
Model-based Configuration Support for Product
Derivation in Software Product Families

Thorsten Krebs , Katharina Wolter , Lothar Hotz

1 1 2

1LKI, Universität Hamburg,
Vogt-Kölln-Str. 30, 22527 Hamburg

{krebs, kwolter}@informatik.uni-hamburg.de

2HITeC e.V., Universität Hamburg,
Vogt-Kölln-Str. 30, 22527 Hamburg

hotz@informatik.uni-hamburg.de

Abstract. Software Product Families can be used for software mass
customization. One major problem within family-based software engineering is
the lack of methodological support for application engineering. The large
number of decisions and dependencies between these decisions make the task
complex and error-prone. Impacts of decisions are not known or overseen
during application engineering. Functionality is implemented anew where reuse
would have been possible because the large number of artifacts is hardly
manageable. The methodology described in this paper combines the well-
known research areas of software product families and model-based
configuration in order to fill this gap.

The methodology is based on a configuration model that represents
functionality and variability provided by the product family. Basically, the
configuration model provides two layers of configurable assets, i.e. a feature
layer and an artifact layer. The artifact layer reflects the (variable) structure of
the product family artifacts and the feature layer is the customer view on the
functionality in the artifact layer. A mapping between the feature layer and the
artifact layer allows for automated inferring of the needed software artifacts for
a given selection of features. We call the resulting process of application
engineering enhanced with automated inferences model-based product
derivation.

In an ideal product derivation process the features required by the customer are
selected and the configuration system automatically infers all artifacts needed to
provide these features. However, requirements may not be accounted for in the
shared product family artifacts and can only be accommodated by adaptation or
even new development. This involves adapting the product (family) architecture
and / or adapting or creating component implementations. Since the software
artifacts are represented in the configuration model, these modifications have to
be aligned in a synchronized fashion. To support this, we developed a
dependency analysis that can be performed on the model.

Introducing the methodology in selected industrial environments dealing with
software product families shows that it is applicable and can be tailored to the
specific needs of particular organizations. In this paper we describe first
experiences made by using the methodology in industrial environments.

1 Introduction

The topics of model-based configuration from the area of artificial intelligence and
mass customization have a lot in common. To analyze their relation more closely
definitions for the two terms are needed. Model-based configuration supports the
composition of products from several parts (Günter 1995) and will be introduced in
more detail in Section 2.2. For the term mass customization several different
definitions are used as Piller (2003) states. Davis refers to mass customization when
“the same large number of customers can be reached as in mass markets of the
industrial economy, and simultaneously they can be treated individually as in the
customized markets of pre-industrial economies” (1987, p. 169). The commonality
between the two research areas is the customer-specific product. Model-based
configuration support can be used to derive customized products. However, the
method is not restricted to mass-market products. It is also applied successfully for
complex capital goods (aircraft, drive systems, etc.). Additionally, the method is more
powerful than required by the customization problem, i.e. it can be used to solve more
complex problems.

According to Günter (2002) three different sales scenarios can be distinguished
(first published in German in Günter (2001)):

• Click & Buy: Only non-customizable products are offered and thus no
configuration support is needed in order to ensure the consistency of products.

• Customize & Buy: Products can be customized but the number of valid
combinations of components is still restricted. Thus, complexity and consistency
problems still play a minor role.

• Configure & Buy: The vast number of possible combinations of components and
the complex restrictions lead to a serious complexity problem. In this scenario it is
not possible to list all possible products in a catalog. Model-based configuration
support is needed for assembling valid products.

Similar categories are described by O (2002).
The methodology described in this paper does not fit to one of the above-

introduced scenarios. Even in the last scenario a product can only be assembled from
the components modeled so far. It is not possible to meet customer requirements that
have not been taken into account during developing the product family. In order to
meet “new” customer requirements it might be necessary to adapt existing or develop
new components. Our methodology integrates these steps and the product
configuration process more closely. To complete the above-described set of scenarios
we add the following:

• Configure, Develop & Buy: This allows for assembling a product from components
in the asset store and may also include components not yet developed. The main
benefit is that it is possible to meet customer requirements that have not been taken
into account yet. In addition to the complexity problem described for Configure &
Buy in this scenario it is necessary to integrate the new components and their
relations into the existing model. The facilities of known standard configuration
techniques are not sufficient to fulfill this task.

With this scenario we move a step towards truly customized products. However, since
the newly developed components are integrated into the product family they can be
efficiently reused for all future customers.

Customization is an important topic not only for hardware products but also for
software products or software-intensive systems consisting of both hardware and
software. On the one hand, software systems (must) become larger and of a higher
quality because of increasing customer requirements and more complex system
functionality; on the other hand, there is a need for reducing costs and shortening
time-to-market in order to stay competitive. Offering more and more functionality
inevitably leads to the Configure & Buy scenario. Selling functionality not yet
implemented (e.g. because of new customer requirements) leads to Configure,
Develop & Buy. The methodology described in this paper supports this last scenario.

ConIPF (Configuration in Industrial Product Families) is a three-year project that
is supported by the EU under the grant IST-2001-34438. Four partners (two industrial
and two university partners) are participating in the research work: Robert Bosch
GmbH, Thales Naval Nederland, the University of Hamburg and the University of
Groningen. In this paper we describe first experiment results and experiences with our
product derivation methodology. In order to validate the methodology we applied it at
our industrial partners. The first results are promising and are presented later in the
paper.

The remainder of this paper is organized as follows: in Section 2 we introduce the
approaches our methodology is based on. Furthermore, we present the configuration
tools KONWERK and EngCon, which we used to implement the methodology at our
industrial partners. In Section 3 the application domain from one of our industrial
partners is described. This domain is used as a guiding example. Section 4 introduces
the methodology in detail. First, the configuration model we use is introduced.
Second, the product derivation process is described and finally the aspect of adapting
existing and developing new components is taken into account. In Section 5 we
present experiments performed to validate the methodology and our experiences so
far. In Section 6 we discuss related work and give a conclusion in Section 7.

2 Basic Technologies

In this section we briefly introduce the approaches our methodology is based on: i.e.
software product lines (Section 2.1) and model-based configuration (Section 2.2).
Additionally, in Section 2.3 we present model-based configuration tools used to
implement and validate the methodology described in this paper.

2.1 Software Product Lines

Software product lines provide a highly successful approach to strategic reuse of
product components. The development of a product line and the development of
products can be distinguished. These development tasks are identified as domain
engineering and application engineering (compare Bosch et al. 2001):

• In domain engineering, architectures and reusable software components are
developed. Exploiting commonality and managing variability is necessary and can
be achieved by using feature models (Kang et al. 2002). Features are ‘prominent or
distinctive user-visible aspects of a system’ (Kang et al. 1990) and can be modeled
in partonomies with mandatory, optional and alternative properties.

• In application engineering existing artifacts are used to assemble specific products
by analyzing requested features, selecting architecture and adapting components.

Domain engineering and application engineering do not describe chronological tasks,
but the distinction between developing a product line and developing products using
the product line. Application engineering is currently realized by communication
facilities between developers and with standardized documents in order to capture
customer requirements or to define system specifications, and to realize change
management. However, a general methodology for realizing or supporting application
engineering does not exist (Hein et al. 2003). Therefore, it is common to use
previously developed products or platforms by a “copy and modify approach” to suit
current customer needs. This is rather error-prone in the sense that functionality is
implemented anew where reuse would have been possible or incompatibilities
between code fragments may not be detected leading to incorrect solutions.

Our methodology fills this gap by supporting application engineering with methods
from model-based configuration (see next section). The resulting application
engineering process is called model-based product derivation.

2.2 Model-based Configuration

Configuration is a well-known approach to support the composition of products from
several parts. The configuration of technical systems is one of the most successful
application areas of knowledge-based systems (Günter and Kühn 1999). Basic
modeling facilities enable the differentiation between three kinds of knowledge:

• Conceptual knowledge includes concepts, taxonomic and compositional relations
as well as restrictions between arbitrary concepts (constraints).

• Procedural knowledge declaratively describes the configuration process.
• A task specification specifies properties and constraints known from the customer

that a product must fulfill.
The configuration itself is performed in an incremental approach, where each step
represents a configuration decision and possibly includes testing, simulating or
checking with constraint techniques (Günter 1995, Hotz et al. 2003). However,
applying configuration methods to software systems is in an early stage. First
approaches are e.g. described in Soininen et al. (1998).

2.3 Tools

Two configurators have been used to implement, validate and improve the
methodology: KONWERK and EngCon. KONWERK is a configuration tool

developed partly at the University of Hamburg. EngCon is a powerful, scalable and
flexible configuration platform from encoway GmbH (www.encoway.de). EngCon
was used in the project ConIPF to implement and validate the product derivation
methodology at both industrial partners (see also Section 5). It was also extended with
new functionality that has been discovered as necessary for deriving software
products. KONWERK was used to identify and perpetuate further research topics.
Both tools are briefly introduced in the following:

• KONWERK is a kernel system for configuration tasks. A goal was the
development, testing and operational introduction of the architecture of
knowledge-based systems for configuration and construction of technical systems.
The application of knowledge-based methods was mostly applied for problems of
routine configuration, but is not limited to this. KONWERK is a modular system
intended to make more areas of knowledge-based configuration (like optimization,
spatial configuration, and support for vague modeling) accessible. Using Common
Lisp, Common Lisp Object Systems (CLOS), mainly did the implementation and
its meta-object protocol (see Kiczales et al., 1991). The user interface was
implemented with the Common Lisp Interface Manager (CLIM). Thus, it is
portable and runs under Windows and SunOS.

• EngCon is methodologically based on KONWERK. But in detail there are various
differences and extensions, as e.g. further described in Hollmann et al. (2000).
EngCon has a modern and flexible component architecture based on Java
technology. Encoway provides a web-based modeling environment K-Build, a
powerful graphical GUI builder K-Design and more development and connectivity
tools (e.g. for SAP and other ERP, PDM and CRM systems) for the flexible
customization of a configuration application. The configuration platform EngCon
can be used in offline and online configuration scenarios. The user can configure
either user-controlled or by using a configuration wizard (Ranze et al. 2002).

3 Application Domain

In this section we introduce the application domain used as a guiding example
throughout the following sections of this paper. We implemented and tested the
methodology at Robert Bosch GmbH (www.bosch.de) in the research unit
Automotive Electronics that develops Car Periphery Supervision systems.

Car Periphery Supervision (CPS) systems monitor the local environment of a car.
CPS systems are automotive systems based on sensors installed around the vehicle.
The recording and evaluation of sensor data enables different kinds of high-level
applications that can be grouped into safety-related and comfort-related applications
(see Thiel et al., 2001).

Two examples are given in the following:

• Pre-Crash Detection (PCD): Based on sensor information it is possible to estimate
the time, area and direction of an impact before the crash happens. This enables
adjusting trigger points of specific airbags (Pre Set) in different locations in the car

http://www.encoway.de/
http://www.bosch.de/

and firing a (seat) belt tensioner (Pre Fire) appropriately for the estimated crash
situation.

• Parking Assistance (PA) supports the driver in avoiding moving the vehicle against
people or stationary objects while driving slowly backward or forward. This is
especially useful for vehicles that are difficult to look over.

4 The Methodology

After introducing the basic approaches our methodology is based on and the
application domain of one of our industrial partners, in this section we describe our
product derivation methodology in detail. The methodology is based on a
configuration model where all different types of configurable assets and their relations
are formalized. This configuration model is introduced in Section 4.1. The model-
based product derivation process is explained in Section 4.2. In Section 4.3 we
address how necessary modifications for existing assets and new development can be
integrated with product derivation.

4.1 Configuration Model

Model-based configuration provides means for modeling and reasoning with
configurable assets. Traditionally these are hardware artifacts. When considering
software product lines and software-intensive systems, also software artifacts and
features need to be modeled. Additionally, we identified that the context in which the
software-intensive system will be used is of particular importance. This context can
influence the set of possible solutions although it is not part of the system itself. In the
CPS domain, for example, some systems cannot be used in Europe or Northern
America because of legal restrictions. Furthermore, the weather conditions of some
areas can restrict the choice of hardware artifacts.

Since these four asset types (features, context, hardware and software artifacts) are
common to most domains of software-intensive systems we defined them and their
relations in a Commonly Applicable Model (CAM). A product, i.e. the result of the
product derivation has software and hardware artifacts as parts and these together
realize certain features. For more details about the CAM see Krebs et al. (2004).

To implement the methodology in a specific domain the CAM is extended with
domain-specific knowledge about hardware and software artifacts, the existing
features and so on. The CAM and the domain specific assets are defined in the
configuration model as concepts. In the following we give a description of how
concepts are defined in the model-based configuration approach:

• Each concept has a name that represents a uniquely identifiable character string.
An example from the CPS domain is the concept called Parking Assistance.

• Concepts are related to other concepts in the taxonomic relation. A concept has
exactly one superconcept and possibly several subconcepts. The concept Parking
Assistance has the superconcept Feature that is part of the CAM.

• Attributes of concepts can be represented through parameters. A parameter is a
tuple consisting of a name and a value descriptor. Diverse types of domains are
predefined for value descriptors – e.g. integers, floats, strings, sets and ranges. The
concept Parking Assistance has one parameter called Symmetry with two possible
values: Passenger Side or Passenger and Driver Side.

• Partonomies are generated by modeling compositional relations. Such a relation
definition contains a list of parts (i.e. other concept definitions) that are identified
by their names. Each of these parts is assigned with a minimum and a maximum
cardinality that together specify how many instances of these concepts can be
instantiated as parts of the aggregate. The CAM defines different compositional
relations, e.g. has Features, has Hardware, has Software to emphasize on
the difference between artifacts and features.

Further relations between assets that do not describe a hierarchical structure like
taxonomic and compositional relations do are called dependency relations. A uni- or
bidirectional dependency can be defined between concepts in arbitrary places of the
ontology. Examples for this relation type are the requires relation for unidirectional
und the excludes relation for bidirectional dependencies. The realizes relation for
example is a bidirectional dependency expressing that features are realized by
artifacts in an n-to-m mapping: one feature can be realized by one or more artifacts
and the other way round.

A clear separation of potential features and artifacts of the product family on the
one side and features and artifacts that are used for a specific product derivation on
the other side is needed. In model-based configuration tools like KONWERK (see e.g.
Günter and Hotz 1999) this is realized by distinguishing between concepts for
describing features and artifacts in general and concept instances for describing
features and artifacts chosen for a specific product.

4.2 Product Derivation Process

In this section we explain how software-intensive systems are derived using our
methodology. One important difference between the configuration of hardware
systems and software-intensive systems is that with software one can realize the
product within the derivation process (i.e. compile source code, calibrate the product,
etc.). Usually, the result of a configuration process is an abstract description of a
hardware product. Our model-based product derivation process addresses the entire
software development process. Thus, selecting features, architecture and hardware
and software artifacts are part of the derivation process just like the realization of the
software itself. Therefore two types of activities are involved in model-based product
derivation: configuration and realization.

Configuration activities consist of making decisions about the desired product
based on the customer requirements (see Section 4.1.2). A configuration tool is used
to ensure a consistent, complete and correct solution. Realization activities produce
the software product and other results like a specification document. This is done by
selecting artifacts from the asset store, generating new artifacts, compiling new
artifacts and compiling the product (see Section 4.2.2).

Configuration and realization do not describe chronological activities. In a typical
product derivation process they will rather alternate. For example, once all the
features have been selected which is a configuration activity the first realization step
can take place, i.e. the generation of a specification document.

4.1.2 Configuration

As stated above, a configuration tool is used to support the configuration of software-
intensive systems. One benefit of the configuration system is that it keeps track of the
necessary decisions and the currently possible values for these decisions. A further
benefit is the computation of values for decisions based on the configuration model.
Typically, the user starts by selecting features that represent the functionality of the
desired product. In a feature-oriented approach decisions can be made on a more
abstract level and by using customer-understandable terms. As soon as the user has
made the first decision, the configuration system starts to compute the impacts of
these user decisions. Based on the is realized by relation between features and
software / hardware artifacts the configuration tool infers the needed artifacts. Thus,
in the model-based product derivation process the user makes some decisions and
others are inferred by the configuration system.

Figure 1: Selection of Features for a CPS System

To illustrate the product derivation process two screen shots of the ConIPF
prototype application are given in Figure 1 and Figure 2. Usually, a configuration tool
is extended with a domain-specific user interface when integrated in an industrial
context. For our purposes the tool vendor encoway customized a user interface that
reflects our methodology. On the left side the product derived so far is given in a tree.
This tree is structured according to the relations defined in the CAM, e.g. has
Feature, has Context and so on. On the right side possible decisions are given.
The corresponding part of the solution is highlighted in the tree. The relations defined
in the CAM are used to structure the decisions. Three optional features are displayed
(Parking Assistance, Pre Set and Pre Fire).

Figure 2: Software Artifacts inferred by the Configuration Tool

An example scenario from the CPS domain is: the user starts by selecting the
features Parking Assistance and Pre Fire and decides not to include Pre Set (see

Figure 1). Figure 2 shows that the values for the selected features have been set and
the configuration tool has inferred the corresponding software modules Parking
Module (indicated by ID 15) and Pre Fire Module (ID 20) and the feature Man
Machine Interface (ID 11) to be part of the CPS system.

4.2.2 Realization

EngCon produces exportable XML output that contains a description of the
configuration solution. This file contains all information about all assets that have
been configured; incl. context, features, and hard- and software artifacts. In Table 1
we show a sample output of the software artifacts that have been configured. The
Product is the aggregate and references its parts via the has Software relation.
Every asset instance has an ID and cardinalities. The Pre Fire Module e.g. was not
selected and therefore has the cardinality 0 here.

- <modelInstance concept="Product" creationConcept="Product" id="0">
- <decompositionRelationInstance name="has Software"

definitionName="Software">
- <decompositionElementInstance min="1" max="1" conceptName="Main">
 <instanceReference modelInstanceID="6" />

 </decompositionElementInstance>
- <decompositionElementInstance min="1" max="1"

conceptName="Common">
 <instanceReference modelInstanceID="7" />

 </decompositionElementInstance>
- <decompositionElementInstance min="1" max="1"

conceptName="ParkingModule">
 <instanceReference modelInstanceID="21" />

 </decompositionElementInstance>
 <decompositionElementInstance min="0" max="0"

conceptName="PreFireModule" />
- <decompositionElementInstance min="1" max="1"

conceptName="PreSetModule">
 <instanceReference modelInstanceID="19" />

 </decompositionElementInstance>
 </decompositionRelationInstance>

…

</modelInstance>

Table 1: (Part of a) XML configuration Output

The hard- and software artifacts are the assets that have to be assembled to generate
the product. To automatically filter the relevant information from the XML structures,
a XSL script can be defined which uses the concepts and relations specified in the
CAM. Output of that XSL transformation is a list of software artifacts. The source
files and their version numbers are extracted from a configuration management
system. After compiling the source code the CPS system can be run on the target
platform. In our experiments at Robert Bosch GmbH we used a demonstrator playing
sample data that was recorded in a test car. Different asset combinations and different

http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##
http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##
http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##
http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##
http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##
http://134.100.12.207:8080/ecs_2_4_55c/kwXMLWorkingInstanceSet.jsp##

parameter values for selected assets can be tested and compared directly. More detail
about the results of our experiments is provided in Section 5. For more details about
the product derivation process see Wolter et al. (2004).

4.3 Adaptation of Artifacts

Although the configuration process always leads to a consistent solution during the
process there can be inconsistent partial solutions called conflicts. This can happen
when e.g. the user selects certain features or components that cannot be combined. A
conflict also occurs when an incompatibility is recognized, e.g. when the compilation
cannot be executed successfully. Backtracking mechanisms can be applied to take
back decisions and their inferences and then try different input for those configuration
decisions that led to the conflict. But it is possible that a conflict cannot be resolved –
i.e. no correct solution can be generated for the customer requirements and the given
configuration model. In such situations existing assets (and their corresponding
description in the configuration model) have to be modified during the derivation
process.

In contrast to technical application domains, for configuring software products,
even when existing software artifacts are reused, often modifications on those
artifacts are often needed. The configuration model describes all members of a
product family that can be derived using knowledge-based configuration techniques.
Thus, the configuration model describes admissible configurations. This can be
extended by anticipating future evolution to a certain extent e.g. by modeling planned
features (Hein et al. 2001). But eventually there are unpredicted requirements (like
bug fixes) or other situations where evolution planning is not practical.

Evolution during domain engineering is the task of extending the product family,
i.e. modeling new variants and versions of components or modifying existing ones.
Methods of knowledge acquisition are sufficient for this task. During application
engineering, the model is usually fixed for model-based configuration techniques.
This means possibilities for dynamically modifying the configuration model have to
be taken into account to cope with new functionality during product derivation.
Generating solutions that lie outside the modeled solution space is addressed in
innovative configuration (Günter 1995).

The configuration model can be used for supporting evolution. It reflects all
existing components and their dependencies. Thus, the impacts of a component
modification or an addition of a component of a specific type can be computed by
examining the configuration model (Krebs et al. 2004). A dependency analysis has
been implemented to compute a graph showing the impacts a modification has. This
graph can be used to set up a to-do list containing those assets that have to be
modified in order to come to a consistent set of modifications to fulfill the evolution
task.

5 Experiments and Experiences

Both industrial partners have chosen a business unit to apply and validate the
methodology. Robert Bosch GmbH has applied the methodology in the area of the
CPS domain to develop manufacturable prototypes. Thales Naval Nederland uses the
new generation of Combat Management System with the aim of efficiently managing
the complexity of the large number of interdependent subsystems. Both partners
instantiated the methodology described in this paper, set up configuration models
using the modeling facilities defined in Section 4.1 and completed diverse product
derivations that led to concrete software products and could be tested on
demonstration platforms.

During these experiments we made the following experiences: the Commonly
Applicable Model can be used to model product lines for software-intensive systems.
The asset types we identified are sufficient to model all aspects needed for automated
product derivation support. During the project subsystems have been identified as
helpful for modeling product lines. A subsystem can comprise multiple hard- or
software assets that are used together leading to a more efficient reuse of frequently
used asset compositions (see also Krebs et. al. 2004a). The methodology can be
introduced in different business units and is tailorable for their specific needs. This
means it is possible to only use parts of the defined modules (e.g. leave the evolution
of assets out) or exchange tools, depending on what kinds of tools or representations
are used in that business unit. The methodology is scalable: while at Bosch we
modeled a rather small but complex domain containing about 75 assets and 35
constraints, at Thales the configuration model contains about 700 assets and 250
constraints. Two major aspects have been observed concerning modeling the product
line: (1) modeling and keeping an overview over the asset store is getting harder;
depending on the size of the configuration model, and (2) different possibilities to
model the same aspect (e.g. modeling a requires relation as a compositional relation
or as a constraint) make modeling a non-trivial task.
The model-based product derivation process consisting of configuration and
realization activities shows that software products can be reliably assembled. Both
industrial partners built multiple products with different feature and artifact selections
that could be built and run on demonstration platforms.

A stable product family existing beforehand makes it easier to instantiate our
methodology. Setting up a product family, modeling all configurable assets and their
interdependencies are time-consuming tasks that need a lot of effort. The dependency
analysis we introduced (and described in Section 4.3) can help in improving the
overview of necessary modifications to components in the asset store and the
configuration model. This means, its use is not restricted to application engineering
but can also be applied for extending the asset store during domain engineering.

6 Related Work

Well-known approaches for family-based software development are PuLSE (Bayer et
al. 1999), KobrA (Atkinson et al. 2000) both developed at the Fraunhofer IESE and

FAST (Weiss et al. 1999). The Software Product Line Practice Framework (see SEI)
developed at the Software Engineering Institute at the Carnegie Mellon University
(SEI) provides a collection of successful approaches rather than a particular
methodology. In contrast to our methodology KobrA dose not provide a mapping
between features and artifacts. Thus, the knowledge about how to map a specific
requirement to software and hardware artifacts is not formalized in this methodology.
Using PuLSE this knowledge is formalized but no tool support is given for
automatically derive the needed artifacts for a selected feature (Bayer et al. 2000).

Other configuration tools that specialize on software mass customization or family-
based software development are GEARS developed by BigLever Software
(www.biglever.com) and pure:variants provided by pure-systems (www.pure-
systems.com).

7 Conclusion

In this paper we have presented a model-based product derivation methodology for
application in software-intensive domains. We have introduced the approaches our
methodology is based on (i.e. software product lines and model-based configuration)
and have discussed similarities between model-based configuration and mass
customization. We have further shown how product derivation can benefit from a
combination of these approaches. The most important aspect of our methodology and
also a novelty in this research field is the combination of tool-supported configuration
and realization into one process for deriving software products. We also presented
first experiences gained from the experiments carried out at our industrial partners
from the ConIPF project.

References

Atkinson, C., Bayer, J., & Muthig, D., (2000). Component-Based Product Line Development:
The KobrA Approach, Proc. of 1st International Software Product Line Conference.
Pittsburg, USA.

Bayer, J., Flege, O., Knauber, P., Laqua, R., Muthig, D., Schmid, K., Widen, T., & Debaud,
J.M. (1999). PULSE: A Methodology to Develop Software Product Lines, Proceedings of
the 5th Symposium on Software Reusability.

Bayer, J., Gacek, C., Muthig, D., & Widen, T. (2000). PuLSE-I: Deriving Instances from a
Product Line Infrastructure. In 7th IEEE International Conference and Workshop on the
Engineering of Computer Based Systems, (pp. 237-245). Edinburgh, Scotland.

Bosch, J., Florijn, G., Greefhorst, D., Kuusela, J., Obbink, H., & Pohl, K. (2001) Variability
Issues in Software Product Lines, Proc. of the Fourth International Workshop on Product
Family Engineering(PFE-4). Bilbao, Spain.

Davis, S. (1987). Future Perfect. Reading: Addison-Wesley.
Günter, A. (1995). Wissensbasiertes Konfigurieren, Infix, St. Augustin.
Günter, A., & Hotz, L. (1999). KONWERK – A Domain Independent Configuration Tool.

Proc. of Configuration (AAAI 1999 Workshop) (pp. 10-19). Orlando, Florida.
Günter, A., & Kühn, C. (1999). Knowledge-Based Configuration - Survey and Future

Directions, Proc. of XPS-99: Knowledge Based Systems. Würzburg, Germany.

http://www.biglever.com/
http://www.pure-systems.com/
http://www.pure-systems.com/

Günter, A., Hollmann, O., Ranze, K. C. & Wagner, T. (2001). Wissensbasierte Konfiguration
von komplexen variantenreichen Produkten in internetbasierten Vertriebsszenarien. KI,
15(1), 33-36.

Hein, A., MacGregor, J., & Thiel, S. (2001). Configuring Software Product Line Features, In:
Proc. of ECOOP 2001 - Workshop on Feature Interaction in Composed Systems, Budapest,
Hungary.

Hein, A., & MacGregor, J. (2003). Managing Variability with Configuration Techniques, Proc.
of the Workshop on Software Variability Management at the ICSE, Portland, Oregon, USA.

Hollmann, O., Wagner, T., & Günter, A. (2000). EngCon: A Flexible Domain-independent
Configuration Engine. Proc. ECAI-Workshop Configuration (pp. 94).

Hotz, L., Günter, A., & Krebs, T. (2003). A Knowledge-Based Product Derivation Process and
some Ideas how to Integrate Product Development (position paper), Proc. of Software
Variability Management Workshop (pp. 136-140). Groningen, The Netherlands.

Kang, K., Cohen, S., Hess, J., Novak, W., & Peterson, S. (1990). Feature-oriented Domain
Analysis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-021, Carnegie
Mellon University. Pittsburgh, PA, USA.

Kang, K., Lee, J., & Donohoe, P. (2002) Feature-oriented Product Line Engineering. IEEE
Software, 7/8 (pp. 58–65).

Kiczales, J., Bobrow, D. G., & des Rivieres, J. (1991). The Art of the Metaobject Protocol. MIT
Press, Cambridge, MA.

Krebs, T., Wolter, K., & Hotz, L. (2004). Mass Customization for Evolving Product Families,
Proc. of International Conference on Economic, Technical and Organizational Aspects of
Product Configuration Systems (pp.79-86). Copenhagen, Denmark.

Krebs, T., Hotz, L., & Wolter, K. (2004a). Pre-Packaged Variability for Product Derivation in
Product Lines, Proc. of Configuration -- ECAI 2004 Workshop (pp. 3-1 - 3-3). Valencia,
Spain.

O, Ying-Lie (2002). Configuration for mass-customization and e-business. 15th European
Conference on Artificial Intelligence, Configuration Workshop.

Piller, F. T. (2003, May). What is mass customization. Mass customization news, 6(1).
Retrieved March 21, 2005, from http://www.mass-customization.de/news/news03_01.htm

Ranze, K., Scholz, T., Wagner, T., G¨unter, A., Herzog, O., Hollmann, O., Schlieder, C., &
Arlt, V. (2002). A Structure-based Configuration Tool: Drive Solution Designer DSD. 14.
Conf. Innovative Applications of AI.

SEI (Carnegie Mellon Software Engineering Institute). A Framework for Software Product
Line Practice. Retrieved March 21, 2005, from http://www.sei.cmu.edu/plp/framework.html

Soininen, T., Tiihonen, J., Männistö, T., & Sulonen, R. (1998). Towards a General Ontology of
Configuration, Artificial Intelligence for Engineering Design, Analysis and Manufacturing
(1998/12) (pp. 357-372). Cambridge University Press, USA.

Thiel, S., Ferber, S., Fischer, T., Hein, A., & Schlick, M. (2001). A Case Study in Applying a
Product Line Approach for Car Periphery Supervision Systems, Proc. of In-Vehicle
Software 2001 (SP-1587) (pp. 43-55). Detroit, Michigan, USA.

Weiss, D., & Lai, C.T.R. (1999). Software Product Line Engineering: A Family-based software
Development Process, Addison Wesley.

Wolter, K., Krebs, T., Hotz, L., & Meijler, T.D. (2004). Knowledge-based Product Derivation
Process, Proc. of the IFIP 18th World Computer Congress TC12 First International Conf. on
AI Applications and Innovations (AIAI2004/WCC2004) (pp. 323-332). Toulouse, France.

http://www.mass-customization.de/news/news03_01.htm
http://www.sei.cmu.edu/plp/framework.html

