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1 Introduction

The improved discrete scale-space (DSS) formulation for 2-D and 3-D signals developed

in Lim [3] does not satisfy the semi-group property, so that it is necessary to supplement it.

In this report, first we look into the variance of the discrete scale-space kernels which is
closely related to the semi-group property. Then, we address the problem of the improved

discrete scale-space formulation, and suggest a generalized approach to supplementing it.



2 Variance of the DSS kernels

In this section, we describe how to calculate the variance of the DSS kernels based on
the probability theory. The variance of the DSS kernel is important in order to examine

whether the DSS kernel satisfies the semi-group property.

According to the probability theory ([1]), a probability function of discrete random

variable X defined on a sample space is given by

P, ifX =g (i=12.)
f(z) =
0

For a given symmetric 1-D DSS kernel with the smallest variance derived in [3]

let us assume T'(z) to be a probability function f(z) of the discrete random variable X

with the possible values = —1,0, 1 given by

X |-110 1
f@ |5 ]5]%
where the expected (or mean) value (as defined in [1]) is given by
1 2 1

T

and the variance is given by

Var(X) = E(X?) — [BE(X)]? = (-1)2- % +0%- § +12%- % — 02 = 3

On the other hand, the convolution of T'(z) with itself corresponds to
T@*T@)=(% 3 4 3 &),

where the mean is again 0 and the variance now is 2 (i.e. (—2)%- 5 +(—1)2-2+0%- 2 4+1%-

% +22. % — 02), from which one can see that the 1-D discrete scale-space kernel satisfies
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the semi-group property!, since h(-;t;) x h(+;t2) = h(-;t; + t2). Accordingly, the 1-D DSS

kernel derived from k — 1 times convolution of T'(x) with itself is given by

T a:;E =T 31:;1 koo kT ar:;1 ,
3 3 3

~
k—1 times convolution

where § is the variance.

In general, the N-D (or multivariate) normal density of the random vector is denoted
by Ny (u,X) ([2]), where p (IV x 1) is the expected (mean) vector and X (N x N) is the

variance-covariance matrix e.g. in 3-D given by

2 2 2

Oz Ua:y Oz

— 2 2 2
Y= Ope Oy Oy |

2 2 2

O o-zy 0,

where 02, 02, and o7 correspond to the variances of the 1-D normal density of the random
variables X, Y, and Z. If X, Y, and Z are independent random variables, then E(XY Z) =
E(X)E(Y)E(Z) holds. In general, the covariance of X and Y is given by o,, = E(XY) —
E(X)E(Y), and in case of independence o,, = 0 since E(XY) = E(X)E(Y) (asis0,, =0

and o,, = 0), which leads to

o2 0 0
Y=10 05 0
0 0 o2
The N-D DSS kernel is given by
(2.1) T(xy, 22, xn;t) = T(z1;t) * T(zg;t) % - - T (xp; 1),

which is separable, and the variance ¢ is identical with that of the convolved 1-D DSS

kernels. Assuming that the N-D DSS kernel has been derived from the convolution of 1-D

!By definition of group theory, if every smoothing kernel is associated with a parameter value, and if
two such kernels are convolved with each other, then the resulting kernel should be a member of the same

family ([6]).



DSS kernel with itself as given in Eq. 2.1 yielding the multivariate normal density, the

covariance matrix corresponds to

(t 0 - 0)

ZT:

00 - t)

Consequently, the variance of the N-D DSS kernel is calculated using the determinant of

its covariance matrix such that

Sr|¥ =t



3 Supplement for Higher Dimensional DSS Kernels

In Lim [3], we developed an improved discrete scale-space formulation for 2-D and 3-D

signals based on the following (see [3] for details):

1. Definition of the neighborhood connectivity and of the Laplacian of the higher di-

mensional discrete scale-space kernel.
2. Construction of the discretized diffusion equation for the iteration kernel.

3. Determination of the parameter v (in 3-D, v; and 7,) which plays the role of pre-
serving the rotational symmetry of the discrete scale-space kernel based on the as-

sumption that the iteration kernel should be separable.

However, the improved 2-D and 3-D discrete scale-space kernels derived in [3] do not satisfy
the semi-group property which is one of the important properties of the linear scale-space
theory. In this section, we clarify this problem, and suggest a generalized approach to
supplementing it.
According to the semi-group property (see Footnote 1) and given a family of the scale-
space representation L with increasing scale parameter t,
L(-;ty +ta) = L(+t1) * G(+; ta)
= f(-)* G(:;t1) x G(+; t2)
must hold, where f(-) corresponds to the original continuous signal and G(-;t) is the
Gaussian kernel. Analogously, this property must be fulfilled in the discrete scale-space
formulation, where the semi-group property means that the family of the scale-space rep-

resentation is generated by
L5k~ A8) = F() « T( k- A1)
= fO)* (T(; At) - - -+ T(; At)),

J

~
k—1 times convolution

where T'(-; At) is the discrete scale-space iteration kernel with scale step At, and the value
of At must be equivalent with that of the variance of T' (such that ¢ corresponds to the

variance of G(+;t)).



3.1 2-D Case

The value of 7 is determined as § and that of At is as - in [3], from which the 2-D iteration

kernel is given by

1 1 1
36 9 36
) — |1 4 1
T(z,y; At) = 9 9 09
1 1 1
36 9 36
(3.2)
1
6
=(1 2 1} 412
6 3 6 3|
1
6
where At = % and ‘“*’ denotes convolution. As mentioned in the previous section, the

variance of T' can be calculated using the determinant of its covariance matrix given by

11
|ET| 2 = g,
where the covariance matrix of 7' is given by
1
= 0
ET - 3 L
0 3

3= %) is not identical

One can see from above that the value of the variance (i.e. |Xr|
with the value of the scale step (At = ), which shows that the derived value of At is
incorrect. For example, according to the semi-group property, the 2-D DSS kernel derived

from k — 1 times self-convolution of T'(x, y;t) is given by

T(x,y;k-t) =T(z,y;t) - - x T(x,y;t),

- 7

~
k—1 times convolution

where

T(x,y;t) =

L= o= L=
Ol Ol Ol
L= o~ =
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where ¢ corresponds to % (see above). Provided that At = 5 is used as the variance value,

18
the semi-group property cannot be satisfied; that is, & - 15—8 is far from being equivalent

to k - 3 which is the correct variance value. And even worse, as k (i.e. the number of

self-convolutions) increases, the difference between k- = and k - + increases.

18 %

As a consequence, we must correct the derivation made in [3]. Tracing back to the
outset, we conjecture that there might exist a problem in the definition of the Laplacian of
the 2-D discrete scale-space kernel (for detail see [3, Sec. 3.1.2]). In [3], for the definition of
the Laplacian of 2N\/§, we intended to steer the ratio of rotational symmetry between the
Laplacian of 2Ny and the Laplacian of 2N, 5 only with the help of parameter v, and thus
we avoided setting an additional ambiguous (or unexplained) coefficient. In other words,
we did not a priori define any coefficient, while Lindeberg set it to % However, one can see
clearly that this (i.e. avoidance of any coefficient in definition of the Laplacian of 2N 5) does
not give rise to the correct result (i.e. the 2-D DSS kernel does not satisfy the semi-group
property). On the other hand, one cannot find any proof that the unexplained coefficient
in the definition of the Laplacian of 2N\/§ given by Lindeberg is proper. Therefore, in a
more generalized way, we set this coefficient as a variable A\ and determine its proper value
through the following theoretical derivation.

The 2-D discrete scale-space representation L satisfies
1o 1 2 2
&LMWJ%=§V1&&%@25(ﬂ—v“@wuﬁyw%%wvwﬂM%yw»

for v € [0,1] and A € (0, 1), which can be further discretized using Euler’s explicit method

with scale step At given by

(3.3)
k k k
Lt =LF 4+ At (0Ly,)
k 1 2 2
:Lw,y + At§ ((1 — ’Y)V2N1L + )\’YV2N\/§L)
1
:(1 - 2At(1 -7+ A’Y))LI;,y + §At(1 - 7) (Ll;;fl,y + LI;+1,y + Lfc,yfl + Lfc,erl)

A
+ §At’7 (Loiyor + Loy + Lon g + Lir i)



where subscripts  and y denote the spatial coordinates, and superscript k represents the
iteration index. This discretization with scale step At corresponds to the iteration with

the 2-D discrete iteration kernel given by

%’yAt %(1 —y)At %’yAt
(3.4) Tae= | L1 —7y)At 1 =241 —y+N\y) L(1-7)At],
%yﬁt %(1 — )\t %yﬁt

where the parameter v plays the role of preserving the rotational symmetry of the 2-D
discrete scale-space kernel.

The generating function describing one iteration of (3.3) is

1-— A
%step(2,X) =(1 — 241 — v+ \y)) + ( 5 ) AtA + %AtB,
where

A=zt 424 x T +x
B =2+ + a7+ 2y,

and we obtain the generating function describing the composed transformation (At = %)

as

2‘Pcomposed,n(za X) = (2§05tep(za X))n

= <1+% (—2(1—7+/\7)+L27)A+%B>>n.

Based on the fact that lim, (1 + a,/n)" = e® if lim,_,, o, = a, the generating function
of the kernel describing the transformation from the original signal to the representation

at a certain scale t is given by

or(zx) = Y T(m,n;t)2"y"

(m,n)€Z?

91— A=) g4 My
— (2055 a0 B)

Its Fourier transform is derived by replacing complex variables z and y with e * and e~ %



as

F (er(z,x)) = r(e ™, e7™)
= 2@Z)T(cos u — isinu,cosv — isinv)

_ et(72(17'y+)\'y)+(17'y)(cos u+Ccosv)+Ay2 cos u cos v)
)

which can be transformed into polar coordinates given a fixed value of radius r and an

angular variable ¢ such that u = r cos ¢ and v = rsin ¢:

Yu(r, ) = elHr ),
where
k(r,¢) = —=2(1 — v+ Ay) + (1 — v)(cos(r cos ¢) + cos(r sin ¢))
+ A2 cos(r cos ¢) cos(r sin ¢).
k(r,¢) depends on three variables, i.e., r, ¢, and -, and we intend to determine the value
of v which gives the smallest angular variation of ¢ for a fixed value r. For examining the

¢-dependency of v from k(r, ¢), we expand the MacLaurin series of k(r, ¢) with respect to
r with the help of Mathematica ([7]);

1 +2)
k(r,g) = ———1r* +-O(r")
1-— 2A 41 —1 1—~—4A 4
B 72+ 7,2, 343 )+E)6 v — 4\y) cos ¢>r4+0(ra)_

It is clear from the MacLaurin series that if 1 —y—4Avy = 0 then the ¢-dependency decreases
by r% instead of r*, which implies that the smallest angular variation is given with respect
to the 2-D discrete scale-space kernel when v = 1/(1+4)). That is to say, ¥ = 1/(1 4+ 4))
yields the least possible rotational asymmetry for the 2-D discrete scale-space kernel.

As a consequence, the 2-D iteration kernel of (3.4) by substituting v = 1/(1 + 4\)

corresponds to

_2)
(1+4A) At 144X At (1+4>\) At
— A A
(3.5) Tae= 1i4AAt 1— 22Nt (1+4>\) At
2)
1+4)\ sy Ot 1+4)\At 1+4)\ sy Ot
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where At > 0.
According to the assumption that the 2-D iteration kernel should be separable (i.e., the
2-D iteration kernel should be constructed by convolution of the 1-D kernel with itself),

a [ & a(l - 2a) a’
(a 1-—2a a)* 1—2a| = |a(l—-2a) (1-2a)?* a(l-— 2a)
a a? a(1l - 2a) a’
2)
1+4)\ s Ot Tt 1+4>\ sy O
_ 2) 10
o 1+4>\At 1— 1+4) At (1+4>\) AE
22
1+4A EETyyEAUNNE e VAL 1+4)\ sy O
for0<a< i, we obtain
1 2 1
2 and At=Z4—
“T M TS

Besides, in order to satisfy the semi-group property, /At should correspond to the variance

of the 2-D discrete iteration kernel (see Section 2), which means

At = 2a
must hold. Then, we finally have
1 1 1
_= — _= — _= — A e
a & A 5 y 3 and t

It is noticeable here that the value of parameter A (i.e. %) that corresponds to the coeflicient
in the definition of the Laplacian of 2Nﬁ is equal to that defined by Lindeberg in [5, p.
105].

Consequently, the 2-D separable iteration kernel for the rotationally least asymmetric

2-D discrete scale-space kernel satisfying the semi-group property is given by

1 1 1 1
6 36 9 36
. Trh,.= (1 2 Ll1)x]2]| = 1 4 1
(3.6) At 6 3 & 3 s 9 19 |
1 1 1 1
6 36 9 36
where At = ;

11



3.2 3-D Case

In [3], for the least rotationally asymmetric 3-D discrete scale-space kernel, parameters 7;

and <, are determined as &= and %, and the 3-D discrete iteration kernel is given by

21 21
11 1 1 2 1
216 54 216 54 27 54
. _ 1 2 1 2 8 2
T(x,y, Z; At) |52 7 w1 ) > 97 o7
(3.7) 1 21
216 54 216/ 44 54 21 54/,

:(1 2 1) *(1 2 1) *(1 2 1)
6 3 6/, \6 3 6/, \6 3 5/,
where At = L

36"

The variance of T" of Eq. 3.7 is calculated using the determinant of its covariance matrix

(equivalently to the 2-D case; see Section 2) given by
1 1
|Xr|3 = 3

where

e
o O

Sp =

o O Wi

O Wi
W=

Similarly to the 2-D case, the variance (T = ) is not equivalent to the scale step (At = 52,
which implies that the semi-group property cannot be satisfied (see Section 3.1).

As already shown for the the 2-D case in the previous section, we here correct the
definition of the Laplacians of ?N 5 and of N s set as in [3]. In defining the Laplacians
of *N 5 and of ®N s, we intended to steer the ratio of rotational symmetry between the
Laplacian of Ny, the Laplacian of >N 5, and the Laplacian of >N, ;5 only with the help of
parameters 7; and ys. Therefore, we avoided setting additional ambiguous (or unexplained)
coefficients or, respectively, we did not a priori define any coefficients in the definition of
the Laplacians of 3N\/§ and of 3N\/§, while Lindeberg set them both to %. However, our

outset does not give rise to the correct result (i.e., the semi-group property is not satisfied).

On the other hand, it is not clear why those parameters set by Lindeberg both must be i.

12



As a consequence, we again approach this problem in a more generalized way: We define
the coefficients of the Laplacians of *N 5 and of ®N 5 as A; and \;, and determine their
proper values through the following theoretical derivation.

The 3-D discrete scale-space representation L satisfies

1

for 71,72 € [0,1] and A;, Ay € (0,1), which can be discretized using Euler’s explicit method
with scale step At given by

(3.8)
k k k

1
:Lalz,y,z + At§ ((1 — Y1 — 72)V§N1L + )\171V§N\/§L + )\2’}/2V§N\/§L>

. k
=(1+ At(=34 (3= 6M)1 + (3 —4X2)72)) Ly, . +
1

§At(1 - M~ 72)(LI;,y,z—1 + LI;,y,z—l—l + Lg,y—l,z + LI;,y—I—l,z + Ll;—l,y,z + Lg—l—l,y,z) +

M
k k k k k k
EAt’}/l (Lw—l,y—l,z + Lx—l,y—l—l,z + Lw—l—l,y—l,z + Lw—l—l,y-i—l,z + Lx—l,y,z—l + Lw—l,y,z-i—l +

k k k k k k
Lw—l—l,y,z—l + Lx—l,y,z—l + Lw,y—l,z—l + Lw,y—l,z-i—l + Lx,y—l—l,z—l + Lw,y-l—l,z-i—l) +
A2 k k k k k
3At72(Lw—l,y—1,z—1 + Lx—l—l,y—l,z—l + Lw—l,y-i—l,z—l + Lx—l,y—l,z—i—l + Lw—l,y-i—l,z-i—l +
k k k

Lw—l—l,y—l,z-i—l + Lx-l—l,y—l—l,z—l + Lw—l—l,y-}-l,z-i—l)’
where subscripts x, y, and z denote the spatial coordinates, and superscript k represents
the iteration index. This discretization with /At corresponds to the iteration with the 3-D

discrete iteration kernel described with respect to z + 1 and z along the z-axis given by

(3.9)
2 Aty A 2 Aty
Tre= | 340ty 30t =7 —72) A
2 Aty % Aty 2 Aty .
Aty 3OtL =7 —72) A
AL =y —y2) 1+AH=3+(B3=6A)71+ (3—4X)y2) AL -7 — 1)
3Ot AL — 71— 72) A Aty

13



where the parameters vy, and v, play the role of preserving the rotational symmetry of the
3-D discrete scale-space kernel.

The generating function describing one iteration of (3.8) is

Wstep(2, X, T) = (1 + At(=3+ (3 — 6A1)71 + (3 — 4X2)72)) +
1 A A
5&@—%—WM+§AWB+§N%Q

where

A 2 a4+ x T x4

B : z_lx_l + z_lx + zx_l +2x + P + 27y + 271 + z7 + X_IT_l + X_lT + XT_l + XT
C : zW U tdoexy vz P42y v+ vr+ o r 4+ 2xr 4 2xT,

and we obtain the generating function describing the composed transformation (At = %)

3§0composed,n(za X 7_) = (3Q05tep(2, X5 7_))” =

t 11—y — A A "
<1 +— ((—3 + (3= 6A)n + (3 —4X)72) + d=m =) 7; 1) 4y 12713 + 2272c>> ,

Based on the fact that lim, , (1 + a,/n)" = e® if lim,,_,, o, = a, the generating function
of the kernel describing the transformation from the original signal to the representation
at a certain scale t is given by

Yor(z,x,T) = Z T(m,n,l;t)z™x"7!
(m,n,l)eZ3

—t(=3+3=6A1)m +(3—4Aa)y2)+ EE0L=2) 4y M gy A0%2 ¢

Its Fourier transform is derived by replacing complex variables z, x, and 7, respectively,

with e™, e, and e™* as

F (3g0T(z, X, T)) = 3p(e ™ e ™, e ™) = %pp(cosu — isinu,cosv — isin v, cosw — isinw)

t((—34(3—6A1)y1+(3—4A2)v2)+(1—v1—72)(cos u+cos v+cos w)+A1v12(cos u cos v+cos u cos w—+cos v cos w)+A2724 cos u oS v oS w)

Y

=€

which can be transformed into spherical coordinates as a function of spherical angles ¢ and

6 given a fixed value of radius r such that u = rcos¢sinf, v = rsin ¢sin 6, and w = r cos 6:

31/)T(T7 QS, 9) = e(t'k(r«ﬁﬂ)),

14



where

k(r,p,0) = (=3+(3—=6A1)71 + (3—4X2)72) +
(1 — 1 — 72)(cos(r cos ¢ sin f) + cos(rsin ¢ sin 6) + cos(r cos#)) +
A1712(cos(r cos ¢ sin 0) cos(r sin ¢ sin 6) + cos(r cos ¢ sin 6) cos(r cos 6) +
cos(r sin ¢ sin @) cos(r cos #)) +
Aoy24 cos(r cos ¢ sin 6) cos(r sin @ sin 0) cos(r cos 6).
Now from k(r, ¢, §) we must determine the values of 7; and v, that give the smallest angular
variation of ¢ and @ for a fixed value r. For examining the ¢- and #-dependency of v; and

v2 from k(r, ¢, 6), we expand the MacLaurin series of k(r, ¢, 6) with respect to r with the
help of Mathematica ([7]);

k(r, ¢,0)
— O(rY - l—m+ 4)\17; — Y2 +4Aa2 2
— o) — l—m+ 4)\17; — Y2 +4Aa72 2y

((1 + (=14 4X)71 — 72 + 4X272) cos*(8) + 12(A1y1 + 2A972) cos?(6) sin®(6) —

sin® (6
4

(3(—1 + Y1 — 6)\1’}/1 + Y2 — 8)\2’)/2) + (—1 + Y1 + 2)\1’)/1 + Y2 + 8)\2’72) COS(4¢)))
where the ¢-dependency of k(r, ¢, 6) decreases by r® instead of r* if
—1 4y +2 71 + 72 +8Xy2 =0,

and the f-dependency of k(r, ¢,0) decreases by r® instead of r* if

L+ (=1+4M)71 — 72 +4Xe =1,

12(A71 + 2M972) = 2, and

_3(—1 + Y1 — 6)\1’)/1 + Yo — 8)\2’}/2) 1

from which follows

N——



This implies that the smallest angular variation is given for the 3-D discrete scale-space

kernel if the following terms are satisfied

1+ 7+ 2 71 + 72 +8Xy2 = 0,
1+ (—]. + 4)\1)’)/1 — Y2 + 4)\2’}/2 = 1,

12(M71 + 2M972) = 2, and
3(=1+ v — 6A171 + 72 — 8Xa72)

_ =1,
4
from which we obtain with the help of Mathematica
-1+3 3 2—-3v -3
(3.10) A = em R3S W bkl | Sl -3
671 127,

On the other hand, according to the assumption of separability of the iteration kernel,

T of (3.9) should be separable
TAt:(a 1—2a a) *(a 1—2a a) *(a 1—2a a)
T y z

for 0 < a < %, from which follows

a? a®(1 — 2a) a? 22 Aty, 2 Aty 22 Aty,
zx1:[a?(1-2a) a(l—2a)* a*(1—2a)| = | &ALty 1AL -y —7) LAty
a’ a*(1 - 2a) a’ 22 Aty A Aty 22 Aty

a’*(1—2a) a(l-2a)®> a*(1 - 2a)
z:la(l-2a)? (1-2a)® a(l-2a)?
a’*(1—2a) a(l-2a)* a*(1 - 2a)

M Aty SO =71 —72) B Aty
IA (L =y —72) 1+ A3+ (B =6 )1+ (B—4X)p) 1AH(L—7 —7) |,
A Aty TN — 11— 72) 3 Aty

and At must be equal to 2a (i.e., /At has to correspond to the variance of the 3-D discrete

iteration kernel; see Section 2) in order to satisfy the semi-group property, from which we

16



have

(3.11)

A = a—2a2’
rl
2
a
No— 4
> da—4da®— '

Ve = 4a — 4a® —y

for 0 < a < 7. Now we can find the parameter values by solving the equations in (3.10)

and in (3.11) as

1
a= -,
6
4
71257
1
)\1217

The values of parameters A; and A, (i.e., 3 and 1) which correspond to the coefficients of

the Laplacian of >N 5 and of ®N, 5 are identical with those defined by Lindeberg in [5, p.

105).

Consequently, the 3-D separable iteration kernel for the rotationally least asymmetric

3-D discrete scale-space kernel satisfying the semi-group property is given by

(3.12)

where At = %

— (1 2 1 1
TAt—(a 3 a)x* (a

11 1
216 54 216
=] 1Xr 2 1
54 27 b4
111
216 54 216

2 1
3 6

zE1
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4 Conclusion

Motivated by the open questions and unclear points in the higher dimensional discrete
scale-space formulation by Lindeberg ([4], [5]), we developed the improved discrete scale-
space formulation for 2-D and 3-D signals based on a few assumptions as given in [3].

However, the derived 2-D and 3-D discrete scale-space kernels in [3] do not satisfy the
semi-group property since the definition of the higher dimensional Laplacian is not proper.
In this work, we derived the supplemented discrete scale-space formulation which satisfies
the semi-group property. Through a generalized theoretical derivation, it becomes clear
that the coefficient in the definition of the Laplacian of 2N\/§ in 2-D must be set to %,
whereas those in the definition of the Laplacians of >N 5 and N 5 must be set both to
i. That is to say, the 2-D and 3-D discrete scale-space kernels satisfying the semi-group
property can be obtained from the discrete scale-space formulation derived in [3], if the
coefficients in the definition of the Laplacians are corrected.

Although the coefficient values (i.e., 3 in 2-D as well as  and } in 3-D) from our
theoretical derivation are identical with those defined by Lindeberg [5, p. 105], the result
in this work proves why those coefficients must be set as such in the definition of the

Laplacians-a result which one cannot find in Lindeberg’s work (e.g. [4] or [5]).

18



References

1]

7]

E. R. Dougherty. Probability and Statistics for the Engineering, Computing, and Phys-
tcal Sciences. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1990.

R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical Analysis. Prentice
Hall, Inc., Upper Saddle River, New Jersey, 1998.

J. Y. Lim. On the Discrete Scale-Space Formulation. Technical Report FBI-HH-B-
231/01, Fachbereich Informatik, Universitdt Hamburg, Germany, 2001.

T. Lindeberg. Scale-Space for Discrete Signals. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 12(3):234-264, 1990.

T. Lindeberg. Scale-Space Theory in Computer Vision. Kluwer Academic Publisher,
Boston, MA, 1994.

T. Lindeberg and B. M. Romeny. Line scale-space (to appear in Geometry-Driven
Diffusion in Computer Vision ). Serieses in Mathematical Imaging and Vision. Kluwer

Academic Publishers, Dordrecht, Netherlands, 1994.

S. Wolfram. Mathematica, 2nd Edition. Addison-Wesley Publishing Company, 1991.

19



