimsky grid on the subset [-1, w] X
[-1, /] of Z*, the edges and nodes to be removed by Euler operators would be pre-

cisely the ones that were not marked with edge/node labels during crack insertion
(compare figures 3 and 4).

After phase 2 of the above algorithm, all edges consist of a single cell, and most
nodes bound exactly two edges. We will call these nodes joints, whereas nodes of
higher degree will be called junctions. In many applications, we are only interested in
the junctions, not the joints. In this case, we may again use the Euler operator “Merge
Edges” to transform connected cell sequences of the form “edge-joint-edge” into
single edge cells. By applying the operator repeatedly, we can successively eliminate
all joints (last step in figure 4). Details can again be found in [10].

4 Deriving an XPMap from an 8-Connected Boundary

Many segmentation algorithms do not present their results by means of region images
or crack edges but rather mark some pixels as “edge pixels”. This kind of edge image
typically results from the watershed algorithm [16] and from topological thinning [6].
Canny’s algorithm [4] is also commonly used to create edge images, although one can
also directly produce a symbolic representation, ¢.g. a set of edgel chains (but in
contrast to our new algorithm, existing algorithms to link edgels into chains heavily
rely on heuristics, especially at junctions, e.g. [14, 15]). Edge images resulting from
zero-crossing detection [15] occupy a middle ground: Since zero-crossings occur
between pixels, it is natural to interpret them as crack edges, so that the crack inser-
tion algorithm can be applied. But it is just as common to mark the pixel nearest to a
zero-crossing as an edge pixel, in which case the resulting edges can be treated like
Canny edges. As far as I'm aware of, a non-heuristic algorithm that can derive an
XPMap or another topological representation from an edge image has not yet been
developed. The new algorithm will be based on the following observations:

o From the definition of the XPMap, it is clear that we need not only regions and
edges, but also nodes (junctions and end points). Thus, a classification of the
boundary pixels into edge and node pixels will be the core of our algorithm.
Considering this, it is not really correct to call the images resulting from
Canny’s algorithm “edge images™ because this ignores the nodes. In the se-
quel, we use the term boundary image instead.

o It is well known that one cannot in general define consistent topological rela-
tions on an image by using either the 4- or 8-neighborhood. However, one can
use 4-neighborhood in the foreground, and 8-neighborhood in the background
[13]. Therefore, we will adopt the 4-neighborhood to determine the connec-
tivity of regions and the 8-neighborhood for the connectivity of the boundary.

e We will define edges as junction-free chains of edge pixels. To be junction-
free, chains must have the following property: Every interior pixel of the chain
must be 8-connected to exactly two other edge pixels. The two ends of the
chain are adjacent to an edge pixel and a node pixel. A degenerate chain con-
sists of a single edge pixel that is adjacent to two nodes.

e We can determine whether a boundary pixel is a node or edge pixel by just
looking at the 8-neighborhood of the pixel'. However, this requires the bound-
ary to be irreducible: It must not contain simple points, i.e. boundary pixels
that could be turned into region pixels without changing the connectivity of
both the boundary and the regions. Removal of simple points is called thinning
(therefore, we also call an irreducible boundary thin).

The watershed algorithm is an example of thinning, where a cost function
(e.g. the image gradient) determines the order of simple point removal. There-
fore, boundary images resulting from this algorithm fulfill the requirement. In
contrast, boundaries coming from Canny’s algorithm may still contain a few
simple points which must be removed before the classification can start.

Formally, the 8-neighborhood of the pixel at (xo, 1o) is defined by Ng(xo, yo) =
{(x, ¥): max(|x—xq|, [—vo|) = 1}, i.e. the center pixel is not part of the neighborhood.

o o o T e e

1(*)

node pixel

4
cannot occur
(not thin)

7
edge pixel

10
cannot occur
(not thin)

13
edge pixel

16 (*)
node pixel
or reducible

19
node pixel

22
node pixel

25
edge pixel

28
edge pixel

31
node pixel

o e e R

2("
node pixel
or reducible

50
node pixel
or reducible

8
edge pixel

11
edge pixel

14
cannot occur
(not thin)

17
node pixel

20
cannot occur
(not thin)

23
edge pixel

26
node pixel

29(%)
node pixel
or reducible

32
node pixel

gall, Sy, "=ge-Shc- el -ogs-Shachc"y

3%
node pixel
or reducible

6
edge pixel

9
edge pixel

12
edge pixel

15
cannot occur
(not thin)

18
node pixel

21 (™)
node pixel
or reducible

24
edge pixel

27
node pixel

30
cannot occur
(not thin)

33
cannot occur
(not thin)

34 (%) 35 36

node pixel edge pixel cannot occur

or reducible (not thin)

37 38 39

node pixel cannot occur node pixel
(not thin)

40 41 42

node pixel cannot occur node pixel
(not thin)

43 44 45

cannot occur node pixel cannot occur

(not thin) (not thin)

46 47 48

edge pixel node pixel node pixel

49 50 51

cannot occur node pixel node pixel

(not thin)

Table 1: Possible configurations (modulo rotation and reflection) in the 8-neighborhood
of a boundary pixel, along with the classification according to definition 4. Configura-
tions marked with (*) can only occur if they are treated specially during thinning, and
are then classified as “node pixels” (see text).

When we analyze how region and boundary pixels can be distributed in the 8-
neighborhood, we obviously arrive at exactly 256 possible configurations. After
removing rotated and reflected patterns, 51 unique configurations remain. They are
shown in table 1. A number of these patterns cannot occur in an irreducible boundary
because the center pixel would be a simple point’. In a few cases (marked with *) the
decision is not clear cut: In a strict sense these patterns are reducible, but it is often
desirable to modify the thinning algorithm in order to keep the points in the boundary.

Consider, for example, configuration 5: This pattern occurs at the corners of an
axes-parallel rectangle. Removal of the center point would “round” the corners. A
similar situation is found in configuration 16 (and 21, 29, 34): These configurations
mark T-junctions. Removal of the center point would result in a little bend in an
otherwise straight edge. Configurations 2 and 3 represent another exceptional case:

On first glance one might think that even more patterns should be reducible, e.g.
numbers 22, 37 and 51. But, as figure 5 shows, this is not the case: there are irre-
ducible configurations that contain these patterns.

Fig. 5: Some patterns which show that configurations 22, 37, and 51 (located in the
center of the example images, respectively) can actually by irreducible.

These patterns mark an end of a broken or dangling edge. Broken edges often result
from noise or low contrast and can be “repaired” by higher level analysis and percep-
tual grouping. But this is only possible if the dangling ends are not removed during
thinning. Since our algorithm does not depend on whether these configurations occur
or not, there is no need to forbid them — the appropriate variant of thinning can be
chosen according to the application context.

In order to avoid special treatment at the image border (where the 8-neighborhood
would be partially outside the image) it is useful to again augment the boundary
image with a one pixel wide border whose pixels are all marked as boundary pixels. If
addition of this boundary creates reducible pixels they should be removed by an
additional thinning iteration. Then, if the 8-neighborhood is partially outside the
enlarged image the missing pixels can always be considered as region pixels (namely
as part of the infinite region), and classification proceeds as usual.

Formally, the irreducible patterns are classified as follows (see table 1):

Definition 4: A boundary pixel in a thin boundary image is classified as an edge
pixel if its 8-neighborhood consists of exactly four 4-connected components,
and neither of the components consisting of boundary pixels contains more
than one 4-neighbor. Otherwise, the pixel is a node pixel. (If configuration 5 is
allowed, it is treated exceptionally and marked as a node pixel as well.)

The first condition ensures that each edge pixel has exactly two neighbors, so that we
can actually group edge pixels into chains. The second condition is necessary to avoid
that no pixel is classified as a node pixel in configurations like figure 5 left. On the
basis of the definition, we can specify our algorithm as follows:

Algorithm: XPMap from 8-connected Irreducible Boundary:

Given: Boundary image with irreducible 8-connected boundary and 4-connected
regions (as indicated above, several thinning variants might be used).

1. Augment the image with a one pixel wide border whose pixels are all marked
as boundary pixels.

2. Find the 8-connected components of the entire boundary, i.e. the set of all
boundary pixels. Create an XPMap component for each boundary component.

3. Classify boundary pixels according to definition 4.

4. Perform 8-connected components labeling of the node pixels. If necessary re-
classify pixels to make the components simply connected (see remark A be-
low). Each resulting component becomes a node of the XPMap to be build.

Fig. 6: Some patterns which result in connected components of node pixels (black)
that have holes and are thus not simply connected.

5. Perform 8-connected components labeling of the edge pixels. In order not to
merge different chains, a slight modification of the labeling algorithm is re-
quired: edge pixels that are adjacent to the same node pixel are not considered
connected (see remark B below). Each resulting component is a chain and be-
comes an edge of the XPMap to be build.

6. For each XPMap component found in step 2:

6.1. For each chain in the component: Create a pair of darts and insert it as an
orbit into the component’s o involution. Most chains have two unique
end pixels, and the darts may be identified by those pixels. In case of a
degenerated, one pixel chain (e.g. configuration 46), the darts are identi-
fied by their orientation. In case of a closed loop without node pixel (e.g.
the boundary of a diagonal square), an arbitrary edge pixel in the chain
must be re-classified as a node pixel.

6.2. For each node in the component: Create an orbit in the component’s o
permutation that contains the darts adjacent to the node in counter-
clockwise order. To find those darts, simply walk around the node by
means of the well-known “left hand on the wall” algorithm and register
all darts thus met.

7. Establish the exferior and contains relations as in steps 4 and 5 of phase 2 of
the crack insertion algorithm.

Remarks:

A. The nodes in an XPMap must be homeomorphic to a point. This means that
the node components resulting from step 4 of the algorithm must be simply
connected. Unfortunately, this is not guaranteed: it is possible to construct
point configurations that result in connected components of node pixels that
have holes. Figure 6 shows 3 examples. However, the problem is not very se-
rious in practice since it can only arise if the boundary patterns are highly
symmetric, and this is very unlikely in real images. In fact, the only configura-
tion I have ever seen during experiments is figure 6 left which may occur if a
seed has never got the opportunity to grow.

In any case, the problem is easy to detect and surmount: measure the arca
enclosed by the node (i.e. the number of the node’s pixels plus the area of a
possibly enclosed hole) by means of the expression 4 =% (x; Vi1 — Vi Xiv1)
which is evaluated along the outer crack edge of the node. Compare the result-

Fig. 7: Example of the problematic case where
diagonally adjacent edge pixels (gray) touch the
same vertex pixel (black). The four “arms™ of the
pattern are not considered connected at the center
pixel, despite their touching diagonally.

ing area with the number of the node’s node pixels. If the numbers agree, the
node doesn’t have a hole. Otherwise merge all pixels inside the hole with the
surrounding node. In the practically important case of figure 6 left this simply
means to re-label the central pixel, otherwise it amounts to a standard flood-
fill. Nodes that occupy a simply connected image region rather than a single
pixel present no topological problems, since the bounding relation (which de-
termines the topological structure) is independent of a node’s shape.

B. The edges in an XPMap must be homeomorphic to a line. This idea is captured
by our notion of a chain: Starting from an edge pixel adjacent to a node, we
must be able to go to uniquely defined successor pixels, until we reach another
edge pixel which is adjacent to a node. We will now prove that the modified 8-
connected component algorithm in step 5 indeed creates such chains.

First, we refer to figure 7 to justify the modification of the connected com-
ponents algorithm: If two or more edge pixels are horizontally and vertically
adjacent to a node pixel, they are also diagonally adjacent to each other. How-
ever, they clearly belong to different chains, and the modification explicitly
handles this case in the desirable way.

Now we show that the labeling indeed produces chains. According to defi-
nition 4, the neighborhood of an edge pixel consists of four 4-connected com-
ponents, two of which contain boundary pixels. We will call the latter bound-
ary groups. If we look at the configurations classified as edge pixels in table 1,
we see that none of their neighboring boundary groups consists of more than
three boundary pixels. It is also easy to see that the chain property could only
be violated if some boundary group would contain two or three edge pixels but
no node pixel — only then the present edge pixel would not have a unique suc-
cessor (or predecessor). But this is never the case: Whenever a boundary group
consists of two or three pixels, at least one of them gets classified as a node
pixel, so that the center pixel becomes the end of a chain. This fact is illus-
trated in figure 8. In other words, whenever an edge pixel is not the end of a

a b c d

Fig. 8: a, c: The 2 possible edge pixel configurations with neighbor groups having 2 or 3
boundary pixels (* denotes an arbitrary attribution, a: configurations 11, 12, 13, 25, 28, 35;
c: 23, 24, 35, 46). b, d: Configurations obtained by shifting the window 1 pixel to the
right. As is easily verified by table 1, in any irreducible configuration containing these
patterns the center pixel is classified as a node pixel (b: 5, 16, 17, 21, 27,29, 34; d: 16, 29,
31,42, 47).

Fig. 9: left: boundary image as might result from the watershed algorithm (but note the
modified thinning indicated with an arrow); right: resulting classification of the boundary
pixels (black: edge pixels, gray: node pixels; note the addition of an outer boundary)

chain, its two neighboring boundary groups consist of exactly one boundary
pixel, and the chain property is always ensured.

Although the description of the algorithm is somewhat complicated, its actual imple-
mentation is quite simple — it basically doesn’t involve anything beyond connected
components labeling (with slight modifications), contour following around nodes, and
classification of boundary pixels according to the 8-neighborhood. The algorithm has
been implemented successfully, and figure 9 shows a result.

5 Conclusions

This paper presented two algorithms that derive a topological representation from the
results of standard segmentation algorithms: region images and edge images. This is
very useful because it allows to apply topological concepts without major modifica-
tions to the segmentation algorithms themselves. Questions concerning the boundaries
and neighborhood of features can thus be answered consistently, without resorting to
heuristics that work around topological problems found in traditional representations.
It is easy to augment the new topological representation with geometric data defin-
ing the precise location of the nodes and edges. In fact, the clean separation of topol-
ogy from geometry in the new framework provides very high flexibility, because
different geometric models (e.g. straight lines, splines, sub-pixel accurate edgel
chains) can be connected with the topological representation as the task requires. In
contrast to topological representations used in computational geometry (e.g. [5, 7]),
our approach establishes precise correspondences between the topological cells and
the underlying raw pixels. Thus, one can always go back to the original pixel data
when it becomes necessary to collect additional information about a cell’s properties.
Further research should systematically compare the two approaches (crack edges
or 8-connected edges) in order to define their appropriate application domains. For
example, while the crack insertion algorithm is simpler, it also requires four times as
many pixels in order to store the inserted cells, unless specific efficient data structures

are used [2]. This problem doesn’t arise with 8-connected edges. Also, the boundaries
resulting from 8-connected edges look better visually. But making this statement
objective is difficult because it is far from clear how segmentations should be com-
pared. In fact, topological comparison criteria have rarely been used in the past. The
presented results open up interesting new roads in this direction.

References

R. Adams, L. Bischof: “Seeded Region Growing”, IEEE Trans. Pattern Analysis and
Machine Intelligence, 16(6), pp. 641-647, 1994

J.-P. Braquelaire, J.-P. Domenger: “Representation of Segmented Images with Discrete
Geometric Maps”, Image and Vision Computing, 17(10),715-735, 1999

C. Brice, C. Fennema: “Scene Analysis Using Regions”, Artificial Intelligence, 1(3), pp.
205-226, 1970

J. Canny: “A Computational Approach to Edge Detection”, IEEE Trans. Pattern Analysis
and Machine Intelligence, 8(6), pp. 679-698, 1986

“CGAL — Computational Geometry Algorithms Library”, http://www.cgal.org/, 2002

M. Couprie, G. Bertrand: “Topological Grayscale Watershed Transformation”, in: Proc.
of SPIE Vision Geometry V, SPIE vol. 3168, pp. 136-146, 1997

J.-F. Dufourd, F. Puitg: “Functional specification and prototyping with oriented combi-
natorial maps”, Computational Geometry 16 (2000) 129-156

E. Khalimsky, R. Kopperman, P. Meyer: “Computer Graphics and Connected Topolo-
gies on Finite Ordered Sets”, J. Topology and its Applications, vol. 36, pp. 1-27, 1990

U. Kothe: “Generische Programmierung fiir die Bildverarbeitung”, PhD thesis, Compu-
ter Science Department, University of Hamburg, 2000

U. Kothe: "XPMaps and Topological Segmentation - a Unified Approach to Finite
Topologies in the Plane”, in: A. Braquelaire, J.-O. Lachaud, A. Vialard (eds.): Proc. of
10th Intl. Conf. Discrete Geometry for Computer Imagery (DGCI 2002), Lecture Notes in
Computer Science 2310, pp. 22-33, Berlin: Springer, 2002;

longer version appeared as: Univ. Hamburg, Dept. of Informatics Technical Report
FBI-HH-M-308/0, 2001

V. Kovalevsky: “Finite Topology as Applied to Image Analysis”, Computer Vision,
Graphics, and Image Processing, 46(2), pp. 141-161, 1989

T. Pavlidis: “Structural Pattern Recognition”, New York: Springer, 1977

A. Rosenfeld: “Adjacency in Digital Pictures”, Information and Control vol. 26, pp. 24-
33,1974

C. Rothwell, J. Mundy, W. Hoffman, V.-D. Nguyen: “Driving Vision By Topology”, in:
TEEE Intl. Symposium on Computer Vision, pp. 395-400, 1995

M. Sonka, V. Hlavac, R. Boyle: “Image processing, Analysis, and Machine Vision”,
Brooks/Cole Publishing Comp., 1998

L. Vincent, P. Soille: “Watersheds in digital spaces: an efficient algorithm based on
immersion simulations”, IEEE Trans. Pattern Analysis and Machine Intelligence, 13(6),
pp. 583-598, 1991

S. Winter: “Topological Relations between Discrete Regions”, in. M. Egenhofer, J.
Herring (eds.): Advances in Spatial Databases, pp. 310-327, Lecture Notes in Computer
Science vol. 951, Berlin: Springer, 1995

