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Abstract. Junctions play an important role in motion analysis. Ap-
proaches based on the structure tensor have become the standard for
junction detection. However, the structure tensor is not able to classify
junctions into different types (L, T, Y, X etc.). We propose to solve this
problem by the wedge channel representation. It is based on the same
computational steps as used for the (anisotropic) structure tensor, but
stores results into channel vectors rather than tensors. Due to one-sided
channel smoothing, these channel vectors not only represent edge ori-
entation (as existing channel approaches do) but edge direction. Thus
junctions cannot only be detected, but also fully characterized.

1 Introduction

Feature-based algorithms constitute a large method class for various aspects of
image analysis, including object recognition, motion estimation, stereo match-
ing and shape from motion/stereo. The correct detection and characterization
of image features such as edges and corners is crucial for these methods to pro-
duce accurate results or to succeed at all. In this paper we are interested in
generic feature detection methods, i.e. methods that are not bound to a specific
application and do not require prior (global) knowledge about the expected ob-
jects as provided by geometric shape models, eigenfaces and so on. Under the
generic paradigm, features are detected in a bottom-up fashion, and the amount
of information extracted from the original image data – without the help of the
high-level system – should be maximized. Note that we do not question the
usefulness of top-down image analysis. Our goal is rather the independent op-
timization of bottom-up processing so that the high-level system can start from
intermediate data of the best possible quality.

In the context of motion analysis, corners and junctions are of utmost im-
portance because they often arise from 3D features (object corners) that are
stable under perspective projection and motion, or indicate important projec-
tion phenomena such as occlusion. Accurate junction characterization improves
the robustness of feature tracking and correspondence estimation and aids in
the correct interpretation of the measured flow fields. Over the years, the abil-
ity of local bottom-up operators to extract high-quality junction information has
steadily improved. One early approach is to apply an edge operator to the image



and then detect corners and junctions as edge crossings in the resulting symbolic
edge representation. However, this method is problematic because edge models
break down near junctions, and the propagation of these errors leads to inaccu-
rate, missed or hallucinated junctions which have to be repaired by high-level
assumptions or heuristics.

The introduction of the structure tensor [1,5,6] extended the boundary model
to include 2-dimensional features explicitly by integrating gradient information
over a neighborhood. Recently, it was observed that the accuracy of the structure
tensor can be improved by moving from linear to anisotropic integration [9],
e.g. with an hourglass filter [7]: When the filter only smoothes along edges,
nearby structures do not interfere with each other except at junctions where it is
desired. Thus, the anisotropic structure tensor has effectively a higher resolution.
However, it does not solve another problem: second order 2× 2 tensors can only
represent a single independent orientation (the other one is always at 90◦ of the
first). Information at which angles the edges meet at a junction is therefore
unavailable. One can distinguish intrinsically 1- and 2-dimensional locations,
but classification of different junction types is impossible.

Independently of these “mainstream” methods a number of dedicated junc-
tion characterization algorithms have been proposed, see [8,12] for surveys. They
build upon one-sided filters that determine whether there is an edge in a par-
ticular sector of the neighborhood of the given point. The complete junction
characteristic can than be interpolated from the responses of a family of filters
covering the entire neighborhood. However, these methods are problematic on
two reasons: First, they use complicated filters that cannot be applied at fine
scales due to aliasing in the sampled filter coefficients. Systematic investigations
of their robustness don’t seem to exist. Second, a difficult integration problem
is posed when unrelated approaches are used for edge detection and junction
characterization: The results don’t fit exactly together, and inconsistencies in
the integrated boundary representation are unavoidable.

In this paper, we propose a junction characterization method that directly
generalizes the established structure tensor framework by means of the chan-
nel representation. The channel representation [10,4,2] is a carefully designed
method for the discretization of continuous quantities (orientation in our case)
with the goal that important properties of the original data distribution (e.g. the
mean and mode) can be recovered accurately from the channel weights. We keep
the idea of anisotropic integration of the gradient map, but instead of collect-
ing the integrated data into a tensor, we store them in orientation channels.
Depending on the number of channels, we can determine several independent
orientations as long as they do not fall into a single or adjacent channels. Unlike
previous work with orientation channels, we use one sided channel smoothing fil-
ters, so that we can keep track from which direction an edge enters the junction.
A similar idea with slightly different filters was also proposed in [11]. This new
wedge channel representation extends existing work by allowing us to precisely
determine the degree of a junction, and distinguish various junction types even
if they have the same degree (e.g. T and Y-junctions for degree 3).



Fig. 1. From left to right: Original image; gradient squared magnitude; trace of
structure tensor; small eigenvalue of structure tensor; eigenvector orientations.

2 Boundary Characterization with the Structure Tensor

Given an image f(x, y), the structure tensor is based on the gradient of f , which
is usually calculated by means of Gaussian derivative filters:

fx = gx,σ ? f, fy = gy,σ ? f (1)

where ? denotes convolution, and gx,σ, gy,σ are the derivatives in x- and y-
direction of a Gaussian with standard deviation σ:

gσ(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2)

The gradient tensor Q is obtained by calculating, at each point of the image,
the Cartesian product of the gradient vector (fx, fy)

T with itself.

Q =

(

f2
x fxfy

fxfy f2
y

)

(3)

Spatial averaging of the entries of this tensor, usually with a Gaussian filter,
then leads to the structure tensor [1,5,6]:

Sij = gσ′ ?Qij (i, j ∈ {1, 2}) (4)

The trace of the structure tensor (which is identical to the spatial average of
the gradient squared magnitude) serves as a boundary indicator, whereas the
gradient itself is only an edge indicator and gives no response at some junction
types. Spatial maxima of the small eigenvalue of the structure tensor indicate
junctions (see fig. 1). However, when two edges run close to each other, linear
integration smears these edges into each other. This is desirable for edges that
cross at a junction, but at other locations, e.g. when the edges run in parallel,
it is not. The problem can be solved by replacing linear smoothing with an
anisotropic filter such as the hourglass proposed in [7]. The hourglass kernel is
defined as a polar separable function, where the radial part is a Gaussian, but
the angular part modulates the Gaussian so that it becomes zero perpendicular
to the local edge direction φ:

hσ′,ρ(r, ψ, φ) =

{

1

N
if r = 0

1

N
e−

r2

2σ′2 e
− tan(ψ−φ)2

2ρ2 otherwise
(5)



Fig. 2. Left: Hourglass like filter according to (5), with ρ = 0.4 and φ = 0; Right:
Hourglass filter multiplied with r2 and split into two halves h

−
and h+.

where ρ determines the strength of orientedness (the hourglass opening angle),
and N is a normalization constant that makes the kernel integrate to unity, see
fig. 2 left. At every point in the image, this kernel is rotated according to the
local edge orientation defined by φ(x, y), so that smoothing only occurs along the
edge. The anisotropic structure tensor T is obtained by applying the hourglass
to the gradient tensor Q:

Tij(x, y) =
∑

x′,y′

hσ′,ρ(r, ψ, φ(x′, y′))Qij(x
′, y′) (6)

with r =
√

(x− x′)2 + (y − y′)2 and ψ = tan−1

(

y − y′

x− x′

)

and φ(x′, y′) is the edge direction at the point (x′, y′). At junctions, this tensor
equals the linear structure tensor, but it removes the undesired behavior at other
locations, see fig. 3. With ρ = 0.4, the hourglass has an opening angle of about
22.5◦ and can be applied at small scales σ′ without significant angular aliasing.

While the tensors S and T are good junction detectors, they cannot be used
for junction characterization. The information obtained from the eigenvectors
only describes the orientation of isolated edges correctly. At corners and junc-
tions one eigenvector typically points into the most salient region, and the other
is at 90◦ of the first, fig. 1 right. This is a fundamental limitation of second or-
der tensors. More detailed orientation information is in principle available in the
anisotropic intergration framework, because the exact edge orientation φ(x′, y′)
is fed into the hourglass filter. This information is lost when the gradient tensors
are added to form the structure tensor. Therefore, we keep the idea of hour-
glass filtering, but change how the collected data are represented afterwards: we
replace the tensor by a channel representation.

3 The Channel Representation

The channel representation was developed by [10,4,2] as a tool for estimating
the local distribution of certain measurements. It can be considered as a gener-
alization of histograms. Like the latter, a channel representation consists of bins



Fig. 3. From left to right: Original image; gradient squared magnitude; trace of
structure tensor; trace of anisotropic structure tensor.

(here called channels, hence the name) whose weights encode the probability,
confidence or frequency of a specific range of the measured quantity. But un-
like histograms, where bins are separate, i.e. are only influenced by values that
fall in between each bin’s borders, channels overlap. The amount of overlap is
determined by the channel encoding function Θ which can be understood as a
smoothing filter that distributes every exact measurement over a certain range
of channels. A channel representation can be obtained from either a continuous
function or a finite set of samples:

ck =

∫

Θ(t− k)f(t) dt (7)

ck =
∑

i

Θ(ti − k)fi (8)

where ck is the weight of channel k, f(t) is a continuous weighting function for
value t, whereas fi is the discrete weight of the ith sample taken at point ti. The
definitions can be generalized to multiple dimensions in the obvious way.

An example for the continuous variety of the channel representation is the
image itself. Here, f(t) is the analog image that would be produced by an ideal
pinhole camera, and cij is the discrete image we observe. The channel encoding
function Θ is in this case formed by the combined effect of camera point spread
function, defocus blur, and sensor response. In this paper we will be interested
in discrete channel representations of local orientation: At every pixel, we store
a 1D channel vector that encodes the orientation and strength of edges in a
window around the pixel (more details below).

A representative value of the measured quantity can be reconstructed (de-
coded) from the channel representation in several ways. A global estimate is
given by the mean over all channels. However, this is often not a very useful
data description, as it smears all information together, regardless of whether
the mean is typical or remote from any actual measurement. This is similar to
linear smoothing of a checker board image, whose average intensity is gray, al-
though gray did never occur in the original. More typical representatives can be
obtained by switching to robust channel decoding [2]. This is best achieved by



looking at the mode (the global maximum) or the set of all maxima of the channel
histogram. These values are always near measurements that frequently occured
and thus tell more about what actually happened in a given set of samples.

Robust decoding requires an error norm that determines how many neigh-
boring channels are considered in the estimation of each maximum. This can be
understood as the reconstruction of a continuous weighting function from the
discrete channel weights by means of a convolution with a continuous decoding
function Ψ , followed by an analytic calculation of the global or local maxima of
the reconstructed function. The functions Θ and Ψ must fulfill several criteria.
Most importantly, it is required that both the global and robust reconstruction
methods exactly reproduce the value t of a single encoded measurement. Second,
the encoding function should be a partitioning of unity, i.e. the sum of a set of
Θ-functions placed at the channel centers should be identically one in the entire
domain of possible t-values. Likewise, the function Ψ should integrate to unity
(this requirement was not posed in [2]). These two requirements ensure that
the total confidence (weight) is preserved under channel encoding and decoding.
Finally, both Θ and Ψ should be simple functions with small support so that
computations can be efficiently executed.

In this paper we follow the spline channel model proposed by [2]. In this
model Θ is the second order B-spline:

Θ(t) = b2(t) =










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
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2
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(9)

Robust decoding consists of a sequence of two filters. First, a first order recursive
filter is applied with the transfer function

R(u) =
4

3 + cos(u)
(10)

where u is the frequency coordinate. Since the orientation domain is cyclic, the
filter response should be computed in the Fourier domain to avoid border errors.
Recursive filtering is followed by a convolution with Ψ defined by

Ψ(t) =















23

48
− 1

4
t2 |t| < 1

2

5−2|t|
12

b2(|t| − 1) + 1

2
b2(t)

1

2
≤ |t| < 5

2

0 otherwise

(11)

The local maxima of the resulting continuous function are the robust estimates of
the dominant orientations. Due to our normalization requirement for Ψ this dif-
fers slightly from [2], but it gives the same maxima. In practice, the convolution
with Ψ needs not be executed, because the local maxima can be found directly
by solving a quadratic equation in each channel interval, and the height of each
maximum is given by a cubic function. Using these definitions, we achieve a
reasonable channel overlap while computations remain relatively simple.



Encoding and decoding alone would not make the channel representation a
worthwhile concept. Its real significance stems from the fact that we can per-
form linear or anisotropic channel smoothing before decoding. If one channel
histogram is attached to every pixel, channel smothing is done by interpret-
ing corresponding channel values ck across all pixels as one image that can be
smoothed independently of all other channels. Channel smoothing has an impor-
tant advantage over direct smoothing of the original measurements: Only values
close to the channel center are coded in every channel image. Therefore, only
values that likely result from the same distribution are averaged. Consider again
the checker board, this time with added noise. Then linear averaging would still
give us a useless gray, whereas in a channel representation noisy black and white
samples would be averaged separately, resulting in two representative averages
for black and white. Channel smoothing can be performed both in a linear and
an anisotropic way [3].

4 Channel Coding of the Gradient Orientation

In every pixel we have a gradient squared magnitude m(x, y) = |∇f(x, y)|2

and an edge direction φ(x, y) perpendicular to the gradient. The magnitude is
interpreted as the confidence of the direction measurement. The angle must first
be transformed to the channel domain by a linear mapping. When n channels
are available, the mapping is

t(φ) = n
φ

φmax

φ(t) = φmax

t

n
(12)

where φmax = π or φmax = 2π depending on whether we work with orientation
or direction. In this paper, we use orientation and choose n = 8, resulting in a
channel spacing of 22.5◦. A single gradient measurement is encoded into channel
ck as

ck(x, y) = m(x, y) Θ
(

∆(t(φ(x, y)), k)
)

(13)

Since the angular domain is periodic, the difference between t and the channel
center k must be taken modulo n: ∆(t, k) = min(|t− k|, |t− k + n|, |t− k − n|)
(note that the channel index equals the channel center here).

When channel encoding is followed by linear channel smoothing, the result
is similar to the linearly integrated structure tensor: The sum of all channel
weights at a given pixel is the local boundary strength analogous to the tensor
trace. In order to distinguish 1D and 2D locations it is beneficial to transform
the channel weights into an auxiliary tensor according to:

A =

(

∑

k ck cos2(φk)
∑

k ck cos(φk) sin(φk)
∑

k ck cos(φk) sin(φk)
∑

k ck sin2(φk)

)

(14)

where φk = k φmax/n is the center angle of channel k. As usual, the tensor’s
small eigenvalue is large at corners and junctions. At spatial maxima of the



Fig. 4. From left to right: Original image; total channel weight; small eigenvalue of
auxiliary tensor (14); edge orientation (all images with anisotropic channel smoothing).

junction strength, we can now do something that was not possible with the
structure tensor: we can recover the orientation of the edges that contributed to
the junction response by computing (with the function Ψ) at which angles the
confidence becomes maximal (however, maxima with confidence below a certain
threshold should be dropped as insignificant).

Like the structure tensor, channel encoding can be improved by switching
to anisotropic channel smoothing. Here we have two possibilities. First we
can apply the standard procedure: We define an anisotropic smoothing filter
and apply it in every channel so that the main filter orientation equals the
center angle φk of the channel [3]. However, since the center angle is only an
approximation of the encoded edge orientation, smoothing occurs not always
exactly along the edge. Therefore, we prefer a different approach here: Since
we encoded only a single gradient before channel smoothing, the exact edge
orientation is still known. We can thus apply the filter at exactly the correct
angle. This brings us back to the hourglass formula (6). But instead of tensor
entries, we now propagate magnitude/orientation pairs according to (13):

ck(x, y) =
∑

x′, y′

hσ′,ρ(r, ψ, φ(x′, y′))m(x′, y′)Θ
(

∆(t(φ(x′, y′)), k)
)

(15)

(r, ψ, φ are as in (6)). Since we can apply this formula with an arbitrary number
of channels, we have control over the angular resolution of our junction char-
acterization. However, at small scales, channel spacing and hourglass opening
angle should not drop below 22.5◦ in order to avoid angular aliasing. Fig. 4
shows the results of these computations for a number of example configurations.



5 Wedge Channel Coding

Fig. 4 also reveals a principal problem with the approach sketched so far: Since
forward and backward propagation of edge information is performed in the same
way, the information wether an edge entered the junction from left or right,
from top or bottom, is lost. Consequently, we are unable to distinguish a corner
(degree 2) from a T-junction (degree 3) or a saddle point (degree 4), because
the channel representations have only two maxima in all cases.

We solve this problem by breaking the symmetry of forward and backward
propagation. It turns out that a slightly modified hourglass kernel is ideal for
this purpose. First, we multiply the hourglass with r2 (the squared distance
from he filter center). This is useful because gradients near a junction center
do not contain valid orientation information and their exclusion leads to more
accurate orientation estimates. Second, we split the kernel along the axis per-
pendicular to the edge into two halves (fig. 2 right). This does not introduce a
discontinuity because the kernel is zero along this axis. Finally, we double the
number of channels, and the first half of the channel vector receives edge contri-
butions coming from angles between 0 and π, whereas the second half takes the
contributions from π to 2π. In the kernel, the rule is reversed: we call h+ the
kernel that distributes information downwards (into the first half of the channel
vector), and h− the kernel that distributes upwards (into the second half). The
channel smoothing formula (15) must be split accordingly:

ck<n(x, y) =
∑

x′

∑

y′>0

h+(r, ψ, φ(x′, y′))m(x′, y′)Θ
(

∆(t(φ(x′, y′)), k)
)

(16)

ck≥n(x, y) =
∑

x′

∑

y′<0

h−(r, ψ, φ(x′, y′))m(x′, y′)Θ
(

∆(t(φ(x′, y′) + π), k)
)

(17)

Note that φ is still taken modulo π (i.e. is the edge orientation), but we use
twice as many channels as before (0 ≤ k < 2n) and set φmax = 2π. The other
algorithm steps are mostly uneffected by this change: The boundary strength
can still be calculated as the sum of the channel weights, edges and corners can
be distinguished by the small eigenvalue of the auxiliary tensor (14), and the
orientation of the confidence maxima indicates the direction of the contributing
edges. But the number of these maxima is now a true estimate of the junctions’
degree. Corners have 2 maxima, whereas saddles have 4. It is even possible to
distinguish different kinds of degree 3 junctions: a T-junction has two opposing
maxima, but a Y-junction hasn’t. A possible check for this classification is as
follows: first calculate the number of maxima from the 2π channel representation.
Then create an auxiliary channel vector ranging from 0 to π whose weights are
the sum of the weights of opposite channel pairs from the original channels, and
determine the number of its maxima. If this number is lower, one or more edges
did not end at the junction, but crossed it.

Fig. 5 show some results obtained with the wedge channel representation.
The discrepancy between the recovered orientations and the ground truth is
below 1◦. To obtain such a high accuracy, the hourglass kernel must be large



Fig. 5. Edge direction for the same images as in fig. 4, calculated from the wedge
channel representation.

enough: When the gradient image has scale σg (as determined by the combined
effect of the camera point spread function and the gradient filter), the scale of
the hourglass should be 2σg ...3σg , depending on the junction configuration (T-
junctions seem to require scales near 3σg). On the other hand, smaller kernels
may be necessary in order to prevent neighboring junctions from interfering.
Then the method still works, albeit with reduced accuracy. Finally, it should
be noted that there is no need to compute the rather expensive wedge channel
representation at every point. It suffices to first detect corners and junctions
using the eigenvalues of the anisotropic structure tensor, and perform the more
expensive analysis only there. The high similarity between the kernels involved
ensures that results remain consistent.

6 Results and Conclusions

We applied the wedge channel method to a number of real images (figs. 6 and
7). It can be seen that most corners are found correctly by the wedge channel
representation, with few false positives. In a few cases, junctions give rise to
a multi-modal response. The main advantage over the traditional structure
tensor approach is the ability to perform detailed junction characterization. The
estimated directions of the edges starting at each junctions have been marked.
They are correct in most cases, although sometimes one edge is missing, or
there is an extra response. Geometric accuracy is not always satisfying and
needs further investigation. It should be noted, however, that the first and third
images shown are not as easy to analyse as it may look at first sight: The tiled
wall has very low resolution (diameter of the smallest tiles is 3 pixels), and the
blocks image is relatively noisy.

Nevertheless, I believe that the wedge channel representation has a great
potential because it directly generalizes well established edge and junction de-
tection methods. It performs essentially the same computational steps as used
in the anisotropic structure tensor calculations, only the final result is stored in a
different way in order to keep as much information as possible: Depending on the
number of channels, several independent edge directions can be recovered from
the channels representation, in contrast to only one from a tensor. In contrast
to existing orientation channel work, the wedge channel representation measures
edge direction, so that the correct junction degree can be estimated. This is
not possible with orientation channels, let alone the structure tensor. Due to



Fig. 6. From left to right: Original; boundary strength (total wedge channel weight);
junction strength (small eigenvalue of auxiliary tensor); edge directions around the
detected junctions: lines of length 3 pixels were drawn into the directions found.

the relatively simple filter shapes (Gaussian gradient and anisotropic hourglass
masks), the new approach can be applied at fine scales. We expect that results
can be further improved when the various parts of the algorithm are tuned to
optimally fit together.
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