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Abstract

In this report, we present the results of a validation study in which we investigated how
well the experimental results obtained from the application of the developed framework
for optimal scale-selection in higher dimensional edge extraction to test images match
the theoretical results. We carry out the validation in two steps, i.e. with respect to
the straight edge case and the circular edge case, and use several types of synthetic edge
images in the experiments. In the straight edge case as well as in the circular edge case,
the obtained experimental results are close to the theoretical results on the whole, though
the experimental results slightly deviate from the theoretical ones, which may be rightfully
assumed to be caused by an inevitable gap between a well-founded continuous theory and

the implemented discrete case.

Zusammenfassung

In diesem Bericht prasentieren wir die Ergebnisse einer experimentellen Validierungsstudie
zur Anwendbarkeit des von uns entwickelten Ansatzes zur optimalen Skalenbestimmung
bei der Extraktion von Kantenstrukturen aus mehrdimensionalen Grauwertbildern. In der
Studie werden verschiedene synthetische Bilder untersucht, die auf zwei unterschiedlichen
Kantenmodellen basieren: einem Modell fiir eine nichtgekriimmte Kante sowie einem Mod-
ell fur eine gekrimmte Kante. Die Studie zeigt, daf} die experimentellen Ergebnisse im all-
gemeinen gut mit den theoretisch erzielten Ergebnissen iibereinstimmen. Die beobachteten
Abweichungen sind hauptsachlich auf die Diskretisierung des entwickelten kontinuierlichen

Ansatzes zur optimalen Skalenbestimmung zuruckzufithren.
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1 Introduction

We have developed in [5] a theoretical framework for optimal scale selection in higher
dimensional edge extraction. In this work, we validate the developed theoretical framework
through investigating how well the experimental results obtained from application of the
developed framework to an image match the theoretical result.

Since the optimal scale value (i.e. edge width) must be known a priori for our valida-
tion study, we use several types of synthetic edge images and control edge width in the
experiments. For a given synthetic image, we apply the developed theoretical framework
to this image, and inspect whether (or, respectively, how exactly) the result comes close
to the expected theoretical result.

This report is organized as follows: In Section 2, we carry out the validation and
present the obtained experimental results along with an assessment. Then, we summarize

the major findings in Section 3.



2 Validation and Its Results

The theoretical result derived in [5, Sec. 5.2] is that an optimal scale value in higher
dimensional edge extraction based on the fine-to-coarse multiscale tracking can be directly
selected. The aim of this section is to validate the developed theoretical framework using
synthetic images. Through this validation study, i) we intend to check for correctness of
our theoretical derivation as well as our implementation, ii) we demonstrate in practice the
principal behavior, and (iii) we can probe the limits for some extreme cases.

It is clear that a comprehensively full validation is beyond the scope of this thesis. This
validation study is rather a first attempt for validating optimal scale selection approach in

higher dimensional edge extraction.

2.1 Experimental Setting

We employ the non-maxima suppression approach by Canny [1] for higher dimensional
edge extraction, for which we use the DSS kernel and its first-order odd-number-sized
differencing kernel (i.e. T,,) both of which are validated in [6]. The developed framework
is based on a classification of higher dimensional edges according to curvature (see for detail
[5]), and thus its validation has to be carried out in two steps (i.e. with respect to the case
of straight edge and the case of circular edge).

For a given synthetic image, we control the degree of edge width denoted as N by
convolving the image with the DSS kernel, the variance (tg) of which varies from 3 to
% (i.e. tg = %,N = 1,2,---,13) in our experiment. Given a blurred synthetic image,
we add three different levels of additive Gaussian noise, namely no noise (o = 0), weak
noise (o = 5.0), and strong noise (¢ = 10.0). While applying the developed framework for
optimal scale selection to the blurred noisy synthetic image, we observe the response of the

edge extraction scheme at edge loci as a function of ¢ for checking whether the expected

scale is selected indeed.

e The straight edge case
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(a) S1 (b) S2 (c) $3 (d) S4

Figure 2.1: Synthetic images representing four different types of straight edge. The in-
between-distance of parallel straight edge lines of S3 corresponds to 40 pixels, whereas the
one of S4 corresponds to 20 pixels. The white line marks the edge locus to be observed.
Recall that the degree of edge width denoted as N (or equivalently tz = %: tg corresponds
to the variance of the DSS kernel) takes 2N + 1 pixels (see for details [6, Sec. 2]).

We use four synthetic images representing four different types of a straight edge (see
Fig. 2.1). S1 has a straight edge line with vertical orientation, whereas S2 contains
a straight edge line with diagonal orientation. The experiments using S1 and S2
can reveal the principal behavior of the optimal scale selection with respect to two
major orientations of a straight edge. In contrast, S3 has several parallel straight
edge lines with diagonal orientation being placed in a parallel fashion with rather
large in-between-distance, while S4 has the same number of them being placed in
a parallel fashion with rather small in-between-distance. The experiments using S3
and S4 can show the behavior of the optimal scale selection with respect to influence

of neighboring straight edges.

e The circular edge case
We use three synthetic images representing three different types of a circular edge (see
Fig. 2.2). C1 has a circular edge curve, whereas C2 and C3 contain several circular
edge curves with two different in-between-distances. Analogously to the straight

edge case, the experiments using C2 and C3 as compared with using C1 can expose



(a) C1 (b) C2 (c) C3

Figure 2.2: Synthetic images representing three different types of circular edge. The in-
between-distance of neighboring circles in C2 corresponds to the diameter of the given
circle, while the one of C3 corresponds to the radius of the given circle. The white curve

marks the edge locus to be observed.

the behavior of the optimal scale selection with respect to influence of neighboring

circular edge curves.

For a given edge width N, let us denote 7(IV) a selected scale value resulting from the
application of the developed framework for optimal scale selection. With respect to 7(N),
we consider four indices, i.e. the mean, the standard deviation, the maximum, and the

minimum of 7(N) along the edge line given as by

l:nl
1
7(N)=—> n(N),
(L
1 I=n;
To(N) = | — TI(N) — T(N))?,
(2_1) ( ) n lZZI:( l( ) ( ))
Tmax = max 7;, and
1<I<n;
Tmin = Min 7y,
1<I<n;

where n; corresponds to the total number of observed edge loci.
By comparing the experimental result of each type of edge, on one hand, we observe

the behavior of the optimal scale selection with respect to orientation (in straight edge case
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only), to the level of noise, and to the degree of in-between-distance of edge structure. On
the other hand, through a comparison of the obtained experimental result with the theo-
retical result, we are able to assess how well the experimental results match the theoretical
result. Note that the full range of experiments, e.g. by fine-sampling of the continuous

parameter space, is beyond the scope of this thesis, and thus left to future work.

2.2 The Straight Edge Case

The theoretical result derived in [5, Sec. 5.2.1] is that an optimal scale value in straight

edge extraction can be directly selected such that
(2.2) S(t) =ti - M(t),

where ¢ is the variance of the DSS kernel used for generating the scale-space representation
and M(t) corresponds to the magnitude of the gradient. A maximum of S(¢) along t is
selected as an optimal scale. Note that, according to optimal scale selection based on 2.2,
7(N) = N must hold.

After describing the results of application of the developed optimal scale selection to
each type of straight edge, we give an assessment on the experimental results compared

with the theoretical result.

2.2.1 Experimental Results

The experimental results of the straight edge case are given Tab. 2.1-Tab. 2.4 as well as
in Fig. 2.3-Fig. 2.6, where selected optimal scale values are given in terms of four indices
given in Eq. 2.1.

For the case of S1, as marked in Fig. 2.1(a), 100 edge loci are observed. Tab. 2.1
shows selected optimal scale values. In case of S1 without noise (denoted as S1,9) given in

Tab. 2.1(a),

7s1,,(N) = N +2 for any edge locus
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Figure 2.3: Selected scales through application of the optimal scale selection to S1.

holds for any N consistently (i.e. for a given edge width, the selected optimal scale values
of edges along the edge line are identical). In other words, 7g;,,(/V) corresponds to N + 2
consistently for any edge locus along the edge line, and thus 7,¢;,,(N) = 0 for any N.
In contrast, from the results of S1 with weak- and strong noise (denoted as S1,5 and
S1,10, respectively) given in Tab. 2.1(b)-(c) it follows that optimal scale values are selected
inconsistently (i.e. the standard deviation of optimal scale values selected along the edge
line is not zero), though 7g;,, and 7s,,, are close to 7s1,,. Note that 7,s1,,, is larger than
Ts81,5, Which implies that optimal scales of edges along the edge line are selected more
inconsistently as the level of noise becomes larger. This can be observed in Fig. 2.3.

As in the case of S1, 100 edge loci of S2 as marked in Fig. 2.1(b) are observed. In case
of S2 without noise (denoted as S2,) given in Tab. 2.2(a),

Ts2,,(N) = N +1 for any edge locus

holds. Similarly to the case of S1, from the results of S2 with weak- and strong noise
(denoted as S2,5 and S2,10, respectively) given in Tab. 2.2(b)-(c) it follows that optimal
scale values are selected inconsistently along the edge line, though 7gs, . and 7Tgo,,,, are close
to Tso,,. Besides, one can see clearly in Fig. 2.4 that the larger the level of noise becomes

the more inconsistently optimal scales of edges along the edge line are selected.



7(N) 3.0 | 40 | 50 | 60| 70 | 80 | 9.0 | 10.0|11.0 | 12.0 | 13.0 | 14.0 | 15.0

7-(N) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Tmaz(N) 3 4 ) 6 7 8 9 10 11 12 13 14 15
Tmin(N) 3 4 ) 6 7 8 9 10 11 12 13 14 15
(a) S].n()

N 1 2 3 4 5 6 7 8 9 10 11 12 13

7(N) 28 | 3.7 | 47 | 5.7 | 6.7 | 7.7 | 87 | 9.7 |10.7 | 11.8 | 12.8 | 13.8 | 14.8

7.(N) | 052 |0.62|0.78 | 0.87 | 0.95|0.99 | 1.02 | 1.09 | 1.09 | 1.05 | 1.02 | 1.06 | 1.06

(b) Slps

7(N) 29 | 38 | 48 | 5.7 | 6.7 | 7.7 | 87 | 9.7 | 10.7 | 11.8 | 129 | 13.9 | 15.0

7.(N) 1092 |1.25|145|1.73|1.87|1.97|2.02]2.03 210 2.10 | 2.06 | 2.05 | 2.07

N) 6 7 8 10 11 12 13 14 15 16 17 19 20

(
TminN)| 1 | 2 [ 2 ] 2] 2] 3| 4|4 |5 |5 |6 | 8|10

(C) SlnlO

Table 2.1: Results obtained from applying the optimal scale selection to S1 in terms of

< 7, Toy Tmaz s Tmin >.



7(N) 20 | 30 | 40 | 50 | 6.0 | 7.0 | 80 |9.00 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0

7-(N) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Tmaz(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
Tmin(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) S2n0

N 1 2 3 4 5 6 7 8 9 10 11 12 13

7(N) 20 129 (3949 |59 69|79 | 88|99 |108]11.8|12.8|13.8

7.(N) |0.17 | 0.36 | 0.51 | 0.63 | 0.78 | 0.87 | 1.01 | 1.04 | 1.09 | 1.26 | 1.28 | 1.34 | 1.46

7(N) 19 129 |41 |51 61|70 )| 80| 89 |98 |108|11.8|12.8|13.8

7.(N) | 054 |0.72{0.93|1.18|1.38|1.60|1.80|1.93|2.11|2.34|248|2.63|2.76

N) 4 5 7 8 10 11 13 14 15 17 18 19 20

(
TminN)V 1 [ 1 | 2 | 3| 3| 4| 4| 4| 4|5 |5 ]5]6

(C) Sino

Table 2.2: Results obtained from applying the optimal scale selection to S2 in terms of

< 7, Toy Tmaz s Tmin >.
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Figure 2.4: Selected scales through application of the optimal scale selection to S2.

Identically with the case of S2, 100 edge loci of S3 as marked in Fig. 2.1(c) are observed.
Tab. 2.3(a) gives results for S3 without noise (denoted as S3,,)

Tss,,(IN) = N +1 for any edge locus,

which is equivalent to the result of S2,y. The results of S3 with weak- and strong noise
(denoted as S3,5 and S3,,19, respectively) are shown in Tab. 2.3(b)-(c), where optimal scale
values are selected inconsistently along the edge line, though 7gs3 . and 7Tg3,,, are close
to Tss,,. Moreover, consistency of selected optimal scales of edges along the edge line is
getting worse as the level of noise becomes larger, which can be seen in Fig. 2.5.

Identically with the case of both S2 and S3, 100 edge loci of S4 as marked in Fig. 2.1(d)
are observed. Tab. 2.4(a) gives results of S4 without noise (denoted as S4,,)

Tsa,o(N) = N +1 for any edge locus,

which is equivalent to the result of both S2,9 and S3,,9. Tab. 2.4(b)-(c) give the results of S4
with weak- and strong noise (denoted as S4,,5 and S4,19, respectively), which almost equal
those of S3,5 and S3,,19. Furthermore, similarly to the case of both S2 and S3, consistency
of selected optimal scales of edges along the edge line is getting worse as the level of noise

becomes larger, which is displayed in Fig. 2.6.
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Figure 2.5: Selected scales through application of the optimal scale selection to S3.

'
l”
ﬂ/ / ' 'M

l /4/// é

l ‘ ’ W

’/;9/"”//’//’/
i /4/

Edge points U Edge points

Edge points

(a) Ts4,., (b) Ts4,5 () TS4,10

Figure 2.6: Selected scales through application of the optimal scale selection to S4.
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7(N) 20 | 30 | 40 | 50 | 6.0 | 7.0 | 80 |9.00 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0

7-(N) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Tmaz(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
Tmin(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) S30

N 1 2 3 4 5 6 7 8 9 10 11 12 13

7(N) 20 | 29 | 38 | 48 | 5.7 | 6.7 | 7.7 | 87 | 9.7 |10.6 | 11.7 | 12.6 | 13.6

7.(N) |0.20 | 0.38 | 0.51 | 0.63 | 0.80 | 0.96 | 1.02 | 1.11 | 1.18 | 1.26 | 1.34 | 1.42 | 1.45

7(N) 19 | 27 | 37 | 47 | 56 | 66 | 76 | 86 | 9.6 | 10.5 | 11.5 | 124 | 134

7.,(N) 047 |0.71{0.99 [ 1.25 | 1.60 | 1.73 | 1.94 | 2.11 | 2.30 | 2.50 | 2.61 | 2.73 | 2.87

N) 3 5 7 9 11 12 14 15 17 18 19 20 20

(
Tmn(N) | 1 | 1 | 2 | 2 | 2] 3 | 3| 3|3 /|3 /] 4| 4]4

(C) S3n10

Table 2.3: Results obtained from applying the optimal scale selection to S3 in terms of

< 7, Toy Tmaz s Tmin >.
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7(N) 20 | 30 | 40 | 50 | 6.0 | 7.0 | 80 |9.00 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0

7-(N) | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00

Tmaz(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
Tmin(N) 2 3 4 5 6 7 8 9 10 11 12 13 14
(a) S4:n0

N 1 2 3 4 5 6 7 8 9 10 11 12 13

7(N) 20 | 29 | 38 | 48 | 5.7 | 6.7 | 7.7 | 87 | 9.7 |10.6 | 11.7 | 12.6 | 13.6

7.(N) |0.20 | 0.38 | 0.51 | 0.63 | 0.80 | 0.96 | 1.02 | 1.11 | 1.18 | 1.26 | 1.34 | 1.42 | 1.45

7(N) 19 | 27 | 37 | 47 | 56 | 6.6 | 76 | 86 | 9.6 | 10.5 | 11.5 | 124 | 13.3

7.(N) | 047 |0.71{0.99 | 1.25 | 1.60 | 1.73 | 1.94 | 2.11 | 2.30 | 2.50 | 2.59 | 2.73 | 2.86

N) 3 5 7 9 11 12 14 15 17 18 19 20 20

(
Tmn(N) | 1 | 1 | 2 | 2 | 2] 3 | 3| 3|3 /|3 /] 4| 4]4

(C) S4n10

Table 2.4: Results obtained from applying the optimal scale selection to S4 in terms of

< 7, Toy Tmaz s Tmin >.
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2.2.2 Assessment

Fig. 2.7 gives a graphical illustration of the experimental results of both S1 and S2 in terms

of < 7,7, >. In the noiseless case of Fig. 2.7,
Ts1,,(N) =N +2 vs. 7Tg, (N)=N+1

holds consistently for any N. Although it is difficult to account for the difference (i.e. one)
between 751 , and 7gy,,, it is obvious that there exists a slight difference in the results of
optimal scale selection according to the different orientations of a straight edge. Besides, in
the noisy case of Fig. 2.7, one can see that in general the larger the level of noise becomes
the more inconsistent the result is, though TS 510} and TS2(nsmi0y L€ close to Tg;,, and
Ts2,,, espectively. However, in particular the variation of 7,52, . .., 18 relatively larger
than 7,51, .10, @ the degree of edge width increases. This implies that, for a given large
edge width, optimal scale selection for the vertical orientation of a noisy straight edge is
relatively more consistent than for the diagonal orientation of a noisy straight edge.

One can find a graphical illustration of the experimental results of both S3 and S4 in

terms of < 7,7, > in Fig. 2.8, where
TS3n0 (N) - TS4n0 (N) — N + ]-

holds consistently for any N, which is equivalent to the case of S2,. In the noisy case
of Fig. 2.8, the results of S3(,5 .10} (see for detail Tab. 2.3) are highly similar to those of
S4¢n5n10} (see for detail Tab. 2.4), even though TS3 {5m10) and TS4(p5m10) A€ generally less
close to Tss,, than Tsa,; ..,,- This means that the neighboring noisy straight edges have
a negative influence on the result of optimal scale selection. However, the degree of the
in-between-distance has only a low effect on the result of optimal scale selection, where
‘a low effect’ is only valid in our experiment on condition that the in-between-distance of
neighboring parallel straight edge lines should be larger than 20 pixels (see Fig. 2.1).
Tab. 2.5 summarizes the experimental results of each type of straight edge compared
with the theoretical result illustrated in both Fig. 2.7 and Fig. 2.8. One can recognize

from Tab. 2.5 that the obtained experimental results are close to the theoretical results

14



S1 S2 S3 S4
noiseless | T(N) =N+2 | 7(N)=N+1|7(N)=N+1|7(N)=N+1
Experimental result | weaknoise | T(N) = N+2 |T(N)=N+1 |7T(N)=N+1|7(N)=~N+1
strong noise | 7(N) ~N+2 [T (N)~N+1|T(N)~N+1|7(N)~N+1
Theoretical result T(N)=N

Table 2.5: Comparison of the experimental results through application of the developed

optimal scale selection to each type of straight edge with the theoretical result.

on the whole, though the experimental results slightly deviate from the theoretical ones.
A close speculation about a definite reason of this slight deviation is beyond the scope of
this thesis, however, we conjecture that it might be caused in part by an inevitable gap
between a continuous theory and a discrete implementation. In particular, for each type
of straight edge given here, a consistent result can be expected only in the case of noiseless
images, whereas noisy images yield inconsistent result. This is due to the fact that the

developed framework was derived on the basis of a the noiseless sigmoid edge model.

2.3 The Circular Edge Case

The theoretical result derived in [5, Sec. 5.2.2] is that an optimal scale value in circular

edge extraction can be uniquely selected such that

(2.3) S(t) = e - M(t),

where R is the given radius of a circular edge, ¢ is the variance of the DSS kernel used
for generating the scale-space representation, and M (t) corresponds to the magnitude of
the gradient. Since the value of ¢ satisfying S(¢t) = I;(R) (I;(-) is the modified Bessel
function of integer order 1) corresponds to R — tg, the optimal scale (i.e. tg) is selected
by observing S(t) along t. In other words, according to optimal scale selection based on

Eq. 2.3, T(év) =R-— % viz. 7(N) = 3R— N must hold. Note that the developed framework

is the first approach to optimal scale selection in circular edge extraction.

15
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For the circular edge case, beside < 7, 7, Tmax, Tmin > given in Eq. 2.1, we additionally

examine the fit of S(7(NN)) with I;(R) which we denote p(N) defined as
(2.4) p(N) = [L(R) = S(r(N))],

where R is the given radius of a circular edge. p(N) indicates how accurately S(7(N))
fits I; (R). According to the theoretical result of Eq. 2.3, p(N) = 0 must hold for any N.
However, experimental results show that p(IN) hardly equals exactly zero. With respect to
p(N), we consider two indices i.e. the mean and the standard deviation of p(N) along the

edge curve given by

pV) = -3 (),
(2.5) l:t:n
pa(N) = nilZm(N) BN,

where n; corresponds to the total number of observed edge loci along the circular edge
curve.

After presentation of the results of applying the developed optimal scale selection to
each type of circular edge, we give an assessment of the experimental results compared

with the theoretical result.

2.3.1 Experimental Results

The experimental results of the circular edge case are given in Tab. 2.6-Tab. 2.8 as well
as in Fig. 2.9-Fig. 2.11. The radius is given by R = 10 which corresponds to ten pixels.
Selected scale values are given in terms of six indices shown in both Eq. 2.1 and Eq. 2.5.
For the case of C1, 70 edge loci as marked in Fig. 2.2(a) are observed clockwise. From
both Tab. 2.6 and Fig. 2.9, one can see that the experimental results of C1 without noise
(denoted as Cl,p) as well as of C1 with weak- and strong noise (denoted as Cl,5 and
Cl,10, respectively) are roughly close to the theoretical result (i.e. 7(N) = 3-10 — N),
although the responses of 7(N) along the edge curves are not consistent. It is noticeable

that < p, p, > of Cl,g, Cl,5, and Cl, is in general quite small for any V.

18



N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |27.68|26.68 |25.68 |24.68 | 23.68 | 22.68 | 21.68 | 20.68 [ 19.68 | 18.68 | 17.68 | 16.68 | 15.68
7o(N) | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53

Tmae(N)| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) 046|046 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46

ps(N) | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22
(a) Clyo

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
7(N) |28.10|27.11|26.11|25.08|24.10|23.08 |22.10|21.13 | 20.11 | 19.10 [ 18.10 [ 17.14 | 16.17
To(N) | 1.40 | 1.42 | 1.42 | 1.43 | 1.44 | 1.44 | 1.46 | 1.49 | 1.50 | 1.51 | 1.53 | 1.59 | 1.61

Tmae(N)| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 21 | 20

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) |0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.49 | 0.48 | 0.47 | 0.46 | 0.46 | 0.46 | 0.47 | 0.48

po(N) 024 |0.23]0.23|0.24 | 0.24|0.24 | 0.25 | 0.26 | 0.26 | 0.26 | 0.27 | 0.25 | 0.24
(b) Clus

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |28.32|27.31|26.35|25.35|24.35 | 23.37 | 22.41 | 21.44 [ 20.44 | 19.42 | 18.44 | 17.46 | 16.35
7o(N) | 1.64 | 1.65 | 1.68 | 1.71 | 1.80 | 1.83 | 1.88 | 1.96 | 2.02 | 2.06 | 2.17 | 2.20 | 2.34

Tmaz(N)| 32 | 31 | 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 24 | 23 | 22

Tmin(N)| 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 12

p(N) 1043|043 | 043|042 |0.43 | 0.44 | 0.44 | 0.44 | 0.45 | 0.46 | 0.45 | 0.49 | 0.53

ps(N) | 0.24 | 0.25 | 0.26 | 0.26 | 0.24 | 0.24 | 0.26 | 0.26 | 0.25 | 0.26 | 0.27 | 0.24 | 0.23
(c) Clpo

Table 2.6: Results obtained from applying the optimal scale selection to C1 in terms of

< 7, Toy Tmaz s Tmin > and < ﬁv Po >.
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Figure 2.9: Selected scales through application of the optimal scale selection to C1.

As in the case of C1, 70 edge loci of C2 as marked in Fig. 2.2(b) are observed clockwise.
The radius of the marked circle is equivalent to that of C1, and the in-between-distance of
neighboring circles is the diameter (D = 2R) of the given circle (i.e D = 20 corresponding
to 20 pixels). From both Tab. 2.7 and Fig. 2.10, one can see that the experimental results
of C2,9, C2,5, and C2,19 are roughly close to the theoretical result, although the responses
of 7(IN) along the edge curves are not consistent for a given N. Also, the inconsistency of
7(N) seems to be getting larger as the level of noise becomes larger. However, < p, p, >
of C2,0, C2,5, and C2,p is in general quite small for any V.

As in the case of C2, 70 edge loci of C3 as marked in Fig. 2.2(c) are observed clockwise.
The radius of the marked circle is equivalent to that of C2, and the in-between-distance
of neighboring circles is the radius (R = 10) of the given circle (i.e R = 10 corresponding
to 10 pixels). It is interesting to observe that the experimental results of the case of C3

shown in both Tab. 2.8 and Fig. 2.11 are very similar to those of the case of C2.

2.3.2 Assessment

Fig. 2.12 gives a graphical illustration of the experimental results of C1, C2, and C3 in
terms of < 7,7, > compared with the theoretical result.

One can notice several remarkable aspects from Fig. 2.12. First, the obtained experi-
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Figure 2.10: Selected scales through application of the optimal scale selection to C2
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N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |27.68|26.68 |25.68 |24.68 | 23.68 | 22.68 | 21.68 | 20.68 [ 19.68 | 18.68 | 17.68 | 16.68 | 15.68
7o(N) | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53

Tmae(N)| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) 046|046 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46

ps(N) | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22 | 0.22
(a) C2p0

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
7(N) |28.03]27.03|26.03|25.03|24.03|23.04 | 22.04 | 21.08 [20.11 [19.15 | 18.17 | 17.27 | 16.30
7o(N) | 1.60 | 1.61 | 1.61 | 1.61 | 1.61 | 1.60 | 1.61 | 1.66 | 1.68 | 1.68 | 1.69 | 1.74 | 1.74

Tmae(N)| 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 20 | 19

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) |0.40 | 0.40 | 0.40 | 0.41 | 0.42 | 0.43 | 0.44 | 0.45 | 0.45 | 0.46 | 0.47 | 0.46 | 0.45

po(N) 1023 |0.22]0.23|0.22|0.23]0.23|024 |0.25|0.27 | 0.27 | 0.27 | 0.27 | 0.27
(b) C2n5

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |28.24|27.31|26.31|25.32|24.34 | 23.38 | 22.41 | 21.48 [ 20.49 | 19.35 | 18.62 | 17.66 | 16.68
7o(N) | 1.86 | 1.87 | 1.92 | 1.95 | 1.96 | 1.97 | 2.01 | 2.03 | 2.06 | 2.95 | 2.20 | 2.21 | 2.29

Tmaz(N)| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 22 | 21 | 20

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 2 | 13 | 12 | 10

p(N) ]0.50 | 0.50 | 0.50 | 0.50 | 0.49 | 0.49 | 0.49 | 0.50 | 0.51 | 0.50 | 0.47 | 0.43 | 0.43

ps(N) | 0.26 | 0.26 | 0.25 | 0.24 | 0.24 | 0.25 | 0.25 | 0.25 | 0.25 | 0.27 | 0.27 | 0.26 | 0.27
(¢) C2n10

Table 2.7: Results obtained from applying the optimal scale selection to C2 in terms of

< 7, Toy Tmaz s Tmin > and < ﬁv Po >.
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N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |27.68|26.68 |25.68 |24.68 | 23.68 | 22.68 | 21.68 | 20.68 [ 19.68 | 18.68 | 17.68 | 16.68 | 15.68
7o(N) | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53 | 1.53

Tmae(N)| 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) 1039039039039 |0.39]|0.39|0.39]0.39 | 0.39 | 0.39 | 0.39 | 0.39 | 0.39

ps(N) | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20 | 0.20
(a) C3no

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
7(N) |27.99|26.97|25.99|25.01|24.01|23.03|22.01|21.04 |20.04 | 19.07 [18.08 [ 17.14 | 16.17
7o(N) | 1.67 | 1.67 | 1.68 | 1.63 | 1.63 | 1.61 | 1.62 | 1.62 | 1.62 | 1.65 | 1.65 | 1.71 | 1.73

Tmae(N)| 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 21 | 20 | 20 | 19

Tmin(N)| 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12

p(N) 041|041 | 041|042 |0.43 | 0.43 | 0.44 | 0.45 | 0.45 | 0.46 | 0.47 | 0.48 | 0.48

po(N) 1029 | 0.29 | 0.28 | 0.27 | 0.26 | 0.25 | 0.25 | 0.24 | 0.25 | 0.26 | 0.27 | 0.27 | 0.27
(b) C3ns

N 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12 | 13
T(N) |28.14|27.15|26.15|25.21 | 24.23 | 23.25 | 22.31 | 21.37 [ 20.37| 19.23 | 18.52 | 17.58 | 16.55
To(N) | 1.94 | 1.95 | 1.98 | 2.01 | 2.02 | 2.02 | 2.02 | 2.04 | 2.04 | 2.93 | 2.23 | 2.26 | 2.30

Tmaz(N)| 31 | 30 | 29 | 28 | 27 | 26 | 25 | 24 | 23 | 22 | 22 | 21 | 20

Tmin(N)| 23 | 22 | 20 | 20 | 19 | 18 | 18 | 17 | 16 | 2 | 13 | 12 | 10

p(N) 1047|046 | 0.45 | 0.44 | 0.44 | 0.44 | 0.45 | 0.48 | 0.52 | 0.52 | 0.52 | 0.49 | 0.47

ps(N) | 0.25 | 0.26 | 0.28 | 0.29 | 0.29 | 0.30 | 0.28 | 0.26 | 0.26 | 0.27 | 0.25 | 0.24 | 0.26
(c) C3n10

Table 2.8: Results obtained from applying the optimal scale selection to C3 in terms of

< 7, Toy Tmaz s Tmin > and < ﬁv Po >.
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mental results are close to the theoretical results on the whole, though the experimental
results do not coincide exactly with the theoretical one. The slightly inconsistent deviation
of experimental results from the theoretical one may be rightfully assumed to be caused by
an inevitable gap between a well-founded continuous theory and the implemented discrete
case. In other words, even though the circular edge curves of the synthetic images used in
our experiment were obtained from the mathematical equation of a circle, strictly speak-
ing, they are not perfectly circular in a discretized image plane. Second, the experimental
results are rarely affected by noise, compared with the straight edge case. This is because
that the radius value of a circular edge plays a decisive role in optimal scale selection of de-
veloped framework (see Eq. 2.3) in which the selected optimal scale value mainly depends
on the radius value, and thus the level of noise has on less influence on the circular edge
case than on the straight edge case. Moreover, the degree of the in-between-distance has
few effect on the result of optimal scale selection, which is only valid in our experiment
on condition that the in-between-distance of neighboring circles should be larger than 10

pixels (see Fig. 2.2).
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Figure 2.12: Graphical illustration of experimental results of C1, C2, and C3 compared with

the theoretical result. Each row differs in the type of circular edge and each column differs

in the level of noise.

while ‘¢’ with error bar represents the experimental result.
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‘.. .-’ corresponds to the theoretical result (i.e. 7(N) = 30— N),



3 Summary

In this report, we presented the results of a validation study in which we investigated how
well the experimental results obtained from application of the developed framework to an
image match the theoretical result. It is worth noticing that this validation study is the
first attempt for validating optimal scale selection approach in higher dimensional edge
extraction, and thus its contribution should be understood as an exemplary stepping stone
towards a fully fledged validation study.

In the straight edge case, the obtained experimental results are close to the theoretical
results on the whole, though the experimental results slightly deviate from the theoretical
ones. In particular, for each type of straight edge given here, a consistent result can
be expected only with noiseless image, whereas noisy images yield inconsistent result.
This is due to the fact that the developed framework was derived based on the noiseless
sigmoid edge model. In the circular edge case, the obtained experimental results are again
close to the theoretical results on the whole, though experimental results do not coincide
exactly with the theoretical ones, which may be rightfully assumed to be caused by an
inevitable gap between a well-founded continuous theory and the implemented discrete
case. Furthermore, the experimental results are rarely affected by noise, as compared with
the straight edge case. Both in the straight edge case and in the circular edge case, the
degree of the in-between-distance of neighboring edge structures has only a low effect on

the experimental result.
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