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Abstract

Edge extraction is one of the key issues in image analysis and computer vision. In partic-
ular, multiscale approaches to edge extraction have proven to reveal important information
about edges in an image. In this report, we first review up to recently published multiscale
edge extraction approaches as well as nonlinear diffusion and wavelet approaches. As a result
from our in-depth literature study on edge extraction, we identify as major open problems
in higher dimensional edge extraction i) the development of appropriate higher dimensional
edge models, ii) the effect of curvature as related to scale, and iii) optimal scale selection. We
then propose a theoretical framework for optimal scale selection in higher dimensional edge

extraction based on higher dimensional edge models.

Zusammenfassung

Die Extraktion von Kanten aus digitalen Bildern kann als eines der zentralen Forschungsprob-
leme in den Gebieten Bildanalyse und Computer Vision betrachtet werden. Insbesondere
liefern dabei sog. Multiskalen-Verfahren zur Kantenextraktion wichtige Informationen tber
Kanten in einem Bild. In diesem Bericht werden zunichst jiingere Arbeiten zur Multiskalen-
Kantenextraktion sowie Ansatze basierend auf nichtlinearer Diffusion und Wavelets aufgear-
beitet und bewertet. Als offene Probleme wurden dabei identifiziert: die Entwicklung mehrdi-
mensionaler Kantenmodelle, die Untersuchung des Einflusses der Kantenkriimmung im Skalen-
raum sowie die Entwicklung von Verfahren zur Bestimmung der jeweils optimalen Skala.
Anschlieend wird ein neuartiger Ansatz zur Bestimmung der optimalen Skala fiir mehrdi-

mensionale Kantenmodelle entwickelt.
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1 Introduction

Edge extraction is one of the key issues in image analysis and computer vision. The goal
of edge extraction is to obtain a complete and meaningful description from an image by
characterizing intensity changes which take place at various spatial scales depending on their
physical origin. A great effort has been devoted to edge extraction, and various approaches
have been reported in the extensive literature over a few decades.

In multiscale edge extraction approaches based on the linear scale-space theory, the be-
havior of edges across scales is analyzed, which can reveal precious information about the
nature of the underlying physical process that gives rise to edges, or, synonymously, intensity
variations in the image ([2], [3], [7], [11], [12], [14], [16], [17], [21], [27]). Though smooth-
ing greatly reduces the effect of random noise, it can also smooth across edges, which may
be unwanted for the purpose of extracting edges. Hence, nonlinear multiscale approaches
have been developed in order to preserve (or even enhance) edges ([8], [31], [39]). Besides,
the wavelet representation as another type of multiscale representation is worth noting ([23],
[26]), since the linear scale-space representation can be considered as a special case of the con-
tinuous wavelet representation. These three approaches, i.e. linear, nonlinear, and wavelet
approaches deal with the matter of extracting edges based on a multiscale analysis. There-
fore, it is worthwhile to take a glance at these approaches in order to get an idea of the main
characteristics of each approach with respect to improving key problems of edge extraction
in various ways.

As a result from our in-depth literature study on edge extraction, we can identify as major
open problems in higher dimensional edge extraction i) the development of appropriate higher
dimensional edge models, ii) the effect of curvature as related to scale, and iii) optimal scale
selection.

This report is organized as follows: We first survey in Section 2 up to recently published
multiscale edge extraction approaches. Moreover, in Section 3 we give a review of both the
nonlinear diffusion approach and the wavelet approach. Then in Section 4, we establish
higher dimensional edge models for higher dimensional multiscale edge extraction, and based
on them we propose a theoretical framework for optimal scale selection in higher dimensional

edge extraction in Section 5. Finally, we summarize and present our future work in Section 6.



2 Linear Multiscale Approaches to Edge Extraction

The fundamentals of edge extraction as well as seminal approaches to edge extraction were
surveyed in [18]. Moreover, we reviewed in [18] the principles of the linear scale-space theory
as well as key multiscale approaches to edge extraction. In this section, we chronologically
look over recently published important multiscale edge extraction approaches (particularly
as related to optimal scale selection) in order to gain an overview of the development of
multiscale edge extraction. Note that for the sake of brevity, details will be omitted but main
ideas of each work are highlighted and shortcomings are analyzed.

Jeong and Kim [16] suggested a regularization method for edge extraction, where they
estimated a unique scale adaptively for each point in the image. Assuming o(z,y) to be the
scale parameter of the Gaussian, the authors introduced an energy function F(o) defined as a
functional developed over continuous scale-space, and considered the process of selecting a set
of optimal scales for edge extraction as the minimization of the energy function. Consequently,
the edge extraction problem reduces to finding o(z, y) such that E(o) is minimized. Jeong and
Kim used a parallel relaxation algorithm in order to solve the resulting nonconvex optimization
problem. In their approach, however, the result suffered from the complications associated
with the objective function and the selected scales were sensitive to the initial guess.

Gokmen and Jain [14] introduced an image and surface representation which samples
an image in both the scale space and the continuity space for the purpose of decomposing
the image/surface into a larger number of descriptions. Based on this representation, they
developed “a generalized edge detector” by specifying the values of two parameters, one of
which controls the shape of the filter (7) whereas the other controls the scale of the filter ()).
As a result of their approach, an edge representation is generated in the scale-continuity (A7)
space. In their work, however, the determination of the optimal values of parameters A and
7 for a given image and for specific tasks remained unsolved.

Lindeberg [20], [21] proposed an automatic method for selecting locally appropriate scales
for edge extraction based on the normalized derivative operator; maxima in the convolution
of the signal with the Gaussian over scales of normalized derivatives reflect the scales over
which spatial variations take place in the signal. The normalized derivative operator was
introduced in order i) to compensate for the generally observed decrease in amplitude of image
intensity caused by linear scale-space smoothing, and ii) to ensure that image structures are

processed by the vision system in such a way that the processing results are not critically



dependent upon how large the image structures actually are. Since the scale of a structure
selected by this approach is often too small to provide reliable estimates of the derivatives,
Lindeberg suggested a more global post-extraction stage, where a measure of edge significance
is defined and integrated along connected chains of pixels in order to distinguish real edges
from artifacts. Only edge chains with a significant measure above a given threshold are then
considered as important edges. However, the determination of this threshold is unspecific,
and this post-extraction process is relatively tentative and heuristic.

Elder [11] and Elder and Zucker [12] presented a method of local scale adaptation based
on the statistical reliability for detecting and localizing local edges in images regardless of
their physical origin (e.g., occlusion, shadows, or textures). The authors did not restrict the
goal of the local computation to the extraction of a specific type of edge (e.g., occlusion edges)
only, because different types of edges are locally indistinguishable by local computation. Thus
the goal of the local computation was set to detect, localize, and characterize all edges over
broad scales, regardless of the underlying structures from which they project. They showed
that knowledge of sensor properties (i.e. the second moment of the sensor noise) and operator
norms can be exploited to define a unique, locally computable “minimum reliable scale” for
local estimation at each point in the image, which led to a method for estimating the local blur
of image contours. However, two main problems in their approach can be identified. First, the
authors used the second-order derivative for avoiding the main defect of the gradient operator
(e.g. multiple separable responses to a single edge). As a matter of fact, however, it is not
guaranteed in practice that zero-crossings of the second-order derivative are well localized,
and for the worse the higher-order derivatives (e.g., the second- and third-order derivative)
are generally more sensitive to noise and computationally more expensive than the gradient
operator. Second, the accuracy of their approach is dependent on two parameters, i.e., one
is the standard deviation value of the sensor noise and the other is the value of the overall
significance level for a reliability criterion. However, it is hard to measure correctly the sensor
noise in real images, and the overall significance level parameter is assumed by the authors

without any plausible grounding.



3 Other Multiscale Approaches to Edge Extraction

In this section, we review other approaches, i.e., nonlinear diffusion approaches and wavelet

approaches, related to multiscale edge extraction.

3.1 Nonlinear Diffusion Approach

Linear scale-space approaches are based on blurring with the Gaussian kernel, and the related
theory provides a well founded formalism for early visual computation and applications (e.g.
for feature extraction). However, there exist some limitations in using an rotationally sym-
metric Gaussian kernel for a vision system; for example, smoothing across object boundaries
may result in an undesirable effect on the shape of the edge profile and on the accuracy in
localization of edges in edge extraction. The main idea of nonlinear diffusion approaches to
edge extraction is to preserve and even enhance edges while smoothing out spurious detail
off edges. In Weickert [37], one can find a nice tutorial-like introduction to nonlinear diffu-
sion. To make this chapter self-contained, we briefly recapitulate the main developments and
applications of nonlinear diffusion approaches.

Perona and Malik [31] first proposed a nonlinear edge-preserving diffusion method. Perona
and Malik (the PM approach) considered an anisotropic diffusion equation by varying the

conductance parameter over space and time

oL )
i div (e(z,y,t)VL)

= ¢(z,y,t)V2L + Ve- VL,
where L(z,y;t) is obtained by convolving the original image with a Gaussian kernel, and
c(z,y,t) corresponds to the diffusion coefficient function. It is noticeable that if c(z,y,t)
remains constant the equation above reduces to the isotropic heat equation, since Ve(-) = 0.
The diffusion coefficient function in the PM approach is chosen locally as a function g of the

magnitude of the gradient, i.e.,

(3.1) c(z,y,t) =g (VL.

The conductance g(+) is a positive, decreasing, and nonlinear function, and plays a role in lim-
iting blurring near edges (i.e., preserving as well as sharpening edges). The authors suggested

two kinds of the conductance g(||VL||) :
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where the constant A is fixed for controlling the effect of a given gradient value. The first

g(IVLl) = (A>0),

conductance function emphasizes high contrast edges over low contrast ones, while the second
gives a privilege to wide regions over smaller ones. The experimental results of the PM ap-
proach showed that edges remained stable over a very long diffusion time. However, the PM
approach has a few problems (see for detail e.g. [8], [37], or [38]). First, in case of strongly
noisy images, the gradient tends to oscillate (it is well known that the derivative operators
are not robust against noise), and these oscillations are kept throughout the nonlinear diffu-
sion process. Therefore, they proposed to perform a low-pass filtering prior to the diffusion
process in order to reduce these oscillations, which in turn caused a loss of accuracy in edge
localization. Second, the PM approach explicitly intended the forward-backward diffusion
for the desirable result of blurring small fluctuations and sharpening edges. However, it is
well-known that backward diffusion is an ill-posed process, where the solution, if any, is highly
sensitive even to the slightest perturbations of the initial data.

Catté et al. [8] proposed to replace g(||VL||) of Eq. 3.1 by g(||VLs||) given by

oL )
o = div (9(IVL, V),

where L, = G,*L and G, denotes the linear Gaussian blurring at each step of the non-uniform
diffusion process for the purpose of a reliable gradient estimate at each time step ¢t. In the
approach by Catté et al., smoothing the image before the diffusion process is not necessary,
and the Gaussian kernel guarantees that the edge-controlled diffusion is a monotonically de-
creasing process. On the other hand, Whitaker and Pizer [40] suggested a multiscale diffusion
technique which makes the scale parameter o for the gradient measurement time-dependent,
ie.,

oL )
o = v (9(IV Lo DVE).

From a practical point of view, the approaches by Catté et al. and by Whitaker and Pizer
offer the advantage of making the filter rather insensitive to noise. This aspect eliminates the
drawback of the PM approach which misinterprets strong oscillations due to noise as edges

that should be preserved or even enhanced.



Weickert [39] introduced an image restoration technique based on a multiscale method in
which a nonlinear diffusion filter is steered by the so-called interest operator (e.g., second-order
moment matrix, structure tensor) for enhancing line-like structures. In relation to coherence-
enhancing anisotropic diffusion filtering, a new algorithm which uses the first-order derivative
filters optimized with respect to the best gradient direction estimation was introduced in [32].

In general, the nonlinear diffusion approach takes higher order differential invariant prop-
erties of images into account, leading to the preservation and even enhancement of edges.
However, the differential approaches are often only well defined in two dimensions and are of

considerably higher computational cost.

3.2 Wavelet Approach

Wavelets are a mathematical tool for hierarchically decomposing functions, and they have
shown great potential and applicability in many fields. Wavelets are functions that satisfy
certain requirements ([36]): They should integrate to zero, which implies that the function
has to be well localized, and also both the direct and inverse wavelet transform should exist.
As a mathematical expression, a wavelet is a function v (z) € L? such that
400
Y(z) = 0.

—00

The dilation of ¢ (z) by a factor s, which controls the wavelet scale, is given by
1 x
vsl@) = v ().
s \s
The wavelet transformation with scale s of a function f(z) at position z is given by

st(x) = f* %(m)

As can be seen, the wavelet transform is a linear operation convolving the signal with a dilated
filter. Such a decomposition has been extensively studied in signal processing and computer
vision (see for detail e.g. [24], [34], or [36]).

It is noticeable that, in general, wavelet analysis differs from Fourier analysis in the fact
that Fourier basis functions are localized in the frequency domain but not in the spatial
domain, and vice versa (for example, even small changes in the Fourier domain will produce
changes everywhere in the spatial domain after having applied the inverse Fourier transform),

whereas wavelets are local both in the frequency/scale (via dilation) domain and in the spatial



(via translation) domain. On account of this localization property, it is possible to analyze
data at different scales or resolutions much better than by the Fourier transform. We skip
here the mathematical fundamentals of the wavelet theory, since one can find a detailed
introduction in [24].

In the context of computer vision, wavelets have been used with enormous success in data
compression and image noise suppression. The simplest wavelet basis is the Haar wavelet,
where the basis function is the characteristic function of the interval [0, 1) (see for details e.g.,
[36]). An obvious disadvantage of the Haar wavelet is that the Haar wavelet transform is not
continuous, and therefore the choice of the Haar basis for representing fine-scaled images is
not appropriate. As a more general framework, Mallat’s multiresolution analysis (MRA) [22]
can be cited. The MRA is a tool for a constructive description of different wavelet bases,
where the basis function is chosen in order to satisfy some continuity, smoothness, and tail
requirements. Additionally, the family of the basis functions forms an orthonormal basis
for the reference space. It was shown in [22] that the difference of information between the
approximation of a signal at scales 271! and 2/ can be extracted by decomposing the signal on
a wavelet orthonormal basis of L2(R"). In L?(R), a wavelet orthonormal basis is a family of
functions (\/2_1 Y2 — n)) Gmez? that is built by dilating and translating a unique function
1. This decomposition deﬁnie’s an orthonormal multiresolution representation, which is called
a “wavelet representation”. A wavelet representation of a function consists of a coarse overall
approximation together with detail-related coefficients that influence the function at various
scales, and it can be applied, for example, to data compression in image coding.

Mallat proposed to apply a wavelet transform to edge extraction. He used the Laplacian
of the Gaussian as a wavelet for the wavelet transform. The edge positions were assumed
to be zero-crossings of a wavelet transform, and it was shown that 1-D signals can be well
reconstructed from a stabilized zero-crossing representation. The completeness and stabil-
ity of the zero-crossing representation was shown by the result that the reconstruction was
independent of the choice of the initial point. However, this result was only indicated by
numerical experiments, not by a mathematical proof. Also, the experiment was restricted
only to 1-D cases.

As an extension, Mallat and Hwang [25] showed that the local maxima of the wavelet

transform modulus detect the locations of irregular structures and can be used for numerical



procedures with their Lipschitz exponents! by which singularities are generally characterized
in mathematics. Additionally, it was shown numerically that 1-D and 2-D signals can be
reconstructed with a good approximation from the local maxima of their transform modulus.
On the basis of the proof that Lipschitz exponents could be computed from the evolution
across scales of the wavelet transform modulus maxima as shown in [25], Mallat and Zhong [26]
investigated the properties of multiscale edges through the wavelet theory. Based on the
assumption that a multiscale Canny edge extraction is equivalent to finding the local maxima
of a wavelet transform, they defined edges as the points for which the modulus of the gradient
vector is maximal in the direction towards which the gradient vector points in an image, and
therefore they used the first-order derivatives of the 2-D Gaussian as wavelets for a 2-D wavelet
transform. Also, they described an algorithm for reconstructing a close approximation of 1-D
and 2-D signals from their multiscale edges.

On the basis of the wavelet theory proposed in [22], [25], and [26], Schroder and Woérz [33]
had investigated to which degree the continuous theory, e.g. edge classification based on
Lipschitz exponents, can be related to the practical case of digital images. Their experimental
results showed that as yet the multiscale approach to edge extraction based on the wavelet
theory is not satisfactory in practice, and thus differs from the verification result derived by
Mallat and Zhong [26]. As a consequence, future work has to be devised on the key issue of
how to discretize correctly the continuous theory with respect to edge classification based on

the wavelet transformation.

'For example, the larger the uniform Lipschitz exponent ao is, the “more regular” the corresponding
singularity at the given point xo will be. If f(z) is discontinuous but bounded in the neighborhood of zo, its

uniform Lipschitz exponent in the neighborhood of z¢ is 0.



4 Higher Dimensional Edge Extraction

Up to here, we went through the key literature on multiscale edge extraction approaches. In
this section, after giving a synopsis of several prevailing trends with respect to multiscale edge
extraction and marking the subjects that have to be considered critically, we establish higher

dimensional edge models for higher dimensional multiscale edge extraction.

4.1 The Issues

Edges in the image are locations where the intensity significantly changes from one level to
a different one, i.e., transitions from a bright region to a dark region, or vice versa. There
roughly exist two ways in defining edges: One is to define edges as zero-crossings of the Lapla-
cian ([4], [23], [27], [29]), while the other is to define edges as local maxima of the gradient
magnitude ([2], [7], [17], [31]). A simple example of edge detection by derivative operators
is illustrated after [15] in Fig. 1; (a) an image with a light stripe on a dark background, (b)
the intensity profile of a horizontal line, (c) the result of the first-order (e.g. the gradient)
derivative of the intensity profile, and (d) the result of the second-order (e.g. the Laplacian)
derivative of the intensity profile. Mathematically, positions of the maxima of the gradient
magnitude correspond to zero-crossings of the Laplacian. One can see from Fig. 1 that a
zero-crossing (Fig. 1-(d)) corresponds to the location of each edge. However, the local max-
ima approach has some important advantages in contrast to the zero-crossing approach. The
problem of zero-crossing edge detection algorithms was closely analyzed in Clark [9]. In edge
detection, a zero-crossing of the Laplacian can either be a maximum or a minimum of the
gradient magnitude. In Fig. 1-(d), zero-crossings also appear between the edges, where no
intensity variation occurs. In other words, the maxima of the gradient magnitude correspond
to points of sharp variation, whereas the minima correspond to the points of the least sharp
variation. It is difficult to distinguish two types of zero-crossing only with the second-order
derivative operator, and thus the third-order derivative operator is needed to check the sign
of the second-order derivative. However, the third-order derivatives are generally computa-
tionally more expensive and more sensitive to noise. Moreover, zero-crossings alone give only
position information which does not contain any information of edge strength. This means
that, with zero-crossing information only, a small amplitude fluctuation cannot be discrim-
inated from a visually salient discontinuity. From a practical point of view, therefore, the

local maxima approach using the gradient operator (the so-called non-maximum suppression
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(a)

(d)

Figure 1: Edge detection by derivative operators (after Gonzalez and Woods [15])

proposed first by Canny [7]) has been gaining ground for edge extraction. In the case of
non-maximum suppression, a maximum of the gradient magnitude in the gradient direction
is defined as an edge point.

Canny’s edge detector [7] which employed non-maximum suppression based on the step
edge model is prevailing in edge detection. However, its main underlying problem is that
Canny’s approach did not show clearly how to combine edges from different scales. In the
context of scale selection in edge extraction, the edge focusing method (i.e., the so-called
coarse-to-fine tracking proposed by Bergholm [3]) has been often referred to. Aside from the
computational complexity of this approach, there exist some critical problems in applying it
to edge extraction. First, it is difficult to select the coarse scale at which good extraction
performance can be expected (it is noticeable that as a consequence the approach in [2]
favored a fine-to-coarse procedure based on first-order derivatives of the Gaussian). Second,
there is no guarantee for the assumption that optimal localization can be attained at the
finest scale (if noise in an image is high, localization accuracy becomes very poor at finer

scales). Furthermore, care must be taken in the choice of the step size of the scale parameter,
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as edge elements should not move more than one spatial pixel per focusing step in order to
allow for a stable edge following algorithm.

Let alone the typical critical issues of edge extraction described above, it is now necessary
to consider the matter of how to approach higher dimensional edge extraction. Compared to
1-D edge extraction using e.g. the 1-D sigmoid edge model as a favored model, higher dimen-
sional edge extraction is not as simple as the 1-D case, since the additional edge properties, e.g.
orientation and curvature for a given edge point on higher dimensional edge contour, have to
be taken into account. Most approaches to higher dimensional edge extraction have used the
1-D step or, respectively, the sigmoid edge model. However, since the 1-D sigmoid edge model
represents only ideally smooth intensity changes (or discontinuities), higher dimensional edge
properties cannot be expressed sufficiently by it. As an exception, the extraction of higher
dimensional straight edges (i.e., non-curved edges) can be reduced to the 1-D case using the
direction of the gradient, meaning that the 1-D sigmoid edge model can be aligned to the
direction of the gradient of higher dimensional straight edges. From a practical point of view,
on the other hand, it is not difficult to envisage some problems or limits of applying the 1-D
sigmoid edge model to extracting curved edges which usually appear in images. With the 1-D
sigmoid edge model, it is impossible to reveal the aspect of scale as related to edge curvature.
A typical example of high curvature contours is a corner, and arbitrarily smoothing its curve
results in destroying its properties. Or, a sharp corner smoothed with large scale may result
in a non-corner.

Besides, most approaches to multiscale higher dimensional edge extraction are inclined
to extend the 2-D case to the 3-D case, the latter of which contains the same problem with
respect to scale as related to curvature as mentioned above. It is noticeable that Breil and
Sonka, [6] recently proposed a directional 3-D edge detector designed for anisotropic image
data, where their edge detector was based on interpolating the image intensity function in
a small neighborhood of every voxel by a tri-cubic polynomial. However, their approach did
not deal with scale as related to edge curvature.

As a consequence, it is necessary to establish higher dimensional edge models in order to

reveal the aspect of scale as related to edge curvature in higher dimensional edge extraction.
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Straight edges

Circular edge

Corners

Straight edges Circular edge Corners

Figure 2: Higher dimensional edge classification

4.2 Higher Dimensional Edge Model

In order to establish higher dimensional edge models for the purpose of analyzing the effect
of curvature related to scale for a given higher dimensional edge, we classify higher dimen-
sional edges according to their curvature into three types, i.e. straight edges, circular edges,
and corners, while assuming either step- or sigmoid-like profile. In more concrete terms as
related to higher dimensional edge classification, for a given radius R of a circular edge its
corresponding curvature K is given by the reciprocal of the radius (i.e., K = 1/|R|), and
the curvature stays constant along circular edges. If the curvature does not stay constant
(i.e. either ascending or descending along a given edge curve), an edge on the edge curve
of descending curvature is assumed to form a straight edge?, and contrarily, an edge on the
edge curve of ascending curvature is assumed to represent a corner (or corner-like structure).
Fig. 2 depicts the classification.

As a matter of fact, one can differently classify higher dimensional edges according to

other alternative criteria. Our classification for establishing higher dimensional edge models

%Strictly speaking, the curvature of straight edges must be zero. However, we here consider as “straight-like

edges” also, and for simple terminology, we use here straight edges.

13



(a) Is(z,y) (b) Eu(z,y;te) : te =1
Figure 3: Straight edge models: a =1, b =10

is the first attempt for approaching higher dimensional edge extraction theoretically in order
to analyze the effects of curvature as related to scale in multiscale edge extraction. Although
our higher dimensional edge models based on this classification may not be sufficiently general
to represent all edge types in real images, it is realistic and reliable to use them as a first
step in order to analyze the effect of curvature as related to scale in higher dimensional edge
extraction theoretically.

As a consequence, and as a first step towards higher dimensional multiscale edge extrac-
tion, we consider two classes of higher dimensional edges (i.e. straight and circular edges) for

which we will derive higher dimensional edge models in the remainder of this section.

4.2.1 Straight Edge Model

A 2-D straight edge can be described by I, given by the spatially separable function
Is(z,y) = (ay + b)H (=),

where a and b are constants and H(x) is the Heaviside function. I (z,y) represents an ideal
straight step edge at = 0 with a linear intensity variation along the y axis. As a special
case of our straight edge model, when a = 0 (i.e., non-variation of intensity along the straight
edge line), it is equal to the typical 1-D ideal step edge model which most existing approaches
employed.

A sigmoid straight edge with edge width tg, denoted as Es(z, y;tg), is represented by the

14



convolution of I(x,y) with the Gaussian with variance tg

Ey(z,y;tp) = Is(z,y) * G(z,y;tE)

= (ay +0)®(z;tp),

(4.2)

where G(z,y;tg) is the normalized 2-D Gaussian and ®(z;tg) is the integral function of
the Gaussian (i.e. the normalized integral error curve) (see Appendix 1 for the detailed
derivation). For sigmoid edge models, we employ ®(x;tg) since it has some advantages for
representing an intensity discontinuity: First, it is possible to model sigmoid edges with
arbitrary edge width tg. Also, ®(z;tg) is smooth, and thus it is differentiable along its
curve. Furthermore, with ®(z;tg) one can theoretically approach the problem of optimal
scale selection for the underlying edge (see also [2], [3], [4], [7], [12], [17]).

It is noticeable that the linear intensity variation of I(z,y) is not affected by smoothing
with the Gaussian as can be seen from F(z,y;tg) in Eq. 4.2. The step and the sigmoid

straight edge models for the case of a = 1 and b = 10 are shown in Fig. 3.

4.2.2 Circular Edge Model

A unit circular edge with radius R is represented by I
L(z,y) = H(R* — 2® - y).

The circular edge model described by the Heaviside function has been used for modeling
curved edges with constant curvature e.g. in [4], [10], [28], [29], and [35].

The sigmoid unit circular edge with edge width tg, denoted as E.(z,y;tg), is represented
by the convolution of I.(z,y) with the Gaussian with variance tg (see Appendix 2 for the

detailed derivation) given by
Ec(xa Y; tE) = IC(:E) y) * G(l‘, Y; tE')

:R/IIG(:L'—R-*y;tE) [tI) (y+R\/1—fy2;tE) —@(y—R\/l—*y?;tE)] dy.

(4.3)

With the help of Mathematica, the step and the sigmoid circular edge models (when R = 3)
can be computed and displayed, as shown in Fig. 4.

It is remarkable that the analytical solution of [ G - & is unknown ([10]). This means
that we can hardly find the analytical solution of E.(z,y;tg) in Eq. 4.3. Fortunately, without

loss of generality, one can transform E.(z,y;tg) represented in Cartesian coordinates into
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y) 0.5Ec(x, y; 1)
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(a) Ie(z,y) (b) Eo(z,y;te) : tg =1

Figure 4: Circular edge models : R =3

E.(r;tg) in polar coordinates, where r2 = 22 + y? (see e.g. [28]). The details with respect to

the sigmoid circular edge model in polar coordinates are described in Section 5.2.2.
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5 Optimal Scale Selection

We are interested in the principal way of how to select an optimal scale for higher dimensional
edge extraction. Using the scale-space representation of the higher dimensional edge models
established in the previous section, we intend to analyze the behavior of higher dimensional
edges over scales for the purpose of selecting their optimal scale values.

Optimal scale selection in our approach will be carried out on the basis of the so-called
fine-to-coarse multiscale analysis. We are convinced that the fine-to-coarse multiscale analysis
is more suitable for edge extraction than the coarse-to-fine approach (its problems were briefly
stated in Section 4.1).

In this section, we briefly review the scale invariance theory in order to understand the
role of scale with respect to the linear scale-space theory, and we look over the normalized
derivative operator for scale selection. After that, we describe the theoretical framework for

optimal scale selection based on higher dimensional edge models.

5.1 Related Theory
5.1.1 Scale Invariance

As an introduction to the scale invariance theory (e.g. [13], [20], or [30]), we here mostly refer
to Pauwels et.al. [30] in order to figure out the principle of scale invariance (note that we will
not recapitulate their close derivations and proofs).

Scale invariance implies the absence of a preferred scale in a vision system ([13], [30]).
That is: When there is no a priori information as to what structure in an image we are
looking for, there should be no preferred scale with respect to computational processes. In
terms of dimensional analysis, a function relating physical observables must be independent
of the choice of dimensional units; they do not change under the given scalings, and hence
they are called dimensionless ([13]). In concrete terms with respect to scale-space filters,
there should exist a fized kernel function (or, synonymously, “parent-kernel”) ¢ such that at
different levels of the scale parameter ¢ kernel k; is a simple rescaling of this parent-kernel by

means of a rescaling-function ¥ : R — RT,

fue) = ko, t) = 0 (W) ,

where ¢ is the scale parameter and k; is a scale-space kernel([30]). Note the striking similarity

to wavelets (see [24], [36])
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It was proven in [30] that the corresponding rescaling-function for 1-D signals (i.e. z € R)

is given by

where o > 0. The parent-kernel of the Gaussian kernel is then obtained by taking a = 2:

|
ez,
2T

¢(z) =

where ¥(t) = /1.
Also in [30], the rescaling-function for 2-D signals (i.e. ¥ € R?) was derived. Similarly to
the 1-D case, the rescaling condition that each filter is the scaled version of some “unscaled”

(rotationally invariant) parents-filter ¢ yields,

T

where the corresponding rescaling function is given by ¥(¢) = ta (a > 0). Once again
choosing a = 2 yields the Gaussian kernel.

Although in [30] the result was not further extended to the N-D cases, we may easily
generalize their 2-D result as follows: For N-D signals (i.e. &£ € RY), it must hold that

1 z
k(7)) =~ | o
®= v (atw)
where the corresponding rescaling-function is given by ¥(t) = ta (o > 0). Furthermore, the

N-D Gaussian kernel is obtained when o = 2.

5.1.2 The Normalized Derivative Operator

Lindeberg [20] [21] presented a scale selection method by considering the behavior of the
scale under rescaling of the image pattern. Lindeberg considered, as a simple example, a 1-D

sinusoidal input signal and introduced a y-normalized derivative operator defined by

v

8{,7—norm =t2 axa

which corresponds to the change of variables
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where t is the scale parameter. In case that v = 1, £-coordinates and their associated nor-
malized derivative operator are dimensionless (see for this terminology the previous section),
and the perfect scale invariance is guaranteed. Even when v # 1, it was proven that sufficient
scale invariance can be achieved. Also, it was shown in [20] for a sinusoidal signal that the
scale at which a normalized derivative gains its maximum over scales is proportional to the
wavelength of the signal. Consequently, Lindeberg pointed out that maxima over scales of
normalized derivatives reflect the scale over which spatial variations take place in the signal.

It is remarkable that already in 1988 Korn [17] suggested to introduce a normalizing
factor for the gradient of the Gaussian in multiscale edge extraction. Korn’s normalizing
factor for the gradient of the Gaussian was given by v/27o (02 = t), which is equivalent to
the normalized derivative operator by Lindeberg when v = 1, leaving aside the coefficient
V2m. However, the operator response using the normalizing factor v/27o of the gradient of
the Gaussian is monotonically increasing along the scale axis; i.e., no explicit maximum that
can be selected as the optimal scale value exists somewhere along the scale axis. In [17],
therefore, Korn used a heuristics for optimal scale selection. Successively, the approach in [2]
drew upon Korn’s normalizing factor, and came up with an indirect scale selection scheme
(though not via a maximum) through relating the derivation to an underlying sigmoid edge

model (which Korn did not).

5.2 Scale Selection in Higher Dimensional Edge Extraction

Let us look into the details of scale selection in higher dimensional edge extraction using our
higher dimensional edge models introduced in Section 4.2.

5.2.1 The Straight Edge Case

The scale-space representation of a straight edge Es(z,y;tg) in Eq. 4.2 is given by the con-

volution with the Gaussian kernel
Lg,(z,y;t) = Es(z,y;tp) * G(z,y;1)
= Es(xa Yy, te + t)
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where ¢ is the scale parameter. The gradient of Lg, (x,y;t) is given by

dLg, OLg, \"
oz dy

= ((ay + b)G(z;tg +t) a®P(z;tp + t))T.

Vi, (2,y:t) = (

By the definition that the position of an edge corresponds to that of the maximum of the
gradient magnitude, the magnitude of the gradient of an edge (e.g., at (0, k), k € R) is derived

as

VL, 0,k )l = y/((ak + B)G (055 + 1)) + (a®(0st5 + 1))
(5.4) \/ (ak + )2 a2

"\ 2rts+t) 4

which corresponds to the response of the multiscale straight edge operator.
Apart from the constants (i.e. a, b, and k), the response function |VLg, (0, k;t)|| in Eq. 5.4
is dependent on the term 1/4/27(tg + t) which we denote as M (t)

1
2ty +1)

M (t) is monotonously decreasing with respect to the scale parameter ¢, which means that the

M(t) =

edge response ||VLg, || is getting weaker as the scale parameter increases, and hence it does
not give any maximum along the t-axis.

Let us consider another response function, denoted as K(t), using Korn’s normalized
derivative operator (k(c) = v/2mo according to Korn’s notation or, respectively, adapted to

our notation k(t) = +/2wt). K(t) is given by multiplying k(t) with M(¢), i.e.,

vt
Vite +1)

Contrarily to M (t), K(t) is monotonously increasing along the scale axis, which implies that

K(t) = k() - M(t) =

the edge operator response is getting stronger as the scale parameter increases. Fig. 5 depicts
M(t) and K(t) in case of tg = 2. Since both M(¢) and K(t) do not give any maximum
value along the scale, it can be said that they are not suitable to be used as multiscale edge
response functions for directly selecting optimal scale values.

On the other hand, let S(¢) be the response function of M (¢) multiplied with a coefficient
function 7(t) = t* giving the maximum at ¢t = tg. We set the limit of & as 0 < a < %; when

a =0, S(t) is equal to M(t), and when o = 1, S(t) is almost equivalent with K (t). S(t) can
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(a) M(¢) (b) K(t)

Figure 5: Monotonous responses of straight edge operator: tg = 2

be written as

ﬂﬂ:n@-Mﬁ%:;E%%fﬁ <0<a<%>,

where the value of o (0 < o < 1) with which S(¢) gives a maximum at ¢ = tg must be found.
If S(t) has a maximum at ¢t = tg, then the derivative of S(t) with respect to ¢ must be zero
at t =tg. That is,
dS(t) at® ! t*
At~ f2n(tp +t) +/2n(ts +02(te +1)

te o 1
:\ﬂﬂm+w(?_%m+w>'

dS(t)/dt has to be 0 at t = tg (tg # 0)

-,
t 20te+t)],,,
which leads to

o 1 . 1
_— = — o= —.
tg 4ip 4

Substituting % for o, S(t) is finally given by
1
t4
V2r(te + 1)

Fig. 6 shows S(¢); (a) in case tg = 2, the maximum position of S(¢) corresponds to ¢t = 2, (b)

S(t) =

S(t) gives maxima at t = tg as tg varies.
In short, the theoretical result derived above implies that an optimal scale value in straight
edge extraction based on the fine-to-coarse multiscale tracking can be directly selected by

multiplying the response function |VLg, (0, k;t)| in Eq. 5.4 with t1.
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Figure 6: S(t) of straight edges

5.2.2 The Circular Edge Case

The scale-space representation of a circular edge described in Eq. 4.3, Lg, (z,y;t), is given
by the convolution with the Gaussian kernel. For simplicity of the following derivation,
Lg,(z,y;t) in Cartesian coordinates can be transformed into Lg, (r;t) in polar coordinates

(r? = 22 + y?):
Lg, (r;t) =H(R—r)* G(r;tg + t),

where tg and t respectively correspond to the edge width of a circular edge and the scale

parameter, and

r2

1 L
G(ritg +1t) = i 1 0)° 2+

Considering the polar coordinates (r,#), for any point P = (x,y) in Cartesian coordinates

we have
x =rcosé r= \/W
and ,
o _ 1
y =rsinf 6 =tan ! (¥)
and also
or T rcos 6
— = = = cos 0
af A /IE2 _|- y2 'S
or y rsin 6 )
— = = = sin6.

ENCET
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Then, the gradient of Lg_(r;t) is given by

VLg, (r;t) = (aLEc(T;t) 3LEC(r;t)>T

oz 0y
55) _ (9Lg.(r;t) O OLp,(r;t) or\"
: - or O or 0Oy
. . T
_ M-cos@ M-sin@ ,
or or

and the magnitude of the gradient of Ly, (r;t) is given by

IVLg,(r;t)] = \/<3LE57;(UM>)2 N (%Eéig@)Z
B \/<8LE877(~7%>>2 - cos? 6 + <8LET§T’0>2 .sin2 0

B ‘3LEC(r;t)

)

or

which is derived (see Appendix 3 for the detailed derivation) as

R _r2+r? R-r
VL ;)| = 2tptt) [
VEgrit) = e Wt ().

where I;(-) is the modified Bessel function of integer order 1 %, which is depicted in Fig. 7.

From Fig. 8 one can see that |VLg,(r;t)| gives maxima along r = R. This illustrates the

I_1(z)

20
15

10

Figure 7: The modified Bessel function of integer order 1 : I;(z)

3The modified Bessel function of integer order n is defined ([1]) by

27
I.(z) = 2171-_/ cos(nf)e* “°*?dp.
0
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Figure 8: |VLg,(r;t)]

definition that the position of the edge (i.e. 7 = R or, respectively, 2 +y? = R?) corresponds
to that of the maximum of the gradient magnitude.

Let us assume |VLg,| at edges (i.e. » = R) to be a response function of ¢ denoted as

5.6 M(t) =|VLg (R = 7tR‘2HI i
. t) = ;)| = .
(5.6) (t) | Ec( ) )| ¢ te B 1<t t>

M (t) is the monotonically decreasing function with respect to ¢, which implies that the
response |VLg, | at edges is getting weaker as the scale increases, and thus it does not give
any maximum. Therefore, the response of M (t) is not proper for direct optimal scale selection.

On the other hand, let S(t) be a response function by multiplying M (t) with ef as given by

—R24R(tg+t) 2
_ R eitE'HE I R ,
tg +1t

where we observe the response of S(t) when tg +t = R. If tg +t = R, S(t) is simplified as

R _R2.R2
(5.7) S()|epst-r = EeiR;R Li(R) = Ii(R).

Eq. 5.7 implies that S(t) gives the response I1(R) when tg + ¢ = R. In other words, the
scale value satisfying S(t) = I;(R) corresponds to t = R — tg, which means that the value
of tg is selected from the response of S(t) uniquely since S(t¢) is a monotonically decreasing
function of t. For a given R, I;1(R) is known (see Fig. 7), from which one can uniquely obtain
t satisfying S(¢)=I;(R). The derived ¢, in turn, can be used to derive the optimal scale value
tg (ie., tg = R —t) according to Eq. 5.7. Here it is noticeable that there does not exist

any t from the response of S(t) satisfying S(¢)=I1(R) where R < tg; as a matter of fact, it
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10

4 L1R)

2 S

1 2 3 4 5
t=R-t_E

(a) R =3,tg = 1: t = 2 uniquely satisfies S(t) =
Ii(R)

10

(b) R=3,tg =4: S(t) cannot meet I;(R) along

t

Figure 9: t satisfying S(t) = I1(R)

R
t=R—-tg | 1|2|3|4|5(6|7[8|9]10
tg =1 -1 1213|456 7[8]9
tg =2 -|-|11(2|3|4|5]6|7]| 8
tg = -l- -1 2(1314(5(6]7

Table 1: The values of ¢ at which S(¢) = I1(R):

equivalent with that of I;(R).

When t = R — tg, the value of S(t) is

is meaningless both from a theoretical and a practical perspective to consider the case for

which the radius of a given circular edge is smaller than its edge width, and our theoretical

derivation in Eq. 5.7 shows that R < tg corresponds to t < 0. We denote the relationship

R < tg the curvature-scale constraint. Fig. 9 illustrates that in (a) S(¢ = 2) meets I; (R = 3)

exactly at ¢t = 2 in case tg = 1 and in (b) S(¢) cannot meet I;(R) at any ¢ since R = 3 is

smaller than tg = 4. Additionally, Table 1 represents the values of ¢ satisfying S(¢t) = I;(R)

with respect to increasing R and tg.

Consequently, the optimal scale value for circular edges can be uniquely selected using

the response function S(t) described in Eq. 5.7 such that the optimal scale value of a given

circular edge with the radius R is given by tg = R — ¢, where ¢ satisfies S(t) = I1(R).
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6 Discussion

Based on the extensive review on edge extraction in Section 2 and Section 3 as well as in
[18], some prevailing tendencies of edge extraction can be found: First, regardless of the
number of dimension of the given image, edge extraction is generally considered as a one
dimensional problem, and thus the 1-D step edge (or sigmoid) model is often used. Most
2-D approaches are simply extended from the 1-D approach. Second, multiscale approaches
to edge extraction have attracted a substantial amount of interest due to the importance of
scale in edge extraction. Therefore, optimal scale selection is an important issue in multiscale
edge extraction. Third, in most approaches, one can hardly find a concrete reliable account
of how to apply the continuous theory to digital images. As a consequence, it is clear that
there still exist many drawbacks to be improved in edge extraction in the context of higher
dimensions, of optimal scale selection, and of discrete implementation of a continuous theory.

In this report, we proposed an theoretical framework for optimal scale selection in higher
dimensional edge extraction. In Section 4, we established higher dimensional edge models
based on our higher dimensional edge classification, i.e. straight edges, circular edges, and
corners. Using this models, we aimed to find an optimal scale for higher dimensional edges
based on the theoretical analysis of the effects of curvature as related to scale in Section 5.
According to the result described in Section 5.2, an optimal scale value in straight edge
extraction can be selected from the response function |VLg,(0,k;t)| in Eq. 5.4 multiplied
with t%, and the optimal scale value in circular edge extraction can be selected uniquely from
the response function S(t) described in Eq. 5.7 such that the optimal scale value of a given
circular edge with radius R is given by tg = R — t, where ¢ satisfies S(¢) = I;(R).

Our future work can be sketched as follows: First, the result of our theoretical framework
for optimal scale selection must be validated and evaluated by applying it to synthetic higher
dimensional images, and can be further used for optimal scale selection for real images.
Second, in our approach, straight and circular edges are considered only up to now, while
corners are not. In the future, it is worth taking into account of how to apply the developed
framework of optimal scale selection for circular edge extraction to the case of corners. Third,
the radius of a given circular edge plays an important role for selecting an optimal scale value
in our approach, and its value is a priori given. However, strictly speaking, the curvature of
curved edges (i.e., 1/|R|) in real images is not prior known. Therefore, curvature detection of

curved edges is supposed to be ahead of optimal scale selection.
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A Appendix

Appendix 1 (from page 15)

Ey(z,y) = Ls(z,y) * G(z,y;tp)

/ / (xr —a,y = B)-G(a, B tp)dadp
= /_ H(z — a)G(a;tg)da /_Oo (a(y — B) + b)G(B; tr)dB

~ [ Glastyda- @+ [ GGitmas-a [~ s6(sitmas
— 3(w;t5) [(ay +8) a0
= (ay +0)2(z; tp),
Appendix 2 (from page 15)
Eo(x,y:tp) = L(z,y) * G(e, y; tr)
/ / H(R? — o2 — B)G(x — o,y — B tp)dBda,

where H(R? — a? — 3?) =1 when |3| < VR?2 — a? and —R < a < R. This leads to

VvR2=a?
(z,y;t) / / G(z — o;tg)G(y — B;tp)dBda,

vVR2—aZ

(assuming v = a/R, which leads to « = R -y and da = R - dv)
1 R2—-R2.42
[ |G- R te)Gly - Bite)dsR - dy
(we replace ¢ for y — 3, leading to € — y F R\/1 — 42 when 8 — £R+/1 —42)

/ / N ~ R yitp) - [~G(& tr)] déd
y+R\/_ Y, tE yUE Y

:R/lc:(x—R-mtE) @ (y+ RVI=Rits) — @ (y - RVI =%t d

Appendix 3 (from page 23)
Provided that f(r) and g(r) are both rotationally symmetric, the convolution of f(r) with

g(r) in polar coordinates is defined as ([5, p. 339])

/ /%f s)r'dr'de’

(s> =r? 4% oyt cos ).
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Then, L(r;t) = H(R —r) * G(r;tg + t) is given by

2m 1 r’2+r2727-r’ cos '
L(r;1) / / ML e e gyl
27T(tE + t)
r “+r 2m ]_ rr! cos 8’
/ r'e 2“E+‘)/ — e tett df'dr'
tE + t 0 0 27T

R ""2 "'2 !
_ 1 / r'eiWii)Ig il dr',
te +tJp tg+t

where Ij(+) is the modified Bessel function of integer order 0 (see for its definition Footnote 3).

The derivative of L(r;t) (T' = tg + t) with respect to r is derived as

12+ !
dle 2 Iy ( ))

Lr;t) 1 [R ( r
d fl:,t) _ T/O ! - dr' (since Iy(z) = I1(2))

1 R 2 r’2 2 ! ! T’Z r2 !

ny b /0 i <?) e (ﬂ o
_ ’2+r2

- l/R r’d <e ~ >11 ! T (T a

T 0 d'f'l T T T ,

where the term denoted as “**’ is derived further using the recurrence relations* of the Bessel

functions ([1])

“By definition,
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As a consequence, Eq A.8 is

dL(r;t)
dr

_/R d(re

R2+7‘
= —— 2T I
Te 1(

and accordingly,

. 2,2
dL(r;t) _ R 67%11
dr tg +1
. 2,2
dL(r;t) _ R eiﬁh
dr tg +t
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