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Abstract. Configuration models describe commonality and variability as well as
restrictions within and between components of a product domain. Whenever new
versions or variants of products are brought to the market, changes to the config-
uration model (i.e. evolution) are inevitable. In this paper we discuss what kind of
modifications are necessary for evolution and the potential effects on the model’s
consistency and on products during and after the configuration process. Valid-
ity intervals are presented as a promising approach to incorporate a versioning
history for knowledge entities in configuration models.

1 Introduction

Knowledge-based configuration has been successfully applied to the configuration of
technical systems [5] and is currently being applied to software configuration [9, 1].
There are different configuration approaches; e.g. rule-based, constraint-based and re-
source-based. In this paper we focus on evolution of structure-oriented configuration
models. Two well known configurators using methods of structure-oriented configura-
tion are KONWERK [4] and EngCon [12]. Structure-oriented configuration is based on
configuration models representing entities of the ”real world” throughconcepts. Such
concepts contain a name and an arbitrary number of properties, i.e.parametersand
relationsto other concepts. With these relations, taxonomic and compositional hierar-
chies are modeled. Furthermore,constraintsbetween concepts and their parameters can
be defined4.

Configuration models are generated before configuration can take place. A model
describes the set of all configurable products. This is the descriptive part of product
family domain engineeringwhere an asset store is created. Products are derived using
these assets duringapplication engineering[2]. In aknowledge-basedapproach, the ap-
plication engineering is supported by configuration models. This implies that only a de-
scription of the product and its components is generated, not the product instance itself.
Thus, the configuration model contains descriptions for domain assets of the product
family.

4 For more details on the modeling facilities of structure-oriented configuration see also [3, 13]



Evolution is inevitable in the life-cycle of configurable products. Whenever new
versions or variants of products are brought to the market, changes to the configuration
model need to be synchronized with the ”real world”. Incorporating new versions and
variants of products means extending the product family. The knowledge base describes
all members of a product family that can be derived using knowledge-based configura-
tion techniques. Thus, the configuration model describes admissible configurations and
has to be kept up-to-date with the real products and product components.

It is desirable to be able to proceed with already existing (partial) configurations at
any time in the future. Problems can occur when the configuration model was modified
in the meanwhile. Explanations about affected changes in the model and their impacts
(e.g. errors while loading the configuration) then can help the modeler. Furthermore,
suggestions for repairing the outdated configuration are desirable – such a repair can
be implemented interactively or automatic. When components of a former solution no
longer exist, recommendations for compensation should be given.

The remainder of this paper is organized as follows. First, in Section 2 we give a
survey on evolution. The influence of evolution on the configuration model and process
is discussed in Section 3. The approach of validity intervals is introduced in Section 4.
In Section 5, related work is presented.

2 Evolution

Throughout the lifetime of a product family, new requirements arise that require evo-
lution. This can be driven by different factors like advancing technical abilities for re-
alizing certain functionality or through evolving customer requirements that yield to
changes in products or product components. Evolution is almost impossible to predict
in the modeling phase. But it is common that future evolution is anticipated to a certain
extend and therefore the product family design is prepared for this e.g. by modeling
planned features [6]. But eventually there are unpredicted requirements (like bug fixes)
or other situations where planning evolution is not practical. Evolution can be divided
into the following categories [7, 10]:

During Domain Engineering For structure-oriented configuration, evolution during
domain engineering is the task of extending the configuration model, i.e. model-
ing new variants and versions of components or modifying existing ones. This can
be described aspreventativeevolution and is concerned with system improvements
and correcting errors before problems in usage can be detected by the user.
Instead of narrowing the model, broader value ranges for parameters and relations
can be modeled a priori. Thus, more configurations are covered by the model and
less evolution tasks have to be performed. In a broader model it is not necessary to
have all configurable assets implemented in the asset store. Moreover, information
about the effort needed for realizing the final product can be computed from the
model.

During Application Engineering During application engineering, usually the model
is fixed for structure-oriented configuration techniques. This means, possibilities
for dynamically modifying the configuration model have to be taken into account.



This kind of evolution is calledadaptiveor perfective. Adaptive modifications in-
clude addition of functionality, changing functionality and support for new plat-
forms. Perfective evolution is concerned with advancing functionality and system /
performance improvements.
Instead of configuring given concepts, evolution of the model could be included
in the configuration process (started by the user or indicated by the system). This
means, solutions beyond descriptions provided by the model are possible. During
the modeling phase (which is part of domain engineering), places where evolution
is possible can already be defined. E.g. if two incompatible concepts are chosen, a
conflict resolution might be to develop and integrate a new concept.

During Maintenance Evolution can also occur after time-to-market. Using a product
(i.e. during maintenance) e.g. a bug can be found. This has to be corrected in a
new product version (bug-fix). Different scenarios like patching (only possible for
software), re-design and new development of the product or for just one component
of this product are possible solutions.
Correctiveevolution cannot be anticipated and thus has to be done after bringing
the product to the market.

In all of the above scenarios, for structure-oriented configuration the main focus
lies on extending the configuration model. Knowledge acquisition is the central aspect
for new concept descriptions as well as modifying existing concepts during domain
engineering, application engineering and maintenance. So far, knowledge acquisition
has only been taken into account for building a fixed configuration model to use for
product derivation. The same acquisition techniques can also be used for identifying
and modeling new and changing existing concept definitions. In this task, a special
focus has to be laid on consistency because changes to the model can have impacts
on the currently developed partial configuration. This will be further discussed in the
following sections.

3 Evolution within the Configuration Process

After a survey about evolution in general, in this section we transfer these ideas to the
process of knowledge-based configuration. E.g. when at a point in the configuration
process a conflict is detected (i.e. the task specification does not go together with the
configuration model), usually the task is adapted to the model by conflict resolution
methods like backtracking and providing different input for the inference machine. An-
other way to solve this is to state that the task specification is correct and to modify
the configuration model. This decision however has to be seen critical. Companies use
configuration models for ensuring consistency and buildability of the product solution.
This can no longer be guaranteed when the model is modified during the configuration
process.

The aspect of evolution within the configuration process can be seen as a kind ofin-
novative configuration5. We see innovative configuration not as an absolute term but as
a relative one - relative to a configuration model. Innovation related to a model is given

5 A survey on innovative configuration is given in [8, 3]



if the solution to a task specification is not covered by this model - i.e. it lies outside
of the solutions this configuration model describes. To supply a configuration process
where evolution of the domain model is a basic task, we expect to apply methods known
in innovative configuration to be used [7].

Fig. 1. Innovative Configuration

As depicted in Figure 1, a knowledge model only covers part of theproduct domain.
Thepossible solution spaceis that part of the product domain that conforms to the task
specification. The intersection of themodeled domainand the possible solution space
is themodeled solution space– i.e. all admissible configurations that are solvable with
routine configuration. Other solutions that lie outside of the modeled domain are also
admissible solutions to the task specification, but are only reachable with innovative
configuration techniques. These are calledinnovative solutions.

Reality always includes solutions that are not covered by the used configuration
model, because a part of the solution space can be unknown or not modeled. Thus, in
routine configuration, enhancements and modifications of the domain have to be con-
cerned isolated from concrete product solutions in the phase of knowledge acquisition.
Further, continuous enhancements in the product domain make it hard to maintain con-
figuration models. Because modeling configuration knowledge can be seen as a specific
kind of evolution, by supporting dynamic knowledge modeling, (at least a part of) evo-
lution is already covered.

3.1 Evolution of Configuration Models

Evolution of the configuration model can have different effects on product configura-
tions and consistency of the model. Consistency is defined as follows:

Specialization-related: given a super- and a subconcept, all values of the subconcept’s
properties have to be subsets of the corresponding property (identified by name) of
the superconcept.



Composition-related: given an aggregate and its parts, each part has to be defined as
a concept.

Constraint-related: given a constraint and the participating concept properties, the
constraint may only use value ranges defined in the model. Furthermore, only sub-
sets of values of the concept properties are allowed as propagation results.

There are two basic functions for evolving knowledge models:addanddelete. Other
modifications, e.g. changing the value range of a parameter can be split into deleting the
old and adding the new value. The following list applies these basic functions to given
knowledge entities.6

Addition of new parameters Adding new parameters is unproblematic with regard to
consistency of the configuration model. But inheritance needs to be addressed.

Deletion of existing parametersDeleting a parameter may in some cases affect the
consistency of the configuration model. If this parameter has relations to other pa-
rameters or concepts - i.e. if it is participating in a constraint, consistency of the
model can no longer be guaranteed. Moreover, if the model stays consistent, the
new value may still lead to a different configuration solution by selection of dif-
ferent components through varying constraint computation. But in any case inheri-
tance has to be taken into account like in the previous aspect.

Addition of new specializations Adding a new specialization means establishing a
new taxonomic relation between two concepts. Inheritance of the corresponding
parameters and relations has to be considered. Concept instances of a configuration
solution may be of a different type after adding new specializations.

Deletion of existing specializationsDeleting a specialization means removing an ex-
isting taxonomic relation between two concepts. Deleting a specialization, the for-
mer subconcept no longer has a superconcept, which is not valid since the config-
uration model is described in a tree, not in a forest. There are two possibilities to
solve this situation:
1. The former subconcept has to be moved under another superconcept. This

means, adding a new specialization is performed.
2. The former subconcept is deleted. This can be split into deleting its parameters

and relations accordingly.
After deletion of a specialization, the solution to a configuration task can be differ-
ent since needed concepts may no longer exist.

Addition of new decompositions Adding a new decomposition means establishing a
new compositional relation between an arbitrary number of concepts. New has-
parts and part-of relations have to be integrated into the superconcept and the sub-
concepts respectively. Configuration solutions may be different; they may contain
more concepts than before.

Deletion of existing decompositionsDeleting a decomposition means removing an
existing compositional relation. Multiple parts can be involved in this task. Delet-
ing decompositions always leads to necessary modifications in both, the has-parts
relation of the aggregate and the part-of relation of the parts. If the part is no longer

6 All points only hold under the assumption that additions to the configuration model are correct
- i.e. consistent with the rest of the model.



part-of an aggregate, the relation has to deleted accordingly. If an aggregate has
no other parts belonging to that has-parts relation, this relation has to be deleted. In
other cases, the cardinality of the concerned parts has to be aligned. A configuration
solution may contain less concepts than before.

Addition of new constraints Adding a constraint does not have any effects on the con-
sistency of the configuration model when participating properties exist in the model
and calculated values are inside of valid ranges for these properties. Constraints
describe restrictions between concepts and therefore can affect configuration deci-
sions. Thus, the solution to a task specification can contain different concepts and
values for their parameters than before.

Deletion of existing constraints Deleting an existing constraint also does not cause
any harm to the consistency of the configuration model. But just like adding con-
straints, also in this case the solution for the same task specification may be different
because other configuration decisions are possible.

Examples for combined operations on parameters, relations, concepts and con-
straints are listed in the following:

– Modification of a parameter value can be split into deleting the old and adding the
new value.

– Modification of relations can have very different semantics. The part-of relation
and the has-parts relation are strongly connected. Modifying the aggregate of a
given concept (i.e. changing the name in a part-of relation) e.g. would also require
modifying the relevant has-parts relation; remove an entry from the old and add an
entry to the new superconcept. But all such modifications to relations can be split
into removing and adding single relations.

– Addition of a concept can be split into adding a specialization and possibly adding
new parameters and relations. The same goes for deletion of a concept.

– Modification of a concept can be split into deleting and adding a concept. Analo-
gous, modification of a constraint can be split into deletion and addition.

Changes to the procedural knowledge model do not necessarily effect the configu-
ration solutions. The order of configuration steps is transitive - i.e when the same input
is given for all configuration decisions, the order can not change values of the outcome.

Transitivity of the configuration process only holds, if user decisions and system-
sided inferences (e.g. taxonomic inferences or constraint propagation) provide the same
input for all configuration decisions. This is rarely the case; e.g. when automatic mech-
anisms like stored command protocols from previous configurations are used as input.
Thus, the order of configuration decisions can lead to different solutions when the user
is confronted with different value ranges at the same decision or with decisions he oth-
erwise would not be confronted with at all.

3.2 Degrees of Modifications

In the previous section we addressed possible modifications for evolution of configura-
tion models and how complex tasks can be split into the single functions add and delete.



Fig. 2.Degrees of Modifications

In this section we discuss which effects changes can have on the configuration model
and on solutions and how these can be handled for further usability of the model.

We differentiate between degrees of modifications that range from easy handling of
the situation up to effects that make configuration models hardly maintainable. In Figure
2 we show which kind of modifications to the configuration model affect its consistency
and maintainability in different gradations. Their effects on the configuration model and
ideas how to handle these situations are presented in the following:

Easy to HandleAn easy to handle evolution situation is given when e.g. a concept
that has no further subconcepts or a parameter of such a concept is added, modified
or deleted. As long as no relations (taxonomic and compositional) or constraints are
involved in the evolution task, the modifications do not cause inconsistencies or entail
the necessity of further modifications.

Unproblematic Changes of concepts and their parameters can have an impact on sub-
concepts of the affected concept. Through inheritance, subconcepts also own the pa-
rameters and relations of their superconcepts. Thus, modifications have to be processed
through the taxonomic hierarchy down to concepts with no further subconcepts. In gen-
eral, compositional relations can concern more than onebranchof the knowledge tree
(i.e. different kinds of subconcepts) and therefore all branches with concepts participat-
ing in the affected compositional relation have to be processed.

Inconsistencies may arise e.g. when a property value is being narrowed down in the
sense that the value of the same parameter in a subconcept is no longer a subset of the
superconcept’s parameter value. In this case two solutions are possible to resolve the
inconsistency:

1. The property value of the subconcept has to be modified corresponding to the prop-
erty value of the superconcept.

2. The property value of the superconcept always has to be the union of the values in
all subconcepts and therefore has to be repaired accordingly.

ProblematicMore problematic evolution situations arise when constraints are involved
in modifying parameters or relations or when the constraints are indicted themselves.
In either case, consistency of the model can no longer be guaranteed. This is a result of



more complex dependencies within constraints than within taxonomic or compositional
relations. Constraints are not bound to one branch of the knowledge tree and more than
one constraint can be applied to a concept’s property. This makes it hard for the human
modeler to track effects of evolutionary modifications and gives raise to automated
methods for insuring model consistency.

At this point, two situations for repairing the configuration model have to be treated
distinctly:

1. The value of a property participating in a constraint has been modified or such a
property has been deleted. In this case, the affected constraint has to be repaired.
For the deletion of a parameter this can mean that a constraint is no longer needed
or that a different parameter can be inserted instead. For modified parameter values,
the impact on constraint computation and on other participating values has to be ad-
dressed. This includes changes within the concerned constraint and value changes
of other properties.

2. A constraint has been added or modified. Impacts of the constraint on correspond-
ing concept properties have to be taken into account. For inconsistent situations
either the constraint or the concerned property values have to be modified in order
to regain consistency of the configuration model.

Critical Evolution tasks can influence the configuration model so deeply that it is hardly
possible to repair it by a number of simple actions. This is the case when a model
is completely restructured, e.g. when coherent concepts are moved - i.e. a subtree is
placed under a different superconcept. Guaranteeing consistency of the configuration
model is hard to achieve for this situation. Restructuring the concepts implies changing
the design of configurable products. Hence, no former consistency assumption can hold
and all configurations have to start from scratch. Moreover, three critical effects of
restructuring a configuration model can be identified:

1. Inheritance is hard to maintain for permuting complete subtrees. Deleting prop-
erties that are no longer valid because they are no longer inherited by the former
superconcept and adding all properties now inherited by the new superconcept have
to be done separately for every movement. Otherwise, afterwards the needed infor-
mation is lost.

2. Constraints can be affected by this evolution task. Because restructuring the con-
cepts means formalizing a new product platform context, affected constraints can-
not simply switch the participating concepts due to the fact that the new context of
the model may not be covered by this constraint - i.e. the evolution task invalidates
this constraint.

3. Configuration solutions are not only slightly changed but represent a substantially
different product. Comparisons to former configurations (e.g. reference configura-
tions) are no longer possible. Also, products that are already on the market cannot
be compared to the current configuration model - e.g. for detecting spots where
upgrades can be performed etc.

Changes in the product architecture are wanted - they are the goal of evolution tasks.



Therefore it is not a problem that starting a configuration with the same task specifica-
tion, a different solution is generated with an evolved model. But this has the effect that
reference configurations are not necessarily still valid. Stored former configuration so-
lutions are sometimes utilized for checking if the configuration model stays consistent
after applying evolution tasks. For the case that the product domain has deeply changed
and reference configurations can no longer be used, they have to be repaired or new
ones have to be created.

A possibility to go round this task is applying versioning concepts to knowledge
entities in configuration models. This is further elaborated in the following section.

4 Validity Intervals

The configuration model can be stored in different versions. Multiple modifications
together form the transfer into a new major version. This can be realized very easily by
defining versions from time to time. When a configuration ”knows” the version of the
model it was created with, it can be loaded at any time in the future. But this mechanism
is not very flexible and cannot give hints about changes of the model and why the
configuration is inconsistent with a newer version of the model. Usingvalidity intervals,
every modification can be traced individually. This makes it possible to explain why
inconsistencies appear and maybe even how they can be repaired. Another advantage is
the ability to perform changes before they are valid. E.g. when new safety regulations
or ordinances are given for a date in the future, the model can be prepared beforehand.

Knowledge entities are annotated with a time interval in which they are valid. The
lower bound of a validity interval represents the point in time when the knowledge
entity was added to the model (i.e. the start of validity) and the upper bound represents
the point in time the entity was deleted (i.e. the end of validity).

Concept
name: Motor
superconcept: Device
parameters:

Power [5 25] <-inf .. 2003-03-18@14:33:26>
Power [10 30] <2003-03-18@14:33:27 .. inf>

Fig. 3.Definition of a Modified Parameter

In Figure 3, the usage of validity intervals is introduced. The key words-inf and
inf represent unknown (i.e. infinite) time restrictions for the lower and the upper bound
respectively. All knowledge entities are implicitly assigned with the interval<-inf
.. inf> when nothing else is modeled. Therefore, existing knowledge does not have
to be converted for usage of validity intervals. The fidelity of the interval bounds can



be chosen to best fit particular domains. While sometimes the day is exact enough, for
other domains the minute or even the second of modifications might be of interest.

This approach is in line with the splitting of combined evolution operations to the
basic functionsaddanddelete(see Section 3.1). Modification of a parameter value e.g.
entails that two parameters with the same name and non-overlapping validity intervals
exist within the same concept definition.

Two aspects are of particular interest concerning usage of validity intervals within
the configuration process:

1. Loading an existing configuration is possible because all required concepts are
given. In case of a conflict, it is feasible to determine whether a change of the
model is responsible. Therefore the date of the configuration has to be compared to
the validity entries. Further techniques can yield to repairing the configuration.

2. It has to be addressed if it should be possible to use expired configuration knowl-
edge. This may be reasonable e.g. when a product is no longer fabricated but there
still is a remainder in storage.

One major advantage of this approach is the introduction ofconfiguration model
compilation. This means, a configuration model containing only valid knowledge en-
tities can be generated before configuration starts. Moreover, this can be done for any
given time stamp, e.g. the date of a reference configuration.

Another aspect that has to be considered is monotonous growth of the configuration
model. Expendable entries can be permanently deleted by user decision, automated
expiration by date or automated deletion by memory usage. In the latter two cases, a
notification to the modeler is desirable. Deletion can be initiated by event (e.g at the end
of a modeling session) or by date (e.g. one a week or month).

5 Related Work

[11] also address evolution of configuration models. The characteristics that distinguish
configurable products from traditional data modeling and management are addressed
by concerning evolution of the schema and the instances. Existing data modeling ap-
proaches are stated to be inadequate. Therefore,generic objectsare introduced as a
collection ofversions. Effectivitydescribes the time a version was or is representative
for a generic object. In addition to specializations and compositions, in our approach
we also have taken constraints (as a form of multilateral relation) into account.

6 Conclusion

In this paper we have focused on possible modifications to configuration models and
their impacts on product configurations as well as the consistency of the model. Sum-
marizing, modifying a parameter e.g. has few impacts on the model; only one concept
is affected as long as this parameter value does not participate in constraint relations.
Changing a specialization considers two concepts: the super- and the subconcept. Mod-
ifications to compositional relations entail changes in the aggregate and in all parts,



which can distribute over an arbitrary number of knowledge subtrees. Modifying con-
straints can affect parameters and relations, thus comprises the impacts described above
and re-structuring is seen as a compound of changing specializations and through in-
heritance also parameters, relations and constraints.

Validity intervals attached to arbitrary knowledge entities have been introduced to
avoid the problem of having products (under development and already brought to the
market), for which no consistent configuration model exists. Further benefits over sim-
ple versioning mechanisms have been pointed out.
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