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Abstract. In order to make image analysis methods more reliable it
is important to analyse to what extend shape information is preserved
during image digitization. Most existing approaches to this problem con-
sider topology preservation and are restricted to ideal binary images. We
extend these results in two ways. First, we characterize the set of binary
images which can be correctly digitized by both regular and irregular
sampling grids, such that not only topology is preserved but also the
Hausdorff distance between the original image and the reconstruction is
bounded. Second, we prove an analogous theorem for gray scale images
that arise from blurring of binary images with a certain filter type. These
results are steps towards a theory of shape digitization applicable to real
optical systems.

1 Introduction

When an analog image is digitized, much of its information may get lost. There-
fore, it is important to understand which information is preserved. In this paper,
we will be concerned with the problem of shape preservation. In particular, we
would like discrete regions to have the same topology as their analog originals,
and geometric distortions to be bounded. This problem of topology preserva-
tion was first investigated by Pavlidis [3]. He showed that a particular class
of binary analog shapes (which we will call r-regular shapes, cf. definition 4)
does not change topology under discretization with any sufficiently dense square
grid. Similarly, Serra showed in [5] that the homotopy tree of r-regular sets is
preserved under discretization with any sufficiently dense hexagonal grid. Both
results apply to binary sets and the so called subset digitization, where a pixel
is considered part of the digital shape iff its center is element of the given set.

Real images are always subjected to a certain amount of blurring before
digitization. Blurring is an unavoidable property of any real optical system. It
can be described by a convolution of the analog image with the point spread
function (PSF) of the optical system. After convolution, analog images are no
longer binary, and the above theorems do not apply. Latecki et al. [1] theorefore
generalized the findings of Pavlidis to other digitizations including the square
subset and intersection digitizations. These digitizations can be interpreted as
subset digitizations of a level set of the blurred image where the PSF is a square
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Fig. 1. Comparison of similarity criteria. (a) and (b) are topologically equivalent, (b)
and (c) have the same homotopy tree, (c) and (d) have a very small Hausdorff distance
when overlaid. No pair fulfills more than one condition.

with the same size as the pixels. Under this paradigm, topology preservation
requires to halve the sampling distance.

In contrast, Ronse and Tajine [4] based their approach to digitization on the
Hausdorff distance, i.e. a geometric measure of shape similarity. They proved
that in the limit of infinitely dense sampling the Hausdorff distance between the
original and digitized shapes converges to zero. However, they do not analyse
under which circumstances the topology remains unchanged.

In this paper, we combine the three shape similarity criteria topological equiv-
alence, identical homotopy tree and bounded Hausdorff distance. We prove that
r-regularity is a sufficient condition for an analog set to be reconstructible (in the
sense that all three criteria are met simultaneously) by any regular or irregular
grid with sampling distance smaller than r. The results of [3,5] are obtained as
corollaries of this theorem. We also apply these findings to binary images blurred
with a flat disk-like PSF and show that the sampling density has to be increased
according to the PSF’s radius to ensure correct reconstruction.

2 Shape Similarity

Given two sets A and B, their similarity can be expressed in several ways. The
most fundamental is topological equivalence. A and B are topologically equiva-
lent if there exists a bijective function f : A → B with f and f−1 continuous.
Such a function is called a homeomorphism. However, it does not completely
characterize the topology of a set when it is embedded in the plane IR2. There-
fore, [5] introduced the homotopy tree which encodes whether some components
of A enclose others in a given embedding. Fig. 1 (a) to (c) illustrate how shapes
may differ if they are either topologically equivalent or have the same homo-
topy tree. We can capture both notions simultaneously when we extend the
homeomorphism f to the entire IR2 plane. Then it refers to a particular planar
embedding of A and B and defines a mapping Ac → Bc for the set complements
as well. This ensures preservation of both the topology and the homotopy tree.
We call this an IR2-homeomorphism.

Geometric similarity between two shapes can be measured by the Hausdorff
distance

dH(∂A, ∂B) = max

(

max
x∈∂A

min
y∈∂B

d(x, y), max
y∈∂B

min
x∈∂A

d(x, y)

)



between the shapes’ boundaries. Fig. 1 (c) and (d) shows two shapes with small
Hausdorff distance that are not IR2-topologically equivalent.

All these criteria are necessary to regard a reconstructed image as similar to
the original. Thus we combine them and call two sets r-similar if there exists a
IR2-homeomorphism that maps A into B, and dH (∂A, ∂B) ≤ r. That is, two sets
A, B are r-similar, iff they are topologically equivalent, have the same homotopy
tree, and their boundaries have a bounded Hausdorff distance.

3 Reconstructible Images

A set A ⊆ IR2 can be transformed into an analog binary image by means of the
characteristic function of the set χA : IR2 → {0, 1}, χA(x) = 1 iff x ∈ A. A
discretisation is obtained by storing the values of this image only at a countable
number of sampling points. To characterize sampling formally, we must restrict
the distance of the sampling points:

Definition 1. A countable set S ⊂ IR2 of points with dH(IR2, S) ≤ r for some
r ∈ IR+ such that for each bounded set A the subset S ∩ A is finite, is called r-
grid. The elements of S are the sampling points, and their associated Euclidean
Voronoi regions are the pixels:

PixelS : S → P(IR2), PixelS(s) := {x : ∀s
′ ∈ S \ {s} : |x − s| ≤ |x − s

′|}

The intersection of A ⊆ IR2 with S is called the S-digitization of A, and the
restriction of the domain of A’s characteristic function to S is the associated
digital binary image:

DigS(A) := A ∩ S

DigitalImageS(χA) := χA|S : S → {0, 1}

This definition is very broad and captures not only the usual rectangular and
square grids, but also other regular and even irregular grids, provided their
Voronoi regions have bounded radius, see fig. 2.

As it is not useful to directly compare a discrete set with an analog one, we
reconstruct an analog set from the given digitization. This is done by assigning
the information stored at each sampling point to the entire surrounding pixel:

Definition 2. Given a set A ⊆ IR2 and a grid S, the S-reconstruction of
DigS(A) is defined as

Â = RecS(DigS(A)) =
⋃

s∈(S∩A)

PixelS(s)

The results of a reconstruction process will be considered correct if the recon-
structed set Â is sufficiently similar to the original set A. Formally, we get

Definition 3. A set A ⊆ IR2 is reconstructible by an r-grid S if the S-recon-
struction Â is r-similar to A.



(a) (b) (c) (d)

Fig. 2. Many different grid types can be described when pixels are defined as the
Voronoi regions of suitably located sampling points. These include regular grids like
the square (a), hexagonal (b) and trigonal ones (c), and irregular grids (d) as found in
natural image acquisition devices like the human eye.

This definition imposes stricter conditions on reconstruction than preservation of
topology or homotopy trees as used by Pavlidis and Serra. Pavlidis gave a weaker
bound for the Hausdorff distance and did not prove that the homotopy tree
remains unchanged, while Serra didn’t prove topology preservation. Corollary 1
shows that their geometric sampling theorems can be strengthened according to
our requirements. We recall the definition of the type of shapes they looked at:

Definition 4. A compact set A ⊂ IR2 is called r-regular iff for each boundary
point of A it is possible to find two osculating open balls of radius r, one lying
entirely in A and the other lying entirely in Ac.

In the following we will show that an r-regular set is reconstructible by any grid
with sufficiently small pixel size, regardless of the grid structure. The following
lemmas describe some prerequisites. We only formulate them for the foreground
A, but their claims and proofs apply to the background Ac analogously.

Lemma 1. Let A be an r-regular set and Â the reconstruction of A by an r′-grid
S, with 0 < r′ < r. Then two sampling points lying in different components of
A cannot lie in the same component of Â.

Proof. Since the Hausdorff distance of two components of A is at least 2r (cf.
[1,2]), and the S-reconstruction of any component A′ is a subset of the r′-dilation
of A′, the Hausdorff distance between two components of Â is at least 2r−2r′ > 0.
Thus the reconstruction process cannot merge two components of A. ut
Lemma 2. Let A′ be a component of an r-regular set A, S be an r′-grid, 0 <
r′ < r′′ < r. Further, let A′

	 = (A′ 	 Br′′)0 be the interior of the erosion of A′

with a closed ball of radius r′′, and Si := {s ∈ S : Pixel(s) ∩ A′
	 6= ∅} the set of

all sampling points whose pixels intersect A′
	. Then at least one member of Si

is in A′.

Proof. Since A is r-regular, every component A′ contains at least one ball of
radius r. The center m of such a ball lies in A′

	. Let s ∈ S be a sampling point
with m ∈ Pixel(s). Then s is also element of Si and the distance between s and
m is at most r′ < r′′. Thus, s lies within A′. ut



Lemma 3. Let A, A′, S and Si be defined as in lemma 2. Then any pair of pix-
els with sampling points in Si is connected by a chain of adjacent pixels whose
sampling points are also in Si. Pixels are adjacent if they have a common bound-
ary edge (direct neighborhood).

Proof. Every component A′ of an r-regular set A is r-regular, too. Thus A′
	

is an open, connected set. Now let s1 and s2 be sampling points in Si. The
interior of their pixels intersects A′

	, and there exist two points s
′
1, s

′
2 lying in

(Pixel(s1))
0∩A′

	 and (Pixel(s2))
0∩A′

	 respectively. s
′
1 and s

′
2 can be connected

by a path in A′
	 which, without loss of generality, does not intersect any pixel

corner. The sampling points of all pixels intersecting this path are in Si as well.
The order in which the path enters those pixels defines a chain of adjacent pixels.

ut
Lemma 4. Let A, A′, S and Si be defined as in lemma 2. Then each sampling
point lying in A′ is either a member of Si or is connected to a member of Si by
a chain of adjacent pixels whose sampling points all lie in A′.

Proof. Let c be any sampling point in A′. Then there exists a ball of radius r
in A′ such that c lies in the ball. Let m ∈ A′

	 be the center of the ball. The
halfline starting at c and going through m crosses the boundary of the convex
Pixel(c) at exactly one point c

′. If d(c, m) ≤ d(c, c′), the point m is part of
Pixel(c) and thus c ∈ Si. If d(c, m) > d(c, c′), let g be the line defined by
the edge of Pixel(c) going through c

′. If there are two such lines (i.e. if c
′ is a

corner of Pixel(c)), one is chosen arbitrarily. Due to the definition of Voronoi
regions the point c

′′ constructed by mirroring c on g is a sampling point in S,
and Pixel(c′′) is adjacent to Pixel(c). Since c := d(c′, c) = d(c′, c′′), the point c

′′

always lies on the circle of radius c with center c
′. Among all points on this circle,

c has the largest distance to m, and in particular d(m, c′′) < d(m, c). Thus,
the sampling point c

′′ lies in A′, and is closer to m than c. We can repeat this
construction iteratively to obtain a sequence of adjacent pixels whose sampling
points successively get closer to m. Since there are only finitely many sampling
points in A′, one such pixel will eventually intersect A′

	. ut
Theorem 1 (sampling theorem for ideal binary images). Let r ∈ IR+

and A an r-regular set. Then A is reconstructible with any r′-grid S, 0 < r′ < r.

Proof. Due to lemma 2 there is a mapping of the foreground components of
A to the foreground components of Â. Lemma 1 states that this mapping is
injective, and from lemmas 3 and 4 follows surjectivity. The same holds for the
background components of A and Â. This implies a one-to-one mapping between
the boundaries of A and Â. Due to lemma 4, both the foreground and background
components of Â are connected via direct pixel neighborhood. Therefore, their
boundaries are Jordan curves. The same holds for the boundaries of A due to
r-regularity. Consequently, an R2-homeomorphism can be constructed, and A
and Â are R2-topologically equivalent.

It remains to be shown that the Hausdorff distance between the boundaries of
A and Â is restricted. Suppose to the contrary that ∂Â contains a point s whose



distance from ∂A exceeds r′. Due to the definition of an r′-grid, the sampling
points of all pixels containing s are located in a circle around s with radius r′.
Under the supposition, this circle would either be completely inside or outside
A, and the pixels were all either in Â or Âc. Thus, s could not be on ∂Â′ –
contradiction. Therefore, the Hausdorff distance between ∂A and ∂Â is at most
r′. ut

This geometric sampling theorem does not only apply to square or hexagonal
grids, but also to irregular grids as can be found in the human retina, see fig.
2. Moreover, if a set is reconstructible by some grid S due to this theorem, this
also holds for any translated and rotated copy of the grid. Moreover, it can be
shown that r-regularity is not only a sufficient but also a nessessary condition
for a set to be reconstructible. That is, if A is not r-regular for some r, there
exists an r-grid S such that the S-reconstruction is not topologically equivalent
to A. Due to space limitations, the proof of this claim had to be omitted. The
sampling theorems of Serra and Pavlidis are corollaries of theorem 1:

Corollary 1. Let S1 := h1 · ZZ be the square grid with grid size (minimal sam-
pling point distance) h1. Then every r-regular set with r > h1√

2
is reconstructible

with S1. Let S2 be the hexagonal grid with grid size h2. Then every r-regular set
with r > h2√

3
is reconstructible with S2.

4 Sampling of Blurred Images

In the previous section we worked exclusively with the subset digitization where
a sampling point is set if it lies within the foreground region of the binary
image. Unfortunately, this digitization scheme can never be realized in practice:
Every real optical system blurs the binary image before the light reaches the
optical sensors. The finite area of real sensors introduces additional blurring.
Both effects can be described by a convolution of the ideal binary image with
a suitable point spread function. Thus, the image actually observed is always a
gray-scale image. A binary image can be recovered by considering a particular
level set Ll = {x ∈ IR2|f̂(x) ≥ l} of the blurred image f̂ , i.e. by thresholding.
Since thresholding and digitization commute, we can apply thresholding first and
then digitize the resulting level set by standard subset digitization. (This order
facilitates the following proofs.) Now the question arises if and how we can bound
the difference between the original set before blurring and the S-reconstruction
of a level set of the blurred image. We first analyse the relationship between
the original set and an analog level set, and then between the level set and its
S-reconstruction.

In order to get definitive results, we restrict ourselves to a particular type of
PSF, namely flat disks of radius p. Flat, disk-shaped PSFs have the advantage
that the result of the convolution can be calculated by measuring the area of
sets. In the sequel, A shall be an r-regular set and kp a disk PSF with radius
p < r. If Kp(c) denotes the PSF’s support region after translation to the point
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c, the result of the convolution at c is given by:

f̂(c) = (kp ? χA)(c) =
‖Kp(c) ∩ A‖
‖Kp(c)‖

where ? denotes convolution and ‖.‖ is the area size. Therefore, it is possible to
derive properties of the level sets by purely geometrical means. Obviously, all
interesting effects occur in a 2p-wide strip Ap = ∂A ⊕ Kp around the boundary
∂A, because out of this strip the kernel does not overlap ∂A, and the gray values
are either 0 or 1 there (⊕ denotes morphological dilation). Level sets have the
following property:

Lemma 5. Let s be a point on ∂A, and let c1 and c2 be the centers of the inside
and outside osculating circles of radius r. Moreover, let c3 and c4 be the two
points on the normal c1c2 with distance p from s. Then the boundary of every
level set has exactly one point in common with c3c4.

Proof. Consider a point c in Kp(c3) and translate the line segment c3c4 by
c− c3 (see fig. 3). Because of the restricted curvature of ∂A, the translated line
segment intersects ∂A at exactly one point. Thus, as t ∈ [0, 1] increases, the area
of ‖Kp(c3 + t · (c4 − c3)) ∩ A‖ is strictly decreasing. This area is proportional
to the result of the convolution, so the same holds for the gray values. Since the
p-ball centered in c3 is an inside osculating ball of A, the gray value at c3 is
f(0) = 1. Likewise, f(1) = 0. This implies the lemma. ut

The curvature of the level set contours is bounded by the following lemma:

Lemma 6. Let c0 ∈ Ap be a point such that (A?Kp)(c0) = l, (0 < l < 1). Thus,
c0 is part of level set Ll. Then there exists a circle bout of radius ro ≥ r′ = r− p
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that touches c0 but is otherwise completely outside of Ll. Likewise, there is a
circle bin with radius ri ≥ r′ that is completely within Ll.

Proof. Consider the set b0 = Kp(c0) centered at c0. Let its boundary ∂Kp(c0)
intersect the boundary ∂A at the points s1 and s2 (see fig. 4). Let g0 be the
bisector of the line s1s2. By construction, c0 is on g0. Define c1 and c2 as the
points on g0 whose distance from s1 and s2 is r, and draw the circles b1 and
b2 with radius r around them. Now, the boundary of A cannot lie inside either
b1 \ b2 or b2 \ b1, because otherwise A could not be r-regular. The areas where
∂A may run are marked dark gray in fig. 4. Since p < r, there can be no further
intersections between ∂Kp(c0) and ∂A besides s1 and s2.

On g0, mark the points c3 between c0 and c1, and c
′
3 between c0 and c2, such

that |c1c3| = |c2c
′
3| and min(|c0c3|, |c0c

′
3|) = r′ = r − p. Due to the triangle

inequality, and since p < r, such a configuration always exists. We prove the
lemma for the circle bout around c3, bin around c

′
3 is treated analogously.

Let b3 = bout be the circle around c3 with radius r′, and b′3 the circle around
c3 that touches s1 and s2 (fig. 5 left). Consider a point c4 on ∂b3 and draw the
circle b4 with radius p around c4. This circle corresponds to the footprint of the
PSF centered at c4. Now we would like to compare the result of the convolution
kp ? χA at c0 and c4. The convolution results are determined by the amount of
overlap between A and b0 = Kp(c0) and b4 = Kp(c4) respectively. To compare
b0 ∩A and b4 ∩A, we split the two circles into subsets according to fig. 5 center
(only b0, b4 and b′3 are shown in this figure). Circle b0 consists of the subsets
f1, f2, f3, f4, whereas b4 consists of f1, f2, f

′
3, f

′
4. The subsets f1 and f2 are shared

by both circles, while due to symmetry f3, f
′
3 and f4, f

′
4 are mirror images of each

other. In terms of the subsets, we can express the convolution results as follows:

(kp ? χA)(c0) =
‖f1 ∩ A‖ + ‖f2 ∩ A‖ + ‖f3 ∩ A‖ + ‖f4 ∩ A‖

‖Kp‖

(kp ? χA)(c4) =
‖f1 ∩ A‖ + ‖f2 ∩ A‖ + ‖f ′

3 ∩ A‖ + ‖f ′
4 ∩ A‖

‖Kp‖



By straightforward algebraic manipulation we get:

‖Kp‖ ((kp ? χA)(c0) − (kp ? χA)(c4)) = (1)

‖f3 ∩ A‖ − ‖f ′
3 ∩ A‖ + ‖f4 ∩ A‖ − ‖f ′

4 ∩ A‖

Since the radius of b′3 is smaller than r, and its center c3 is between c0 and c1,
the boundary ∂b′3 intersects ∂A only at s1 and s2. It follows that subset f3 is
completely inside of A, whereas f ′

4 is completely outside of A. Hence, we have
‖f3 ∩ A‖ = ‖f3‖ = ‖f ′

3‖ and ‖f ′
4 ∩ A‖ = 0. Inserting this into (1), we get

‖Kp‖ ((kp ? χA)(c0) − (kp ? χA)(c4)) = ‖f ′
3‖ − ‖f ′

3 ∩ A‖ + ‖f4 ∩ A‖ > 0 (2)

Thus, the gray level at c4 is smaller than l. When c4 is moved further away
from c0, the subset f2 will eventually disappear from the configuration (fig. 5
right). If c3 is outside of b0, f1 will finally disappear as well. It can easily be
checked that (2) remains valid in either case. Due to the definition of c3, no
other configurations are possible. Therefore, the gray values on the boundary
∂bout are below l everywhere except at c0.

It remains to prove the same for the interior of bout. Suppose the gray level
at point c ∈ b0

out were l′ ≥ l. By what we have already shown, the associated
level line ∂L′

l cannot cross the boundary ∂bout (except at the single point c0 if
l′ = l). So it must form a closed curve within bout. However, this curve would
cross some normal of ∂A twice, in contradiction to lemma 5. This implies the
claim for outside circles. The proof for inside circles proceeds analogously. ut
We conclude that the shape of the level sets Ll is quite restricted:

Theorem 2. Let A be an r-regular set, and Ll any level set of kp ?χA, where kp

is a flat disk-like point spread function with radius p < r. Then Ll is r′-regular
(with r′ = r − p) and p-similar to A.

Proof. The proof of r′-regularity follows directly from the definition of r-regu-
larity and lemma 6.

Now assume that there exists a homeomorphism f : IR2 → IR2 such that
f(A) = Ll and ∀x ∈ IR2 : |f(x) − x| ≤ p. This homeomorphism would induce a
homeomorphism from A to Ll. Due to the embedding of f in IR2, the homotopy
trees of A and f(A) would be equal. Since |f(x) − x| ≤ p, the Hausdorff dis-
tance between ∂A and f(∂A) would be at most p. Thus, the existence of such a
homeomorphism is sufficient to prove p-similarity.

The required homeomorphism can indeed be constructed: Because of the
restricted curvature of ∂A, the normals of ∂A cannot intersect within the p-
strip Ap around ∂A (cf. [1,2]). Therefore, due to 5, every point s on ∂A can
be translated along its normal towards a unique point on the given level line
∂Ll and vice versa. The distance between s and its image is ≤ p. This mapping
can be extended to the entire IR2-plane in the usual way, so that we get a
homeomorphism with the desired properties. ut
This finally allows us to show what happens during the digitization of a set A
that was subjected to blurring with a PSF:



Theorem 3 (sampling theorem for blurred binary images). Let A be an
r-regular set, Ll any level set of kp ?χA, where kp is a flat disk-like point spread
function with radius p < r, and S a grid with maximum pixel radius r′′ < r − p.
The S-reconstruction L̂l of Ll is (p + r′′)-similar to A.

Proof. By theorem 2, Ll is r′-regular and p-topologically similar to A. By the-
orem 1, the S-reconstruction of an r′-regular set with an r′′-grid (r′′ < r′) is
r′′-similar to the original set. Thus A, Ll and L̂l are topologically equivalent and
have the same homotopy tree. Due to the triangle inequality of the Hausdorff
metric, the Hausdorff distance between A and L̂l is at most p + r′′. ut
Corollary 2. Since r′′ + p < r, any S-reconstruction of Ll is r-topologically
similar to A, regardless of how the grid is rotated and translated relative to A.

5 Conclusions

Our results are intuitively very appealing: When we digitize an ideal binary
image with any r′′-grid, we can properly reconstruct a shape if it is r′-regular
with r′ > r′′. But when the image is first subjected to blurring with a PSF
of radius p, the set must be r-regular with r > r′′ + p. In other words, the
radius of the PSF must be added to the radius of the grid pixels to determine
the regularity requirements for the original shape. It should also be noted that
r > r′′ + p is a tight bound, which for instance would be reached if A consisted
of a circle of radius r, and the threshold was 1 – in this case, any smaller circle
could get lost in the reconstruction. However, for a single, pre-selected threshold
a better bound can be derived.

Our result is closely related to the findings of Latecki et al. [1,2] about v-
digitization (and thus also square subset digitization and intersection digitiza-
tion). In their approach, the grid must be square with sampling distance h, and
the PSF is an axis aligned flat square with the same size as the pixels. Then,
the pixel and PSF radius are both r′′ = p = h/

√
2, and the original shape must

be r-regular with r > r′′ + p =
√

2h. This is exactly the same formula as in our
case. We conjecture that our results can be generalized to a much wider class of
radially symmetric PSFs, but we can’t prove this yet.
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