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Abstract. This paper addresses the issue of a higher dimensional dis-
crete scale-space (DSS) formulation. The continuous linear scale-space
theory provides a unique framework for visual front-end processes. In
practice, a higher dimensional DSS formulation is necessary since higher
dimensional discrete signals must be dealt with. In this paper, first we
examine the approximation fidelity of the commonly used sampled Gaus-
sian. Second, we propose a generalized DSS formulation for 2-D and 3-D
signals. The DSS theory has been presented at first by Lindeberg. While
his 1-D DSS formulation is complete, the formulation as related to the
extension to higher dimensions has not been fully derived. Furthermore,
we investigate the properties of our derived DSS kernels and present the
results of a validation study with respect to both smoothing and differ-
entiation performance.

1 Introduction

It is theoretically proven ([1], [15]) that the isotropic Gaussian kernel is the
unique kernel to generate the linear scale-space for continuous signals. Further-
more, the Gaussian is the only real-valued convolution kernel which gives the
minimum uncertainty of the bandwidth-duration product ([2]) and it satisfies the
necessary conditions required for being a lowpass filter. However, given the fact
that the Gaussian kernel is defined in the continuous and infinite spatial domain,
in practice we have to cope with bounded discrete signals and consequently a
discrete Gaussian with compact support is required. A sampled Gaussian (SG)
kernel is commonly used in practice, where the problem lies in the accuracy and
validity of a SG kernel approximating the continuous Gaussian kernel. Two lim-
itations of the Gaussian kernel were remarked in [13]; i) information loss caused
by the unavoidable Gaussian truncation and ii) the prohibitive processing time
due to the mask size. Also, it was shown in [5] that there exists a trade-off scale
of the Gaussian kernel below which frequency filtering in the Fourier domain
yields more accurate results than spatial filtering at the accompanying cost of
computational load. In Sect. 2, we analyze the problems behind the SG kernel
used as a convolution kernel, where we consider how to measure the fidelity of
the approximation of the SG kernel with respect to the continuous Gaussian.



The DSS theory presented at first by Lindeberg [11] is closely linked to the
continuous scale-space theory through the discretization of the linear diffusion
equation. In his work, the 1-D DSS formulation is well derived and complete,
whereas the proposed higher dimensional DSS formulation has left open impor-
tant questions. Motivated by this, in Sect. 3 we propose a generalized higher
dimensional DSS formulation through a clear theoretical derivation that im-
proves upon Lindeberg’s higher dimensional DSS formulation. We investigate
the properties of our derived DSS kernels in Sect. 4. Moreover, Sect. 5 presents
the results of a validation study of the DSS kernel through which we analyze its
performance with respect to both smoothing and differentiation.

2 Analysis of the Sampled Gaussian Kernel

According to the sampling theorem (see e.g. [2], [3]), it is theoretically possible
to recover the full range of original function values with full accuracy given the
condition that the function is “band-limited”. Fig. 1 illustrates the sampling
process of the Gaussian in the frequency domain: The spectrum of the Fourier
transformed continuous Gaussian kernel (Fg(w;t); ¢ is the scale parameter) be-
comes replicated by sampling in the spatial domain through the Shah function,
which corresponds to Fg‘f (w; t). Since the Gaussian is not perfectly band-limited,
when its spectrum is repeated, high-frequency components are overlapping. This
effect is the so-called aliasing. Owing to the aliasing effect, the contribution of
high-frequency components is superimposed on low-frequency components. In
Fig. 1(c), the solid line results from the aliasing effect. Using the rectangle func-
tion for windowing, one aperiodic spectrum (Fg(w;t)) can be cut off, and we
call the filled area of both lobes of Fg(w;t) in Fig. 1(d) the high-frequency tail.

w=0

(a) Fo(w;t) (b) FZ (w;t) (c) Aliasing (d) Fa(w;t)

Fig.1. Sampling in the frequency domain: (a) The Fourier transformed continuous
Gaussian, (b) replication occurs in the frequency domain by the sampling in the spatial
domain, (c) high-frequency components influence on low frequencies around |w| = %2,
and (d) the cutoff spectrum contains the high-frequency tail caused by the aliasing.

For a given sampling period, we can derive numerically Fg (w;t), from which
the amount of the high-frequency tail can be calculated. We fix here the sampling
period to one (i.e. T = 1, or wg = 27) for the reason that the input signal with



which the Gaussian kernel is convolved is in general the intensity function of a
digital image with an inter-pixel distance of 1. Since

o0 o0
/ Fg(w;t) dw = / Fo(w;t) dw, (1)
—0o0 — 00

holds (see [8, Eq. 3, Sect. 4] for the detailed derivation), which means that the
amount of the high-frequency tail corresponds to the total amount of the contri-
bution of high-frequency components influenced on low-frequency components
owing to the aliasing effect, one can conclude that the smaller the amount of
the high frequency tail is the better the sampling result is. Provided that the
amount of the high-frequency tail is zero (i.e. no aliasing occurs), for example,
one can fully reconstruct the continuous Gaussian from the sampled Gaussian.
Accordingly, based on the fact derived in (1), the amount of the high-frequency
tail denoted by Fgyr is calculated as

FGHFT:2/ FG(w;t)dw: 2%(1—611‘(7(\/;))7

where erf(z) = % [T €8 d€. Fgupr is a monotonously decreasing function of the
scale parameter ¢. Since Fgyu.. is expressed by erf(z), an approximated value
can be given only.

Sampling the higher dimensional isotropic Gaussian kernel is analogous to
that of the 1-D Gaussian based on the separability property. Therefore, we refrain
from describing here in detail the sampling process of higher dimensional Gaus-
sian kernels (see [8, Sect. 4.3] for details). For a given sampling period T = 1,
the amount of the high-frequency tail in both 2-D and 3-D can be calculated as

ZFGHFT = (FGHFT)2 and SFGHFT = (FGHFT)3 )

which can be further generalized for an N-D Gaussian kernel to (Fgypy ) - Fig. 2
depicts the high-frequency tail of the sampled Gaussian kernel in 1-D, 2-D, and
3-D in dependence on the scale parameter, from which one can easily recognize
that as the scale parameter decreases the amount of high-frequency tail increases
in each dimension.

Consequently, it can be generally said that a sampled Gaussian with a small
scale is not appropriate for approximating the continuous Gaussian.

3 DSS Formulation

Several open problems of Lindeberg’s higher dimensional DSS formulation can be
identified: i) The rationale behind the setting of coefficients for the point operator
(i.e. £ for V2, in 2-D as well as § for both V25 and V%; in 3-D) has not been
explained, ii) in the 2-D DSS formulation the answer to the question of how
to determine the definite parameter « for solving the semi-discretized diffusion
equation was left open, and iii) the 3-D DSS formulation was not considered at
all, which, however, is necessary e.g. for 3-D medical image analysis. Therefore, it
is indispensable to contribute a generalized higher dimensional DSS formulation.
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Fig. 2. The high-frequency tail of the sampled Gaussian kernel in 1-D, 2-D, and 3-D
(T = 1). The solid curve, the dashed curve, and the dotted curve represent Fgyupr,
’Feupr, and *Fgypr., respectively.

3.1 Preliminaries

The Neighborhood Connectivity. For a given point p € Z*, we define its
neighborhood as

*N(p) ={¢ € Z*: (Ip— &Il < VER) A (€ # D)} (2)

for £ > 1. The neighborhood is classified according to the distance between
a given point and its neighbors. That is, 2N (p) consists of >Ny (p) and *N_s(p),
°N (p) comprises °Ni (p), °N, 5(p), and °N 5(p), and "N (p) has N1 (p), "N 5 (p),

-+, N /5 (p) (the number of elements of NN (p) is equivalent to (2’)2’“)

The Laplacian of the Higher Dimensional DSS Kernel. On the basis of
numerical differentiation, the second-order derivative of f(z) is approximated by

Flz+1)—2f(z) + flz — 1) ~ 32’;(295).

According to (2), for a given discrete signal f : ZV — R its scale-space repre-
sentation generated by the convolution with 7' : Z" x R, — R (which we call
the higher dimensional DSS kernel) satisfies in 2-D

0eL(z,y;t) = a1 Viy, L(z,y;t) + a2 Viy _L(z,y;t), (3)

and in 3-D
3tL($,y,Z; t) = alvgNlL(xayaz; t) + a2V§N\/§L(x7ya Z; t) + a3V§N\/§L(x7ya Z; t)a

(4)

for some constants a; > 0, az > 0, and a3 > 0.
3.2 2-D DSS Formulation
Equation (3) can be expressed as a normalized form given by

1 1
OiL(z,y5t) = 5V2L(w,yit) = 5 (1 = NViy, L@, yit) + M Viy, L(z,yi 1))
(5)



for v € [0,1] and A € (0,1). Note that in [9, Sect. 3.2], for the definition of
the Laplacian of 2N /3> we intended to steer the ratio of rotational symmetry
between the Laplacians of >Ny and >N s only through parameter v, and thus we
avoided setting an additional ambiguous (or unexplained) coefficient. However,
this does not give rise to a correct result, i.e. the 2-D DSS kernel does not satisfy
the semi-group property. On the other hand, one cannot find any proof that the
unexplained coefficient in the definition of V2, given by Lindeberg is proper.
Therefore, in a more generalized way, we set this coefficient as a variable A and
determine its proper value through the following theoretical derivation.
Equation (5) can be further discretized with the scale step At as

: o ] 1
it = Lk, + At 9Lk ) = Lk, + A5 (1= ) Vi, L+ 23 Viy L),
where subscripts ¢ and y denote the spatial coordinates and superscript & rep-

resents the iteration index. This discretization corresponds to the iteration with
the 2-D discrete iteration kernel given by

el Sl=y) o A
no- (g0 0i-sd e i) e
S5 Z(1=7) 25

The generating function describing one iteration given in (6) corresponds to

At(1— AAL
)+ B 4 200

2<pstep(37X) = (1 - 2At(1 -7+ )\7
where
A=z""4z4+x""+x and B=z"'x""+z7x+2x"" +2x,

and we obtain the generating function describing the composed transformation
(At = 1) as

n

t 1-— A n
%peomposed,n (2, X) = (1 +- (—2(1 -7+ )+ ( 5 7)A + %B)) )

Based on the fact that lim, oo (14 %2)" = e* if lim,, ;o o, = a, the generating
function of the kernel describing the transformation from the original signal to
the representation at a certain scale ¢ is given by

or(zx) = Y T(mn;t)e™x" = et (20 + 50 A2 B)
(m,n)€Z?

Its Fourier transform is derived by replacing the complex variables z and x with
e "™ and e™" as

F (Gor(z,x)) = %r(e ™, e ™) = %7 (cosu — isinu, cosv — isinv)
_ et(—2(1—’y+>«y)+(1—’y)(cosu+cos v)+Ay2 cos u cos v)
- )



which can be transformed into polar coordinates given a fixed value of radius r
and an angular variable ¢ such that u = r cos ¢ and v = rsin ¢. It follows

Wr(r, ¢) = el o),

where

k(r,¢) = —2(1 — v + Ay) + (1 — v)(cos(r cos ¢) + cos(r sin ¢))

+ Ay2 cos(r cos ¢) cos(r sin ¢). (7)

Now, we determine the value of v of k(r, ¢) in (7) which gives the smallest
angular variation of ¢ for a fixed value r. For examining the ¢-dependency of v
from k(r, ¢), we expand the MacLaurin series of k(r, ¢) with respect to r

1 —724— 2)\7r2 N 3+3y(4N—-1) + 5916—7—4)\7) (:os4q§r4 N

k(r,¢) = o(r’),

1
1+4X°

v = ﬁ yields the least possible rotational asymmetry for the 2-D DSS kernel.
In other words, maximal isotropy of 7" is guaranteed even for the discrete case.
Substituting 7 = —4~ for the 2-D iteration kernel of (6) yields

where the smallest angular variation is achieved when y = That is to say,

I+4Xx
A 2) A
2(12+>\4>\) At 1+41,}»\At 2(124&4,\) At
Trr = —H/\“At 1—2—}\+4/\At —134/\At , (8)
2(1+4X) At T+4x At 2(1+4N) At

where At > 0. This iteration kernel is symmetric and normalized.

In order to constrain computational cost when the number of iterations in-
creases, it would be favorable to apply a separable iteration kernel since the
higher the dimension is the more efficient separable filters are ([6]). Therefore,
we assume the 2-D iteration kernel given in (8) to be separable such that it
should be constructed by convolution of the 1-D kernel with itself given by

A 2 A
a spa O Tra A o A
(al-2aa)+|1-2a|= %At 1 _zg‘lfi‘)\At 13%7 At |,
“ sr O T At s At
for 0 < a < 1, from which we obtain
1 2 1

== d At==+—.

T M TR

Besides, in order to satisfy the semi-group property, At should correspond to
the variance of the 2-D discrete iteration kernel. This means that At = 2a must
hold. Finally, we have



It is noticeable that our theoretically derived value of X is equal to that defined

by Lindeberg [11], where, however, no formal explanation was given.
Consequently, the 2-D separable iteration kernel for the rotationally least

asymmetric 2-D DSS kernel satisfying the semi-group property is given by

1 111
36 36

=38+ (3)=111) ®
6 36 9 36

where At = 1.

3.3 3-D DSS Formulation

Equation (4) can be expressed as a normalized form given by

1
0L = 3 ((1 o ’yz)VgNlL + )\171V§NﬁL + )\2’)’2V§N\/§L) (10)

for 1,72 € [0,1] and A1, A2 € (0,1). Following the line of thought of the 2-D
case, in defining the Laplacians of >N 5 and of ®N s in [9, Sect. 3.3], we intended
to steer the ratio of rotational symmetry between the Laplacians of N1, *N 3,
and 3N 3 only through parameters v; and 7. Therefore, we did not define any
a priori coefficients for the Laplacians of 3N 3 and of 3N /3> Whereas Lindeberg
set them both to 1. However, our first account in [9, Sect. 3.3] did not give rise to
a proper result (the semi-group property is not satisfied). On the other hand, it
is neither evident nor proven why those parameters were set to % by Lindeberg.
As a consequence, we again approach this problem in a more generalized way by
defining the coefficients of the Laplacians of N 5 and of 3N 5 as A; and X,.
Equation (10) can be discretized with the scale step At given by

k k k
Lgye = Lty + Ot (9L )

1
=Lk, + Ot ((1 — 1 =)V, L+ M Viy L+ AﬂzV%NﬂL) ,

where the parameters y; and 7, play the role of preserving the rotational sym-
metry of the 3-D DSS kernel. Similarly to the 2-D case, based on the assumptions
that i) the 3-D DSS kernel is rotationally least asymmetric, ii) the 3-D iteration
kernel is separable, and iii) the 3-D DSS kernel satisfies the semi-group property,
we determine the parameter values as follows (see [10, Sect. 3.2] for the detailed
derivation):

4 1 1 1 1 1

= — = — A:— A:— = = d At:—
71 9’ Y2 9’ 1 4’ 2 4’ a 6’ an 3

As a consequence, the 3-D separable iteration kernel for the rotationally least
asymmetric 3-D DSS kernel satisfying the semi-group property is given by

111 12 1

2%6 54 2%6 54 287 54

_ (121 121 121 _ 2 2 2
TAt—(E36)1*(§§§)y*(§§§)z— 31 27 54 Ny o
216 54 216/ 241 54 27 54/

where At = 1.



4 Properties of the DSS Kernels

4.1 Smoothing Kernel
The 1-D DSS kernel is given by

T (:v; g) = " (% % é) , (11)

where ** is denoted as k-times self-convolution and % corresponds to the vari-
ance. The coefficients of the 1-D DSS kernel generated by self-convolution given
in (11) can be easily calculated using the z-transform of the given DSS kernel
based on the property that convolution of sequences corresponds to multiplica-
tion of their z-transforms, from which

k 1 2 1\"
Tz = — e R
($,3> o 0(6z +3+6z>

follows. The 1-D DSS kernels are normalized to 1 for any k, and their implemen-
tation is simple and fast.

The higher dimensional DSS kernel is separable. For example, the smallest
2-D DSS kernel is given by

1 1 1 121 121
T(zy=) =T (22 ) «T(y;2) = (=22 -2z
(203) =7 (=5) 2 (03) = (535).* (5 35),

the coeflicients of which can be easily calculated using its z-transform

1
1 1 1 2 1 1 2 1 36

3

[=2]
L

1
iy
2

6

(=]
w

The higher dimensional DSS kernel with larger variance, analogously to 1-D, can
be derived through self-convolution given by

k A 1 1 2 1\" /1 2 1\
T(a:,y; §> =T (m,y;§> o—e (621+§+62> -(6w1+§+6w> ,

where k denotes the number of self-convolution.

4.2 Differencing Kernel

In order to apply the DSS kernel to images for the purpose of feature extraction,
it is necessary to derive derivative operators. In contrast to the continuous case
in which any nth-order derivatives of the Gaussian can be defined at any scale, it
is not as simple to define derivative operators in the discrete case. By introducing
the terminology “differencing operator” denoted by A, we here discriminate the
discrete derivative from the continuous derivative.



Based on the principles of numerical differentiation, one can approximate
the first-order derivative by the difference quotient, for which there exist two
formulae according to the number of points involved in the differencing. One is
the two-point difference formula denoted by Aeven

fonl@) = TEZIEZ g0y pa o) (n=1),

while the other is the three-point difference formula denoted by Agqq

o) = 1EEN TGN _fE D fa=b g,

Based on these two formulae, we thoroughly derive two types of the 1-D DSS
first-order differencing operator using the z-transform. The z-transform of Agyen
is given by

forcen(@) = f(@) = flz —1) 00 F(2) - (1 = 2),

where F'(z) corresponds to the z-transform of f(z). The DSS first-order differ-
encing kernel follows through application of Agyen as

k 1 2 1\* 121
Thven (%g) o—e (62_1 +§ + EZ) (1—-2)e—o P {6 3 6} {1 —1}.

Analogously to Aeyen, the z-transform of Ayqq is given by
r+1)— f(z—1 1 _ 1
omale) = LN TIE = o s b (Goi - 52)),

and the DSS first-order differencing kernel follows from application of Aggq

k 1, 2 1\*/1 . 1 121 1 -1
F o (9“5) o (62 1+§+éz> (f 1‘?) o *k{aga}*{i‘)?}-

For a given higher dimensional DSS kernel, the differencing kernel through
application of A, is derived from

T, (Z;+) = T(x1;+) x T(xo;-) % -+ x Ta(za;-) %+ T(xN;-).

For example, applying Aeven,z to T'(z,y; %) results in

1 1 -1 -1
1 11 -1 -1 121 36 12 13 3¢

Thevene (r,y;§>=(§57?)x*(§§6)y= 11379
36 12 12 36

while applying Aodq,y to T'(z,y; ) yields

1
Tosss (0 ) = (538, (5 0

|l

»—~||

N]=

N

<«

I

o] = =Y e
5|L©|[1’ O ©ohdy|=
3l o 5l-F)~
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Normalization. Let us assume that i) f(z) is a scale-space kernel, ii) f(z)
should be sufficiently smooth such that n-th order derivatives can be taken,
iii) f(z) is normalized such that [ f(z)dz = 1, and additionally iv) f(z) is
essentially compact, meaning that the kernel and all of its derivatives vanish
sufficiently fast when |z| goes to infinity. Provided that these assumptions are
satisfied, f(z) simply follows by partial integration, i.e.

/—(_%)nx"f(")(x) dr =1,

n

where n corresponds to the order of the derivative (see [4]). According to this
rule, in the case of the first-order derivative (i.e. n = 1),

/—xf'(x) dr =1 (12)

must hold. It is evident that the Ta and Ta_,, satisfy the normalization
requirement given in (12), and thus these two kernels are normalized DSS dif-
ferencing kernels.

even

Variance. For a given f : R — R, its variance derived by the second central
moment (by assuming its existence) can be written as

oo

Var(f(z)) = / #2|f(2)] de, (13)

in order to measure a dispersion of f(z). According to (13), the variance of
(even- and odd-number-sized) Ta(z;t) can be calculated, from which one can
find that Var(Ta_,.,(z;t)) nicely equals Var(Ta,,,(z;t)) for any ¢t even though
the two kernels are different in local support and shape.

Integration. For a given z-transformed DSS kernel T'(z) (i.e. T'(z) e—o T'(z)),
T (z) is derived from multiplying T'(z) with A,, i.e.

Ta(z) - AP =T(2)- O, - A =T(2).

Introducing the symbol A that stands for A1, we denote A as the “discrete in-
tegration operator” (due to the duality of differentiation and integration). Multi-
plication of A, corresponds to convolution of A in the spatial domain. Since there
exist two types of A, there are correspondingly two types of A, i.e. Agyen, , and
Aodd,z-

Acyen, , is given by

Acven,: = (Aeven,z)i1 = (]- - z)ila

where the inverse z-transform of Acyen,. is derived as

e—oH(z)={---00 Oziol 1--- ).

Aeven,z =
—Z
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Integration of the DSS kernel through application of Aeyen yields

k k
TAeven (CE; g) o—e T (Z; g) : Aeven,za

1 1 1 6 1 1
Taes (1) oo (F14 54 1o ) 0 = 500) + oo+ 1) + H(o)

ie. Ty on(z;2)={--- 0521 ...} Analogously, Aoad,- is given by

_ 1, 1\7! 2z
Aogd,z = (Aodd,z) t= (52 t— §Z> = ma
where the inverse z-transform of Ayqq,, is derived as
hoaar = (—— = 1 Y oo H(@) = (~1)"H(@) = {000 0 20 2.}
oddz = \ 77, 142z o ¥= =0 '

Integration of the DSS kernel through application of Aoqa is given by

k k
TAodd (i; g) o—e T (Z; g) - Aodd,z,

where, e.g. in the case of £ =1,

ie. Ty, (af:,%) ={--- O%{% %} ---},Where{% %}denotes{--- %%%% -}

As a consequence, when one executes discrete integration and discrete differ-
entiation simultaneously, it must be considered that Acven (Aoad) is necessarily
paired with Agyen (Aoqq). Otherwise, one cannot expect a correct result since

Tacven(257) - Dodd,z 7 Tapaa(25°) - Deven,z 7 T(254).

5 Validation of the DSS Kernels

In this section, we validate the derived DSS kernel in comparison to the SG
kernel in order to characterize its performance with respect to both smoothing
and differentiation. As important performance criteria, we consider the accuracy
of approximation, the fulfillment of the non-enhancement requirement (see [11]),
and the accuracy of edge extraction. The criterion of accuracy of edge extraction
is further divided into rotational invariance and steadiness from adjacency.
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5.1 Accuracy of Approximation

We intend to measure how accurately a discrete convolution approximates a
continuous convolution. To this end, we consider a continuous constant function
f(z) = c with ¢ € R. Theoretically, convolution of a constant function with the
normalized Gaussian kernel should result in the constant function again:

L(z;t) = f(z) * G(z;t) = cx G(z;t) =c. (14)
In practice, (14) is implemented by
La(z;t) = fa(z) x Ga(z;t) = {-+- ¢ ¢ ¢ -} x Ga(a; t),

where fg(z) is the discrete constant signal (c = 100 in the experiment), G4(x;t)
is a discrete kernel. The approximation error of discrete convolution is given by

_ 1 i
() = mlz &),

=—ny

where 2n; + 1 corresponds to the number of coefficients of Ly(z;-) and &(t) =
|Ld($l;t) —L(ml;t)|. _

The results of approximation accuracy are given in Fig. 3: £1(t) consistently
gives zero as ¢t gradually increases, which implies that the discrete convolu-
tion with T'(z;t) accurately approximates the continuous convolution for any
t, whereas g (t) inconsistently varies over ¢ and even attains a maximum at a
small t. This unsatisfactory experimental result of the SG kernel is connected to
the analytical result of the SG kernel given in Sect. 2. Consequently, it can be
said that T'(z;t) is superior to SG(x;t) with respect to approximation of discrete
convolution when ¢ gets smaller.

0.1 0.1
0.08 0.08
0.06 0.06
0.04 0.04

0.02 0.02

Fig. 3. Accuracy of approximation of the DSS kernel compared with the SG kernel.

5.2 Fulfillment of the Non-Enhancement Requirement

According to the prerequisites for the DSS formulation proposed by Linde-
berg [11], a higher dimensional DSS kernel is assumed to obey the non-enhancement
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requirement. In order to examine the fulfillment of the non-enhancement require-
ment of the DSS kernel as well as of the SG kernel, we provide a synthetic image
that has two local maxima and two local minima (one local extremum has a high
intensity contrast, whereas the other has a low intensity contrast). For a given
synthetic image, using additive Gaussian noise we control the level of noise. We
generate the scale-space representation through convolution with both the DSS
kernel and the SG kernel. Then, we observe whether the local extrema of each
scale-space representation are not enhanced, i.e. whether the intensity value of
the local maxima (minima) does not increase (decrease) as the scale parameter
gradually increases.

The experimental results show that the intensity values of the local maxima
(minima) in the scale-space representation generated by both DSS kernel and
the SG kernel do not increase (decrease) as the scale parameter increases. The
level of noise and the intensity contrast can influence the shape of convergence
of local extrema, however, they do not affect the principal non-enhancement
behavior of the local extrema. Based on this result, as a consequence, it can be
said that the DSS kernel as well as the SG kernel fulfill the non-enhancement
requirement.

5.3 Accuracy of Edge Extraction

We attempt to examine the accuracy of edge extraction (based on the non-
maximum suppression method subsequent to the gradient magnitude) using the
DSS differencing kernels in comparison to using the SG differencing kernel. For
evaluating the result of edge extraction, we use a synthetic image in order to
identify easily its edge image (we call it the edge atlas). The accuracy of Ta...,,
ThA, 4, and SGa for edge extraction is assessed by measuring the error of ex-
tracted edges based on the edge atlas (see e.g. [12]). In concrete terms, we denote
P, cqge-atlas and P extracted-edge as the edge loci of the edge atlas and those of the
extracted edge image, respectively, where n; corresponds to the total number of
edge loci. We measure the error of edge extraction in global terms by

1 e
b==> 1, (15)
ny
=1
where 1/11 = |}Dl,edge—at1as - B,extracted—edge|-

Rotational Invariance. The derived 2-D and 3-D DSS kernels are proven to
be rotationally least asymmetric. We are now interested in the question whether
Th.,., and Ta_,, as well as SGa used for edge extraction are rotationally in-
variant. We examine how consistent the edge extraction result of each discrete
differencing kernel is under gradual rotation of an edge line. For this, we provide
a series of ten synthetic images as shown in Fig. 4, where a straight edge line
gradually rotates.

The experimental results are given in Fig. 5, from which one can notice that
i) for a given image edge extraction using T ., is less accurate than using Ta_,,

even
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Fig. 4. A series of ten synthetic images I - - - I10: A straight edge line gradually rotates.

and SGx, ii) the edge extraction error using Ta_,, is almost identical with that
using SG A, and iii) the accuracy result of edge extraction using Ta_,., from I;
to I1o is rather inconsistent compared with that using Ta_,, and SGa, which
definitely appears in the case of the noiseless images. This shows that T'a is

inferior to both TA_,, and SG A with respect to rotational invariance for edge

odd

extraction.
o L TF e —— L e e e PN — 0.5 T e
(CYRTN (b) ¥y (€) Ynyq

Fig. 5. Error of edge extraction applied to the images given in Fig. 4. ng, ns, and n1p
denote that the images are noiseless, weakly noisy, and strongly noisy, respectively.

(—o— :ETA R :ETA dd, +— B~ :4gq, ). Note that % and B almost
overlap.

Steadiness from Adjacency. For the purpose of examining how steadily each
discrete differencing kernel applied to an image (that contains closely adjacent
edge structures) performs for edge extraction, we provide four synthetic images
as shown in Fig. 6. Similarly to the case of rotational invariance, we apply
TAvens TAogas and SGA to a given synthetic image and follow the procedure
for evaluation of the edge extraction.

Fig. 7 illustrates the edge extraction results of three different types of the
first-order differencing kernel applied to the weakly noisy images. From Fig. 7,
one can observe that i) for a given image ETAM,\ is much larger than ETAQM

and Ygq , , ii) the values of ¢, L, are similar to those of g5, on the whole,

and iii) regardless of the type of the used discrete differencing kernel, SE1 is the
steadiest image type of the adjacent edge structure in edge extraction (i.e. ¥ gg
is the smallest) and CE4 is the second steadiest one. Consequently, regarding
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(a) SE1 (b) SE4 (c) CE1 (d) CE4

Fig. 6. Four synthetic images having closely adjacent edge structures.

the accuracy of edge extraction with respect to steadiness from adjacency, Ta_,,
and SG A are superior to Ta in general.

even

o S TR o 0
o i

0.4 oaf w o — T T 0.af m

0.3 0.3 0.3]

..........

(a‘) /ll)ns’TAeven (b) "/)"5’TAodd (C) "/)ng,,SGA

Fig. 7. Error of edge extraction applied to the images given in Fig. 6. ns denotes that
the images are weakly noisy (—4— : SE1, ---% --- : SE4, - —H—-: CEl, ——A— —:
CE4).

6 Conclusion

In this paper, we addressed the issue of a higher dimensional DSS formulation.
For the purpose of analyzing the problem associated with the commonly used
sampled Gaussian for approximating the continuous Gaussian, we derived the
approximation error caused by the sampling as a function of the scale parameter.
This analysis explicates that in general a sampled Gaussian with a small scale is
not appropriate for approximating the continuous Gaussian. By developing the
generalized 2-D and 3-D DSS formulation through a theoretical derivation, we
made a step forward in investigating the problem of how to correctly approach
the higher dimensional DSS theory. Furthermore, we investigated the properties
of the derived DSS kernels and carried out a validation study with respect to
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both smoothing and differentiation performance. Our investigation as well as the
experimental results of the validation study show that the derived DSS kernel
does not only match the performance of the SG kernel but also clearly exhibits
superior performance with respect to both smoothing and differentiation.

Future work will include the investigation of the performance of higher-order
differencing operators for feature extraction in higher dimensions. Also, a vali-
dation study with respect to the derived 3-D DSS kernel has to be carried out.
Furthermore, it would be interesting to compare the derived DSS kernels with
the SG kernel as well as e.g. Florack’s scheme shown in [5] with respect to the
cost of computational load.
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