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Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
koethe@informatik.uni-hamburg.de

Summary. Tensors are a useful tool for the detection of low-level features such
as edges, lines, corners, and junctions because they can represent feature strength
and orientation in a way that is easy to work with. However, traditional approaches
to define feature tensors have a number of disadvantages. By means of the first
and second order Riesz transforms, we propose a new approach called the boundary

tensor. Using quadratic convolution equations, we show that the boundary tensor
overcomes some problems of the older tensor definitions. When the Riesz transform
is combined with the Laplacian of Gaussian, the boundary tensor can be efficiently
computed in the spatial domain. The usefulness of the new method is demonstrated
for a number of application examples.1

1.1 Introduction

Even when the raw image data are not tensor-valued, tensor-based methods
have been found useful in image analysis because tensors describe local image
properties in a way that is invariant under Euclidean transformations of the
space. The two main applications so far are feature extraction and optical
flow computation. Historically, the latter one has been investigated first. The
optical flow problem can be formulated as the task of finding the main local
orientation at every point of the 3-dimensional spatio-temporal domain that is
formed by interpreting an image sequence as a 3-dimensional data set with two
spatial and one temporal dimensions. One can then define the spatio-temporal
gradient of the sequence f3 as:

∇f3 =

(

∂f3
∂x

,
∂f3
∂y

,
∂f3
∂t

)T

(1.1)

1 This work was performed during a visit at the Computer Vision Lab of the Uni-
versity of Linköping, Sweden. I’d like to thank G. Granlund, M. Felsberg and K.
Nordberg for many valuable discussions, and the Informatics Department of the
University of Hamburg for their generous support of this visit.
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Under the assumption of constant optical flow in a neighborhood of the current
point, the flow vector v can be determined from the null-space of the structure

tensor S3 [2, 11], cf. chapters 2 by Brox et al. and 3 by Nagel in this volume:

S3v = 0 with S3 = gσ ? (∇f3∇fT3 ) (1.2)

The structure tensor is the averaged outer product of the spatio-temporal gra-
dient with itself, where the averaging filter gσ (usually a Gaussian) is chosen
according to the size of the neighborhood where the flow is assumed con-
stant. The flow vector is only uniquely determined if the null space of the
3-dimensional structure tensor is 1-dimensional, i.e. if the structure tensor
has rank 2. If it has lower rank, there is no unique flow vector, which is known
as the aperture problem. This problem naturally leads to the definition of the
2D structure tensor as the averaged outer product of just the spatial gradient:

S2 = gσ ? (∇f2∇fT2 ) with ∇f2 =

(

∂f2
∂x

,
∂f2
∂y

)T

(1.3)

This 2-dimensional tensor must have full rank for a unique flow vector to
exist, which is the case if the local image structure is neither flat (as in ho-
mogeneous regions) nor 1-dimensional (as at edges), but has high variation
in all directions. Points of maximal variation are called spatial interest points

and correspond to important structural features such as gray level corners,
junctions, and extrema. They can for example be found as the local maxima
of the corner strength measures proposed by Förstner [6] and Harris [8]:

cFörstner =
det(S2)

tr(S2)
cHarris = det(S2) − κ tr2(S2) (1.4)

where κ is usually set to 0.04. In addition, Förstner [6] and Nagel [11] used the
structure tensor to define a contrast independent measure of local isotropy:

croundness =
4 det(S2)

(tr(S2))
2 (1.5)

A completely different approach to tensor-based feature detection was pro-
posed by Granlund and Knutsson [9]. They were interested in the character-
ization of locally 1-dimensional image structures, i.e. edges and lines, which
they call simple structures. Formally, simple structures are defined by the fact
that the image is locally reduced to a 1-dimensional function that varies only
along a certain direction n and is constant perpendicular to that direction:

f2(x) ≈ f1(x
Tn) (1.6)

Then the local signal energy and orientation can be represented by an orien-

tation tensor as
T = λnnT (1.7)
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Since in [9] the authors are interested in arbitrary 1-dimensional features,
the estimation procedure for T must react uniformely to edges and lines. This
property is called phase invariance because edges and lines can be understood
as superpositions of trigonometric (complex exponential) basis functions at
different phase (namely phase 0 or π for lines and ±π/2 for edges). Phase
invariance can be achieved by estimating the tensor with oriented quadrature
filters [9] or with a local polynomial approximation [4]. Quadrature filter pairs

were originally invented to estimate the instantaneous energy and phase of a
1-dimensional signal. A quadrature pair (heven, hodd) consists of an even and
an odd symmetric filter, and the instantaneous (edge or line) energy can be
calculated as the sum of squares of the filter responses:

E(x) = (heven ? f1)
2 + (hodd ? f1)

2 (1.8)

To actually form a quadrature pair, the filters must be related by the Hilbert
transform H, which is defined in the Fourier domain by

Hodd(u) = H[Heven(u)] = j
u

|u|Heven(u) = j sign(u)Heven(u) (1.9)

(slanted capitals denote the Fourier transforms of the corresponding lower-
case functions). To apply these filters in 2D, it is conventional to rotate them
into some orientation of interest. In order to estimate T on a 2D image, at
least 3 orientations are necessary [9]. When the local image structure is indeed
1-dimensional and the orientations θi = [0, π/3, 2π/3] are used, we get

T =
∑

i

(mim
T
i − I/4)Ei (1.10)

where Ei is the energy computed for orientation i, mi = (cos θi, sin θi)
T and

I is the unit tensor. A second order polynomial approximation of the image
structure around x0 is defined by the local model

fmodel(x0 + x) = c+ xTb + xTAx (1.11)

An in-depth discussion of how to estimate A,b, c can be found in [4]. Possibil-
ities include local polynomial fits, facet models, moment filters, and Gaussian
derivative filters. The orientation tensor is then defined as

T = AAT + γbbT (1.12)

However, with the common estimation methods for A and b this tensor is
only phase invariant for a single frequency determined by γ, which is therefore
considered as an algorithm tuning parameter.

The existing methods have a number of shortcomings. The structure tensor
approach is not phase invariant, because, being based on the image gradient,
it reacts differently to edges and lines. Furthermore, due to averaging over a
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neighborhood, nearby features (e.g. the corners of a small triangle) will blend
into only a single response and cannot be resolved separately. In the quadra-
ture filter approach, definite statements about the properties of T can only
be made if the local image structure is indeed 1-dimensional. It is unclear
exactly what happens at 2-dimensional configurations. Finally, when the ten-
sor is based on a polynomial approximation, the choice of the parameter γ is
problematic. Usually it is impossible to find a single γ that works well on the
entire image, and a procedure to choose it locally is not known. Consequently,
the response is not phase invariant at most locations, and multiple responses
near a single line are common.

In this contribution I am discussing the boundary tensor introduced in [10]
as a method designed to overcome these shortcomings. It will be based on a
new generalization of quadrature filters to 2 dimensions using the Riesz trans-

form. The boundary tensor will turn out to be structurally equivalent to the
polymial-based tensor definition, but with a uniquely determined parameter
γ = 1. It will exhibit phase invariance for all frequencies in the same way as
the quadrature filter approach. By analysing the new method in the frame-
work of quadratic convolution, we can also show that it reacts in a useful way
to locally 2-dimensional configurations. An efficient spatial domain algorithm
and a number of feature analysis examples conclude the paper.

1.2 The Boundary Tensor

Before we go on to define the boundary tensor, we recall that (Cartesian)
tensors are in general characterized by the fact that the tensor elements in
a rotated coordinate system can be calculated as linear combinations of the
tensor elements in the original coordinate system (cf. chapter 1 in this book):

T̃i1...ip =

N
∑

l1=1

· · ·
N
∑

lp=1

ri1l1 . . . riplpTl1...lp (1.13)

where Tl1...lp are the elements of a pth-order tensor, and ril are the elements
of the N -dimensional rotation matrix. These transformation rules ensure that
the properties represented by the tensor as a whole remain invariant under Eu-
clidean transformations of the space, even when the individual tensor elements
do not. New tensors can be created from existing ones by linear combinations,
by means of the Cartesian (outer) product and by contraction. A tensor of
order zero is a rotationally invariant scalar. Therefore, we can interpret every
pixel of the original image or an image obtained by a rotationally symmetric
filter as a 0th-order tensor.

We can define a tensor-based generalization of quadrature filtering by re-
placing the 1-dimensional Hilbert transform with the N -dimensional Riesz

transform [5] which is defined as:
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Fourier domain: HN [H(u)] = j
u

|u|H(u) (1.14)

spatial domain: HN [h(x)] =
Γ ((N + 1)/2)

π(N+1)/2

( −x

|x|N+1
? h(x)

)

(1.15)

where Γ is the gamma function. In essence, the scalar-valued frequency co-
ordinate u of the Hilbert transform is simply replaced by an N -dimensional
frequency vector u. The Riesz transform can be interpreted as a first-order
tensor operator because it turns a scalar valued function into a first or-
der tensor-valued one. This can be easily seen by observing that the ra-
tio u

|u| defines the first order spherical harmonics (i.e. (cos θ, sin θ)T in 2D,

(cos θ cosφ, sin θ cosφ, sinφ)T in 3D etc.), and polar separable functions with
this angular behavior conform exactly to (1.13) with p = 1. Spherical har-
monics are preserved by inverse Fourier transformation, so that the spatial
domain version (1.15) of the Riesz transform has the same angular behavior
and the tensor requirements are still satisfied. The Riesz transform is closely
related to the gradient and acts in a qualitatively similar way, as can be seen
by defining the latter in terms of the former:

∇Nh(x) c s HN [ |u|H(u)] (1.16)

where c s denotes Fourier correspondence. Both operators have the same
angular behavior, but the gradient in addition changes the radial part of the
spectrum. This difference is of crucial importance for the definition of phase-
invariant operators. Another important observation concerns the difference
between the 1-dimensional Hilbert transform and the multi-dimensional Riesz
transform: while applying the former transform twice just reproduces the orig-
inal signal (with reversed sign), multiple applications of the Riesz transform
create tensors of higher and higher orders. This is again similar to the gradient
operator, where twofold application results in the Hessian matrix etc.

However, applying the Riesz transform to the original image makes little
sense in practice, because its spatial domain kernel decreases only as |x|−N ,
so that feature localization would be bad. Instead, one combines it with a
radially symmetric band-pass. In contrast to derivative filters, where the band-
pass changes with the derivative order, the band-pass is kept the same for all
orders of the Riesz transform. We define the first and second order band-pass
Riesz transforms b and A of an image F in the Fourier domain as

b c s HN [K(|u|)F (u)] = j
u

|u|K(|u|)F (u) (1.17)

A c s H2
N [K(|u|)F (u)] = −uuT

|u|2 K(|u|)F (u) (1.18)

where K(|u|) is the band-pass. It should be noted that these definitions are
valid for all dimensions N ≥ 2. The boundary tensor is now defined as
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B = bbT + AAT (1.19)

This definition is structurally equivalent to (1.12), but the parameter γ is no
longer needed, because the boundary tensor is phase invariant for all frequen-
cies (see below). Since A and b are both real, it follows that B is always
positive semi-definite. Therefore, the trace of the tensor can be interpreted
as a measure of local signal energy, which will be called boundary energy.
The choice of this name stems from the fact that the tensor indeed detects
important boundary features, as is shown below.

1.3 Analysis of the Boundary Tensor as a Quadratic

Filter

In order to analyse the properties of the boundary tensor, we follow the pro-
posal of [12] and formulate the tensor as a quadratic filter [13]. Quadratic
convolution is defined as

f̃(x) =

∫∫

h(x − x1,x − x2)f(x1)f(x2) dx1 dx2 (1.20)

where h(., .) is the kernel, and the method is termed “quadratic because the
original image f appears twice in the integral. Let gi(x) denote the ith com-
ponent (i = 1...N) of the first order band-pass Riesz transform kernel. Then

(bbT )il = bibl = (gi ? f)(gl ? f)

=

∫

gi(x − x1)f(x1) dx1

∫

gl(x − x2)f(x2) dx2

=

∫∫

gi(x − x1)gl(x − x2)f(x1)f(x2) dx1 dx2 (1.21)

Similarly, let gil(x) represent component il (i, l = 1...N) of the kernel for the
second order band-pass Riesz transform. This leads to

(AAT )il =
∑

k

AikAkl =
∑

k

(gik ? f)(gkl ? f)

=

∫∫

(

∑

k

gik(x − x1)gkl(x − x2)

)

f(x1)f(x2) dx1 dx2 (1.22)

We can combine both equations into a single quadratic convolution with

hil(x1,x2) = gi(x1)gl(x2) +
∑

k

gik(x1)gkl(x2) (1.23)

Then the components of the boundary tensor can be written as
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spatial domain: Bil(x) =

∫∫

hil(x − x1,x − x2)f(x1)f(x2) dx1 dx2

Fourier domain: Bil(x) c s

∫∫

Hil(u,v)F (u)F (v)ej(u+v)T
x du dv (1.24)

where F is the N -dimensional Fourier transform of f , Hil is the 2N -dimensio-

nal Fourier transform of hil, and ej(u+v)T
x translates f so that the current

point x becomes the origin. Inserting the Fourier representation of the band-
pass Riesz transform, Hil gets a simple functional form:

Hil(u,v) = − ui
|u|

vl
|v|K(|u|)K(|v|) +

∑

k

(

uiuk
|u|2

vkvl
|v|2

)

K(|u|)K(|v|)

=
uivl
|u||v|

(

−1 +
uTv

|u||v|

)

K(|u|)K(|v|) (1.25)

In order for Bil to be real for real images f , it is required that Hil(−u,−v) =
Hil(u,v), which is easily verified. Conditions for an N -dimensional tensor
operator to behave like a 1-D quadrature filter for simple images (i.e. images

where f(x) = f̂(xTn) for some unit vector n giving the signal orientation)
are derived in [12]. If the signal is simple, the spectrum of F (u) vanishes for
all u 6= tn, and the restriction of the kernel to this line must reduce to

Hil(tn, τn) = ninlĤ(t, τ) (1.26)

Furthermore, in order for the signal energy to be phase invariant Ĥ(t, t) = 0
must hold for all t. Both conditions are fulfilled, because ui = tni and vi =
τni, and thus

Hil(tn, τn) =
tτninl
|t||τ |

(

−1 +
tτnTn

|t||τ | )

)

K(|t|)K(|τ |)

= ninl (− sign(tτ) + 1)K(|t|)K(|τ |) (1.27)

In fact, this is precisely 4 times the expression which [12] derived for the
quadrature filter method according to [9], cf. 1.10), so that both approaches
behave identically for simple signals. For simple signals the signal energy
tr(B) =

∑

k Bkk reduces exactly to the 1-dimensional quadrature energy (1.8):

tr(B) =
∑

k

∫∫

n2
k(− sign(tτ) + 1)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)n

T
x dt dτ

=
(

H1[k1] ? f̂
)2

+
(

k1 ? f̂
)2

(1.28)

where k1 is the 1-dimensional inverse Fourier transform of K and H1[k1] its
Hilbert transform (derivation see appendix).

Hil is also a useful tool to analyse the behavior of the boundary tensor for
intrinsically 2-dimensional features. To simplify matters, we consider points
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x where the spectrum F (u) computed with x as coordinate origin is polar
separable within the pass-band of the tensor filter K(|u|). At many structures
of interest this is at least approximately true. Then the product K(|u|)F (u)
can be written as K(|u|)Fr(|u|)Fa(φ). After inserting this and (1.25) into the
boundary tensor expression (1.24), the latter can be transformed into polar
coordinates and simplifies into a product of two integrals:

Bil =

∫∫

uivl
|u||v|

(

−1 +
uTv

|u||v|

)

K(|u|)K(|v|)F (u)F (v) du dv

=

(
∫∫

ni(φ)nl(ψ)
(

−1 + nT(φ)n(ψ)
)

Fa(φ)Fa(ψ) dφ dψ

)

(
∫∫

K(ρ1)K(ρ2)Fr(ρ1)Fr(ρ2) ρ1 dρ1 ρ2 dρ2

)

(1.29)

= Ba,iltensorBr

with u = ρ1n(φ)= ρ1(cos(φ), sin(φ))T and v = ρ2n(ψ)= ρ2(cos(ψ), sin(ψ))T .
It should be noted that this is a major advantage of using the Riesz transform:
Otherwise, the first and second order filter kernels would have had different
radial parts, and the separation of angular and radial behavior were impossi-
ble. The angular integral Ba,il in (1.29) can be further simplified in terms of
the Fourier coefficients of Fa:

αn =

∫

cos(nφ)Fa(φ) dφ βn =

∫

sin(nφ)Fa(φ) dφ (1.30)

It turns out that only the Fourier coefficients up to second order are relevant
(the others drop out due to orthogonality of trigonometric functions), and the
boundary tensor components can be written as (see appendix):

B11 = (α2
1 + 1

4 (α0 + α2)
2 + 1

4β
2
2)Br

B22 = (β2
1 + 1

4 (α0 − α2)
2 + 1

4β
2
2)Br

B12 = (α1β1 + 1
2α0β2)Br

(1.31)

where Br is the radial part of (1.29). These equations give us a qualitative
understanding of how the boundary tensor reacts to 2D features: At (approx-
imately) polar separable locations, its components are products of radial and
angular expressions. The former measure the contrast of the local structure at
the scale of the bandpass filter, and the latter determine how well the angular
shape can be represented with circular harmonics up to order 2. Since many
important structures (edges, lines, saddles, corners) are covered by this model,
the boundary tensor reacts reasonably at many locations where for example
the gradient (which solely relies on first-order circular harmonics) fails. We
illustrate this with two examples: parameterized step and line edges. In the
spatial domain the angular parts of these features can be written as

fa,edge(φ) = Θ(φ+φ0)−Θ(φ−φ0) fa,line(φ) = δ(φ+φ0)−δ(φ−φ0) (1.32)
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Fig. 1.1. Eigenvalue ratios µ = min(B11,B22)/ max(B11,B22) for a parameterized
edge (left) and line (right) as a function of l0 = φ0/(2π).

where Θ is the step function and δ the impulse function. The parameter
φ0 ∈ [0, π] determines the angle of the corner, and φ0 = π/2 results in a
straight edge or line. Due to symmetry, B12 is always zero at the center of
these configurations, and B11, B22 are the tensor eigenvalues. The ratio of
the eigenvalues is a measure that distinguishes locally 1-dimensional and 2-
dimensional configurations – it is near 0 in the former and near 1 in the latter
case. Fig. 1.1 shows these ratios as a function of φ0. It can be seen that we
get indeed µ = 0 for φ0 = π/2 (straight edge/line) and µ = 1 for φ0 = π/4
and φ0 = 3π/4 (90 degree corners). For φ0 = 0 the edge disappears, and
µ = 1 indicates that the remaining homogenuous region is interpreted as a 2D
configuration, whereas in case of the line, φ0 = 0 results in a half-line which
the boundary tensor cannot distinguish from a straight line, hence µ = 0.
Since more complex junction configurations can be expressed as combinations
of multiple edge and/or line corners, they can be analysed in essentially the
same way. All junctions that can be approximated well with an angular second-
order Fourier series (e.g. saddle points, crossings of two straight lines) will be
characterized correctly by the boundary tensor.

1.4 Efficient Computation of the Boundary Tensor

In order to compute the boundary tensor in practice we have to choose a
suitable band-pass K. Filters based on Gaussian or exponential transfer func-
tions and log-normal filters are obvious choices. If implemented in the Fourier
domain, all these filters are equally easy to compute. However, we have only
been able to find an efficient spatial domain implementation of the boundary
tensor (or actually a close approximation of it) if the band-pass equals the
magnitude of the Laplacian of Gaussian

K(|u|, σ) = |u|2e−
|u|2σ2

2 (1.33)

Moreover, we have experimentally found that this band-pass gives better fea-
ture resolution (less blending of nearby features into each other) than other
choices, which is probably due to the Gaussian’s optimal localization in both
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Fig. 1.2. left: g1 (solid) and g11 (dashed) along the x1 axis when the band-pass is
the Laplacian of Gaussian at σ = 1 (g1 and its approximation g̃1 according to (1.39)
and (1.41) are almost indistinguishable in the depicted 4σ interval). Right: spectra
of K (dashed) and its approximation G̃1 = F [g̃1] (solid) at σ = 1.

the spatial and frequency domains. The spectra of the filters are the product
of the bandpass with first and second order Riesz transforms:

Gi(u) = jui|u|e−
|u|2σ2

2 (1.34)

Gil(x) = −uiule
− |u|2σ2

2 (1.35)

It can be seen that the second order spectra are exactly those of the second
derivative of the Gaussian. Therefore, the spatial filter function is:

gil(x) =
xixl − 2σ2δil

2πσ6
e−

|x|2

2σ2 (1.36)

and the resulting tensor A is the Hessian of Gaussian, which can be efficiently
computed by separable convolutions. Inverse Fourier transform of the first
order filters is more complicated (see appendix). The result is

gi(x) =
xi

4
√

2πσ7
e−

|x|2

4σ2

(

(|x|2−3σ2)I0

( |x|2
4σ2

)

−(|x|2−σ2)I1

( |x|2
4σ2

))

(1.37)

where I0 and I1 are modified Bessel functions of the first kind. Fig. 1.2 left
depicts the shape of g1 and g11 along the x1 axis. Unfortunately, the first
order kernels are unsuitable for practical applications because their asymptotic
decay is only O(|x|−4) and they are not Cartesian separable. This means that
large 2-dimensional filter masks are needed, which makes computation of gi
very slow. Therefore, we apply a design technique similar to the one used for
steerable quadrature filters [7] to approximate gi with filters g̃i that can be
computed separably and decay exponentially. The idea is to realize g̃i as sums
of filters that are third order polynomials times a Gaussian. The polynomials-
times-Gaussian are defined so that they together form a supersymmetric third
order tensor filter g̃ijk (a supersymmetric tensor has the property that its
components don’t change under permutation of indices, i.e. g̃112 = g̃121 = g̃211
etc.). Then the first order tensor filter can be obtained by contraction over
any pair of indices, i.e. g̃i =

∑

k g̃ikk . We make the following ansatz:
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g̃iii(x, σ
′) =

(

ax3
i

σ′5
+
bxi
σ′3

)

g(x, σ′)

g̃ill(x, σ
′) =

xi
σ′2

(

ax2
l

σ′3
+

b

3σ′

)

g(x, σ′) (i 6= l) (1.38)

g̃ilk(x, σ
′) =

a

σ′5
xixlxk g(x, σ

′) (i 6= l 6= k)

where g(x, σ′) is an N -dimensional Gaussian, and the last function is only
required if N > 2 (for N = 2, the condition i 6= l 6= k is never satisfied).
By expressing these functions in a rotated coordinate system, it is easy (if
tedious) to verify that (1.13) is fulfilled with p = 3 . The spectrum of g̃i is

g̃i=
∑

k

g̃ikk c s G̃i(u, σ
′) =

ui
σ′

(

a(4 − |u|2σ′2) +
4b

3

)

e−|u|2σ′2/2 (1.39)

We now formulate a least squares problem to choose a, b, σ′ so that the radial
part of G̃i(u, σ

′) becomes as similar to K(u, σ) as possible:

minimize w.r.t. a, b, σ′ :

∫

(

G̃(|u|, σ′) −K(|u|, σ)
)2

du (1.40)

where G̃(|u|, σ′) is obtained from G̃i(u, σ
′) by replacing ui with |u|. The

optimum depends on the dimension N of the space. For N = 2, 3 we get

a2D = −0.5589, b2D = 2.0425, σ′
2D = 1.0818σ

a3D = −0.5086, b3D = 1.8562, σ′
3D = 1.0683σ (1.41)

Fig. 1.2 right depicts G̃ and K for the 2D case. It should be noted that
it is important to include the filter scale in the optimization because this
significantly improves the fit. To conclude, we can compute the boundary
tensor by using 7 separable, exponentially decaying filters in 2D, and 15 such
filters in 3D. This can be compared with the structure tensor, where N filters
are used to compute the gradients, but then N(N + 1)/2 filters at a larger
(typically doubled) scale are applied to integrate the gradient tensors over a
neighborhood. Thus, the number of filters is lower, but larger windows are
required, making the overall computational effort about equal.

1.5 Applications

The boundary tensor can be used much like the structure tensor, e.g. as an
integrated detector for low-level image features such as edges, lines, corners,
and junctions (in 3D additionally surfaces), and to estimate local orienta-
tion. For feature analysis it is advantageous to consider the eigensystem of
the boundary tensor. Using the eigenvalues µ1 ≥ µ2 ≥ 0 and the eigenvector
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Fig. 1.3. Top: test patterns, center: boundary energy tr(B), bottom: junction energy
tr(Bjunction)

n corresponding to µ1 (cf. chapter 1 by Hagen and Garth), one can decom-
pose the boundary tensor into its 1D and 2D (edge/line and corner/junction)
contributions:

B = Bedge + Bjunction = (µ1 − µ2)nnT + µ2I (1.42)

Fig. 1.3 demonstrates this for a number of test patterns. The angle ψ between
n = (cos(ψ), sin(ψ))T and the x-axis is given as

ψ =
1

2
arctan

(

2B12

B11 −B22

)

(1.43)

Local maxima of the 2D energy tr(Bjunction) = 2µ2 are a good corner and
junction detector. Its localization error is only half as big as the errors of the
Förstner and Harris detectors (1.4), fig. 1.4 left. Moreover, it does not give
multiple responses at saddle-like junctions, fig. 1.4 right. An edge detector can
be defined by reducing the edge part of the tensor to a vector

g =
√
µ1 − µ2 n (1.44)

which can be used instead of the gradient vector in Canny’s algorithm [3].
This algorithm can then detect lines as well as edges, and sub-pixel accurate
localization is still possible, although we have found the noise sensitivity of
edge position to be somewhat higher than for the standard Canny algorithm.
Edge/line detection can also be integrated with corner/junction detection,
because both feature types are derived from the same tensor representation.
In this way, a complicated integration step of edge and corner responses into
a unified boundary representation is avoided. This is illustrated in fig. 1.5.

1.6 Conclusions

In this paper we discussed the boundary tensor as a new way to represent
low-level feature strength and orientation. It combines many good properties
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Fig. 1.4. Corner localization of the boundary tensor (white +) and Förstner detector
(black ×) relative to exact corner location (white ×). Note the double response of
the Förstner detector in the right image. Had the contrast of the two wings of the
saddle been equal, the boundary tensor response would have been exact. Harris
detector results are very close to Förstner’s.

of existing tensor-based approaches and avoids a number of problems. The
key insight is that the filters used to compute the boundary tensors should be
defined in terms of the Riesz transform which determines the angular filter
sensitivity, combined with a band-pass which controls scale sensitivity. In this
way, the tensor components become products of an angular part that charac-
terizes the feature type, and a radial part that determines feature strength at
a given scale. Since the tensor definition does not depend on the dimension
of the image, it can readily be used for 3D (volume or space-time) and 4D
(volume-time) data sets.

We have shown that a tensor defined with Riesz transform filters reacts like
a quadrature filter to locally 1-dimensional configurations. We used filters up
to second order, so the boundary tensor also reacts in a predictable and useful
way to 2-dimensional configurations that are well approximated by a second-
order angular Fourier series, e.g. corners, saddle junctions and crossings of
straight linesIf more complex junction configurations have to be analysed,
it is possible to extend the boundary tensor definition towards third and
higher order Riesz transforms by including terms of the form

∑

k,m TikmTlkm
etc. However, higher order filters can no longer be used at small scales due
to angular aliasing, so the best trade-off will be application dependent. By
choosing the band-pass as the Laplacian of Gaussian, we were able to derive an
efficient and accurate spatial domain implementation. In a number of examples
we illustrated the good performance of the new method. Further illustrations
can be found in [10].

Appendix

Derivation of (1.28): We want to show that in case of a simple signal
the trace of the boundary tensor is exactly the 1-dimensional signal energy.
Observe that − sign(tτ) = j sign(t)j sign(τ) and

∑

k n2
k = 1:
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Fig. 1.5. Top: original image. bottom: integrated edge (black lines) and junction
(white crosses) detection.

tr(B) =
∑

k

∫∫

n2
k(− sign(tτ) + 1)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)n

T
x dt dτ

=
∑

k

n2
k

(
∫∫

− sign(tτ)K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)n
T
x dt dτ

+

∫∫

K(|t|)K(|τ |)F̂ (tn)F̂ (τn) ej(t+τ)n
T
x dt dτ

)

=

(
∫

j sign(t)K(|t|)F̂ (tn) ejtn
T
x dt

)2

+

(
∫

K(|t|)F̂ (tn) ejtn
T
x dt

)2

=
(

H1[k1] ? f̂
)2

+
(

k1 ? f̂
)2

The last transition is simply based on recognizing the integrals as the Fourier
domain correspondents of the respective spatial convolutions.

Derivation of (1.31): We show that the boundary tensor components can
be expressed in terms of the Fourier coefficients of the angular function Fa
when the spectrum F (u) is polar separable. The Fourier series of Fa is:

Fa(φ) =
α0

2π
+

∞
∑

n=1

jn

π
(αn cos(nφ) + βn sin(nφ)) (1.45)

where αn and βn are the Fourier coefficients according to (1.30). Note that
the odd order terms are imaginary, because the spatial domain image is real.
We perform the derivation for Ba,11, the procedure for the other components
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is analogous.

Ba,11 =

∫ 2π

0

∫ 2π

0

n1(φ)n1(ψ)
(

−1 + nT(φ)n(ψ)
)

Fa(φ)Fa(ψ) dφ dψ

=

∫∫

cos(φ) cos(ψ) (−1 + cos(φ) cos(ψ) + sin(φ) sin(ψ))Fa(φ)Fa(ψ) dφ dψ

= −
(
∫

cos(φ)Fa(φ) dφ

)2

+

(
∫

cos2(φ)Fa(φ) dφ

)2

+

(
∫

cos(φ) sin(φ)Fa(φ) dφ

)2

= −
(
∫

cos(φ)Fa(φ) dφ

)2

+

(
∫

1 + cos(2φ)

2
Fa(φ) dφ

)2

+

(
∫

sin(2φ)

2
Fa(φ) dφ

)2

Now we insert the Fourier series for Fa. Due to orthogonality, all integrals
involving a product of different trigonometric functions are zero. Only terms
containing the square of a single trigonometric are nonzero, reproducing a
Fourier coefficient, e.g.:

∫ 2π

0

cos(φ)Fa(φ) dφ =
j

π
α1

∫ 2π

0

cos(φ) cos(φ) dφ = j α1

Collecting all “surviving” terms, we get the desired result:

Ba,11 = α2
1 +

1

4
(α0 + α2)

2 +
1

4
β2

2

Derivation of (1.37): We want to calculate the two spatial filter functions
(i.e. inverse Fourier transforms) of the first order band-pass Riesz kernels

jui|u|e−
|u|2σ2

2 . In this context, it is advantageous to interpret the pair of real
valued filters as a complex valued function g(x) = g1(x) + j g2(x). Then the
inverse Fourier transform of both filters can be written as a single integral:

g(x) = g1(x) + j g2(x) =
1

4π2

∫∫

j (u1 + ju2)|u|e−
|u|2σ2

2 eju
T
x du

We turn to the polar representations u = ρejφ and x = rejψ and get:

g(rejψ) =
1

4π2

∫∫

j ejφ ρ2e−
ρ2σ2

2 ejrρ cos(φ−ψ) dφ ρ dρ

By means of the substitution φ′ = φ− ψ, we can rearrange terms as follows:

g(rejψ) =
1

4π2
ejψ

∫ ∞

0

jρ2e−
ρ2σ2

2

(
∫ 2π

0

ej(rρ cos(φ′)+φ′) dφ′
)

ρ dρ

The inner integral is a well-known representation of the first-order Bessel

function of the first kind: J1(t) = 1
2πj

∫ 2π

0 ej(t cos(φ
′)+φ′) dφ′. The outer integral

is called the first-order Hankel transform of the kernel. It can be computed
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by means of a symbolic mathematics program such as Mathematica or, more
traditionally, by using [1], formulas 11.4.28, 13.4.2-5, and 13.6.3:

Hankel[ρ2e−
ρ2σ2

2 ] = 2π

∫ ∞

0

ρ2e−
ρ2σ2

2 J1(rρ)ρ dρ

=
π3/2

√
2σ7

r e−
r2

4σ2

(

(3σ2 − r2)I0

(

r2

4σ2

)

+ (r2 − σ2)I1

(

r2

4σ2

))

where I0 and I1 are modified Bessel functions. Inserting this into the previous
equation and going back to Cartesian coordinates, we arrive at the result:

gi(x) =
xi

4
√

2πσ7
e−

|x|2

4σ2

(

(|x|2 − 3σ2)I0

( |x|2
4σ2

)

− (|x|2 − σ2)I1

( |x|2
4σ2

))

During the above calculations, the expression g(rejψ) ∼ rM( 5
2 , 2,

−r2

4σ2 ) occurs
as an intermediate result, where M is a confluent hypergeometric function.
Using this together with [1], 13.1.5, we obtain the filters’ asymptotic behavior
for large r as O(r−4).

References

1. M. Abramowitz, I. Stegun: Handbook of Mathematical Functions, Dover: 1972
2. J. Bigün, G. Granlund, J. Wiklund: Multidimensional Orientation Estimation

with Applications to Texture Analysis and Optic Flow, IEEE Trans. Pattern
Analysis and Machine Intelligence, 13(8):775-790, 1991

3. J. Canny: A Computational Approach to Edge Detection, IEEE Trans. Pattern
Analysis and Machine Intelligence, 8(6):679-698, 1986
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10. U. Köthe: Integrated Edge and Junction Detection with the Boundary Tensor,
in: ICCV 03, Proc. of 9th Intl. Conf. on Computer Vision, Nice 2003, vol. 1,
pp. 424-431, Los Alamitos: IEEE Computer Society, 2003

11. H.H. Nagel: Analyse und Interpretation von Bildfolgen II, Informatik-Spektrum,
8(6):312-327, 1985
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