
Needed Expressiveness for Representing
Features and Customer Requirements

(position paper)

Thorsten Krebs1 and Lothar Hotz2

1 LKI, Fachbereich Informatik, Universität Hamburg
Hamburg, Germany, 22527

krebs@informatik.uni-hamburg.de
2 HITeC c/o Fachbereich Informatik, Universität Hamburg

Hamburg, Germany, 22527
hotz@informatik.uni-hamburg.de

Abstract. During the development of a software system, different rep-
resentation mechanisms are used. From the initial high-level representa-
tion, subsequently development goes to more concrete detailed represen-
tations. In this paper we discuss the expressiveness of high-level repre-
sentations like customer requirements and features as well as relations
and restrictions between those knowledge entities. Representation facili-
ties defined for structure-oriented configuration are addressed and their
suitability for representing customer requirements and product features
is discussed.

1 Introduction

During the development, a (software) system goes through multiple develop-
ment phases like requirements engineering, system design, implementation, etc.
Each development phase has its own representations. The initial high-level mod-
els describe requirements and features of the software system. Based on these
high-level representations, first design decisions are taken and subsequently de-
velopment goes to more concrete detailed representations [10].

In this paper we focus on the first high-level representations, i.e. customer
requirements and features. While there has been done quite some work address-
ing representation of and reasoning with feature trees [14, 11, 21, 6], the mapping
between the diverse representations of the distinct development phases is rather
unspecified. The mapping describes both, hints to gain a pre-selection of repre-
sentation entities within the next development phase and restrictions between
representation entities within the same development phase. For instance the
selection of customer requirements has an explicit impact on the selection of
features. Features themselves on the other hand can mutually exclude or include
other features.

Research communities participating in requirements engineering and feature
analysis use different representation facilities. We do not want to question this



given knowledge about requirements and features but to define a mapping for
both of these representation entities to a common structure. For formalizing fea-
tures and customer requirements we propose the modeling facilities developed in
the field of structure-oriented configuration [15, 8, 13]. Besides giving a language
for describing distinct kinds of variability, the structure-oriented configuration
approach provides algorithms for reasoning about representation entities of di-
verse kinds. Thus, representing customer requirements and features with the
same modeling facilities is expected to enhance creating a transparent and con-
sistent product derivation process within the different development phases - i.e.
the different levels of abstraction.

In the following sections we present our position on features (Section 2)
and of customer requirements (Section 3) and their representation. In Section
4 we describe how to represent requirements and features with modeling facili-
ties defined for structure-oriented configuration. After that we give a conclusion
(Section 7) and present some related work (Section 6). Points for discussion are
listed in Section 5.

2 Features

We follow the definition in [14] where, a feature is ”a prominent or distinctive
user-visible aspect, quality or characteristic of a software system or systems”
and in [6] ”a feature model is a specific domain model covering the features
and their relationships within a domain”. In the following, needed facilities for
representing features are discussed.

Specializations allow defining more specific system properties and therefore
a distinction between different groups of features. Decompositions provide the
means for grouping related properties by placing them next to each other. Fea-
ture hierarchies typically contain facilities to express diverse variability types:

Mandatory features are present in all products that belong to the current
product line.

Optional features may or may not be included in the product. If an optional
feature is not part of the product, all subfeatures are also excluded.

Alternative features represent a choice between a set of features from which
one and only one has to be chosen.

Multiple features capture the possibility to choose many features from a set of
features, but at least one has to be chosen.

Because features can be interconnected not only by hierarchical relations (i.e.
taxonomies and decompositions) but also by restrictions concerning arbitrary
features, we see the need for more variability mechanisms:

Features should be uniquely identifiable. Thus, each feature should contain
a non-recurring ID or type descriptor. A textual description should be available
for each feature in order to build a well documented model and to be able to
automatically generate documentation. The following is a list of further needed
restrictions (i.e. relations concerning multiple objects at arbitrary positions in
the hierarchy) between features:



Requires Features can be required by other features - i.e. their existence is
needed for the first one. This relation can be seen as a mutual inclusion.

Excludes Features may exclude each other. This happens when two features
can not be selected together, e.g. when system components are incompatible.
This is a mutual exclusion.

Recommends A weak form of the mutual inclusion is a recommendation. The
existence of features can be recommended for other features. This can also
be seen as the semantics of a default value.

Discourages Contrary to the latter, features may be discouraged for other fea-
tures in the system. This is a weak form of the mutual exclusion. Hence, it
describes that a feature is not chosen per default.

Due to views of various granularity, features are utilized as requirements
(functional and non-functional) and properties of product lines and products
[17]. The different views emerge because the different roles, people dealing with
the feature trees have. These roles can comprise customers, sales persons, system
designers and software developers – making different views of various granularity
quite natural. Properties of product lines are common to all product line mem-
bers - i.e. mandatory features, which parent-features are neither optional nor
connected to alternatives. Optional features are variant features which represent
the permissible differences between product line members.

3 Customer Requirements

Customers requirements are used to select properties of individual products out
of a product line. Therefore, customer requirements have the same purpose as
features have, i.e. specifying the properties of an individual product – but on a
different level of abstraction. Customer requirements are expressed in a language
the customer can understand whereas features usually describe system proper-
ties on a level of technical detail the product developers can derive the desired
product from. Moreover, customer requirements often over- or under-specify the
desired system properties. Because of that, customer requirements are a way to
abstract from features in order to achieve a description of the product properties
as accurate as possible.

Customer requirements abstract from more specific representation entities
like features and artifacts (i.e. hardware and software components). Since re-
quirements can be very specific, they are not always more general than features.
But even if they refer to artifacts, they are only an abstraction of those. An ex-
ample for this is given when a customer would like to have a component from a
specific vendor and does not accept other products. Features represent character-
istics and functionality and are therefore more general than component-specific
properties like the vendor. One requirement can imply the existence of multiple
features and / or artifacts, and the other way round multiple requirements can
map to one feature or artifact. Thus, there is a n:m-mapping between customer
requirements and features or artifacts.



The modeling of topic-related groups of customer requirements allows the
representation of contradicting system properties. A car vendor for instance has
to fulfill legal requirements (e.g. emission laws) to be able to sell his products.
When a customer demands a very powerful motor and there is no such motor
that is powerful and can fulfill the legal requirements, there is a conflict in
the requirements specification. The customer might be satisfied with a motor
slightly less powerful but conforming to the emission laws. But the car vendor is
not allowed to sell his car when he creates the motor specified by the customer
requirements, that does not conform to the emission laws.

Customer requirements should not be treated equally significant. Optimiza-
tion in requirements engineering is gained when customer requirements are defin-
able in various degrees of importance. As already stated in [20], the definition of
definitive and optional requirements can yield to a more adequate requirements
specification. Also a distinction between requirements concerning one system
component (e.g. the powerful motor) and requirements that address multiple
components, i.e. complex requirements (e.g. the price of the product that depends
on all the components) can improve the quality of requirements engineering.

An approach for getting a model describing customer requirements is to start
from the feature model. By enhancing the feature model with new types of
features and extending property descriptions which are not yet covered by the
product line the customer requirements model is a basis for future products. This
is based on the fact, that often the development of new products is motivated
by customer requirements. Thus, a model for customer requirements is achieved
that:

– is strongly related to the features of the system and already developed prod-
ucts,

– is not far away from the product line, thus realistic,
– can be extended by modeling development costs for anticipated changes of

artifacts, and thus, using such cost estimations for configuration, and
– can be individualized for distinct sales persons with separate focuses.

4 Representation of Features and Customer
Requirements

In structure-oriented configuration representation languages are used for configu-
ration of technical domains [8, 18]. These configuration approaches are currently
being applied to the field of software configuration [15, 2]. In the following we
give a short glance on how the needed expressiveness of features and customer
requirements can be realized with these modeling facilities. The main benefit is
the possibility of using this model for automated selection of appropriate features
and artifacts for given customer requirements.

The knowledge needed for structure-oriented configuration can be grouped
into three categories:



Domain Model A domain model describes objects by their types and proper-
ties (i.e. parameters and relations between parameters and objects). Main
relation types are decompositional relations (has-parts), taxonomic relations
(is-a) and restrictions between parameters of arbitrary objects – expressed
by constraints.

Procedural Knowledge Procedural knowledge describes the configuration pro-
cess, i.e. the order of configuration decisions to be made. It mainly consists
of focusing on specific parts of the domain model and criteria for the evalu-
ation order. Furthermore, conflict resolution knowledge can be defined (e.g.
by introducing explicit backtracking points).

Goal specification A goal specification describes a priori known facts about
the product to be configured.

The domain model describes knowledge about configurable products while
procedural knowledge is concerned with the process of product configuration.
In the following we show how these modeling facilities can be utilized for repre-
senting features and customer requirements and the relations between those as
described in Section 2:

– Types are used for representing distinct kinds of software assets. For iden-
tifying a non-recurring ID is modeled. Also a textual description can be
included.

– The means of mandatory, optional, alternative and multiple variability choices
are already given by the modeling facilities of structure-oriented configura-
tion. The parts of an aggregate in a decompositional relation (has-parts)
are assigned with a numerical expression that represents their cardinality.
Therefore, a mandatory feature or customer requirement is assigned with the
interval [1 .. 1], an optional feature or customer requirement with [0 .. 1], an
alternative is represented as multiple optional features from which exactly
one has to be chosen (i.e. set to [1 .. 1] and the others set to [0 .. 0]) and
multiple features and customer requirements are represented with [1 .. n].

– The requires relation can be interpreted as a form of decompositional relation
so that the required features and artifacts are mandatory parts and the
customer requirement or feature requiring those is the aggregate. Thus, we
speak of a generalized decompositional relation.

– Incompatible features and customer requirements that exclude each other
can be connected via a constraint. An excluding constraint therefore would
narrow down the cardinality interval of the corresponding object to [0 .. 0].

– Default values exist for object parameters and cardinalities in relations be-
tween objects. These can be utilized to model recommended features and
customer requirements (by using [1 .. 1] as cardinality). Discouraged fea-
tures and requirements can be represented the same way – only here the
default cardinality has to be [0 .. 0].

Note, that default values are only evaluated when this is defined in the pro-
cedural knowledge. Other calculation methods are querying the user or compu-
tation of functions. Default values can be modeled to be automatically chosen



or they can be presented as a ”recommended choice” to the user before taking
over the value.

We expect to model features and customer requirements with these represen-
tation facilities. But not only the representation is supported by the structure-
oriented approach but also appropriate reasoning algorithms which realize the
underlying logical semantics of such a model [16]. By using these algorithms tools
are developed which process a partial automatic configuration [1, 9]. Because this
methodology is general, i.e. domain independent and abstract, it could be used
for feature and customer requirement modeling and reasoning.

5 Outlook

There are quite some open questions in the field of representing features and
customer requirements. In the following we give a short survey on topics of
interest for the upcoming research tasks in this area.

It has to be examined whether the same modeling facilities can be utilized for
representing features as well as customer requirements. On the one hand, both
entities have the same relation types – e.g. requires, excludes etc. On the other
hand, customer requirements are not necessarily structured in hierarchies us-
ing means of specializations and decompositions. They are rather unstructured,
maybe grouped for representing semantic coherence.

Another question is how customer requirements should be modeled. Because
requirements are not structured into deep taxonomic hierarchies, they would
be modeled next to each other on the same level. This can be a more or less
unclear structure for large amounts of requirements. But existence of customer
requirements is needed for automating the mapping to features and hard- and
software components.

The next question is how requirements of diverse significants (e.g. definitive
and optional) can be modeled. A first idea is to keep the definition of customer
requirements the same for all levels of importance and to have a different kind of
mapping to the more concrete knowledge entities. This means that for instance a
definitive requirement would entail a requires relation to the concerned features
and artifacts while an optional requirement would entail a recommends relation
for the mapping.

The last topic is followed by the question if and how a mapping from cus-
tomer requirements of diverse importance to features and / or artifacts can
be automated. The major difficulty here is the prioritization of requirements –
i.e. the selection of the most important mappings. Furthermore, it is not yet
clear how customer requirements, that cannot be fulfilled, are treated. Maybe
some kind of case-based reasoning could help in enhancing feature and artifact
selections in this situation.



6 Related Work

A lot of research has been done in the field of feature analysis starting with the
FODA approach [14]. Similar representations have been worked out in different
research areas such as using UML [4] or methods of aspect-oriented [19] and gen-
erative programming [5]. Also using features in combination with product lines
– especially software product lines has already been addressed in [3, 12, 10, 11,
7]. Our approach uses the demands of expressiveness for features given in FODA
and maps those to the modeling facilities of structure-oriented configuration in
order to gain automated reasoning and consistency checks of the configuration
model.

Customer requirements are grouped to gain semantic coherence but they are
not modeled in trees like features are. Therefore, having a syntactical representa-
tion, mapping both customer requirements and features is a promising approach.
Furthermore, using customer requirements as a starting point for structure-
oriented product derivation in the context of product lines – as done in the
ConIPF project – gives a new research area.

7 Conclusion

Customer requirements may demand the existence of other requirements. This
can be formalized using the generalized decompositional relation giving the map-
ping a meaning of has sub-requirements. The same goes for features: the general-
ized decompositional relation can be used to model subfeatures. The selection of
customer requirements is logically linked with the selection of product features.
Since customer requirements and features both are formalized using the same
modeling facilities, the generalized decompositional relation can also be used to
express that requirements map to features.

Thus, using the same modeling facilities for customer requirements, features
and the mapping between those has two major benefits:

1. The automatic reasoning methods provided by structure-oriented configura-
tion can be used to configure products based on customer requirements. The
inference machine can process both the requirements model and the feature
model and can take dependencies between these two representation entities
into account. The configuration task can be divided into phases dealing with
an arbitrary number of abstraction levels (e.g. customer requirements and
features or hardware components and software modules).

2. Consistency checking methods that already exist in the structure-oriented
configuration approach can be used to check both the modeled customer
requirements and the feature model. Furthermore, the mapping between
these two representation entities can be included in consistency checks after
modifying or when loading the configuration model.

The benefits presented above become more significant when thinking about
a configuration process which uses further representation entities like high level



product features and low level implementation features (e.g. performance of al-
gorithms) and also using models of software modules and hardware components.
Using the structure-oriented configuration approach, all these representation en-
tities can be modeled, processed and kept consistent with the same modeling
and reasoning facilities. Implementing and testing this will be one task within
the European project ConIPF (Configuration of Industrial Product Families).

Acknowledgments

This research has been supported by the European Community under the grant
IST-2001-34438, ConIPF - Configuration in Industrial Product Families.

References

1. V. Arlt, A. Günter, O. Hollmann, T. Wagner, and L. Hotz, ‘EngCon - Engineer-
ing & Configuration’, in Proc. of AAAI-99 Workshop on Configuration, Orlando,
Florida, (July 19 1999).

2. T. Asikainen, T. Soininen, and T. Männistö, ‘Towards Managing Variability us-
ing Software Product Family Architecture Models and Product Configurators’, in
Proc. of Software Variability Management Workshop, pp. 84–93, Groningen, The
Netherlands, (February 13-14 2003).

3. J. Bosch, Design & Use of Software Architectures: Adopting and Evolving a Product
Line Approach, Addison-Wesley, May 2000.

4. M. Clauss, ‘Generic Modeling using UML Extensions for Variability’, in DSVL
2001. Jyvaskylae University Printing House, Jyvaskylae, Finland, (2001).

5. K. Czarnecki and U.W. Eisenecker, Generative Programming Methods, Tools, and
Applications, Addison-Wesley, 2000.

6. A. Ferber, J. Haag, and J. Savolainen, ‘Feature Interaction and Dependencies:
Modeling Features for Re-engineering a Legascy Product Line’, in Proc. of 2nd
Software Product Line Conference (SPLC-2), Lecture Notes in Computer Science,
pp. 235–256, San Diego, CA, USA, (August 19-23 2002). Springer Verlag.

7. L. Geyer and B. Becker, ‘On the Influence of Variabilities and the Application
Engineering Process of a Product Family’, SPLC2, (August 2002).

8. A. Günter, Wissensbasiertes Konfigurieren, Infix, St. Augustin, 1995.
9. A. Günter and L. Hotz, ‘KONWERK - A Domain Independent Configuration

Tool’, Configuration Papers from the AAAI Workshop, 10–19, (July 19 1999).
10. J. van Gurp, J. Bosch, and M. Svahnberg, ‘On the Notion of Variability in Software

Product Lines’, in Proc. of Working IFIP/IEEE Conference on Software Architec-
ture (WICSA), (2001).

11. A. Hein, J. MacGregor, and S. Thiel, ‘Configuring Software Product Line Features’,
in Proc. of ECOOP 2001 - Workshop on Feature Interaction in Composed systems,
Budapest, Hungary, (June, 18 2001).

12. A. Hein, M. Schlick, and R. Vinga-Martins, ‘Applying Feature Models in Indus-
trial Settings’, in Software product lines - Experience and research directions, ed.,
Donohoe P., pp. 47–70. Kluwer Academic Publishers, (2000).

13. L. Hotz and A. Günter, ‘Using Knowledge-based Configuration for Configuring
Software?’, in Proc. of the Configuration Workshop on 15th European Conference
on Artificial Intelligence (ECAI-2002), pp. 63–65, Lyon, France, (July 21-26 2002).



14. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, ‘Feature-oriented Do-
main Analysis (FODA) Feasibility Study’, Technical Report CMU/SEI-90-TR-021,
(1990).

15. T. Krebs, L. Hotz, and A. Günter, ‘Knowledge-based Configuration for Config-
uring Combined Hardware/Software Systems’, in Proc. of 16. Workshop, Planen,
Scheduling und Konfigurieren, Entwerfen (PuK2002), ed., J. Sauer, Freiburg, Ger-
many, (October, 10-11 2002).

16. R. Möller, C. Schröder, and C. Lutz, ‘Analyzing Configuration Systems
with Description Logics: a Case Study’, in http://kogs-www.informatik.uni-
hamburg.de/~moeller/publications.html, University of Hamburg, (1997).

17. S. Robak and B. Franczyk, ‘Feature Interaction and Composition Problems in
Software Product Lines’, in Proc. of Feature Interaction in Composed Systems –
ECOOP 2001 Workshop, Budapest, Hungary, (June 18-22 2001).

18. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen, ‘Towards a General Ontol-
ogy of Configuration’, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (1998), 12, 357–372, (1998).

19. A Speck, M. Claus̈, and B. Franczyk, ‘Concerns of variability in ”bottom-up”
pruduct-lines’, in Proc. of Second Workshop on Aspect-Oriented Software Devel-
opment, Bonn, Germany, (February 2002).

20. M. Thäringen, ‘Wissensbasierte Erfassung von Anforderungen’, in Wissensbasiertes
Konfigurieren, ed., A. Günter, Infix, (1995).

21. S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick, ‘A Case Study in Applying
a Product Line Approach for Car Periphery Supervision Systems’, in Proceedings of
In-Vehicle Software 2001 (SP-1587), pp. 43–55, Detroit, Michigan, USA, (March,
5-8 2001).


