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Abstract. This paper addresses the issue of optimal scale selection for
circular edge extraction in the context of higher dimensional multiscale
edge extraction. Based on a classification of higher dimensional edges ac-
cording to local curvature, we exemplarily establish a 2-D circular edge
model. Through a careful mathematical derivation, we transform the
circular edge model from Cartesian coordinates for which the analytical
solution is unknown into polar coordinates. Utilizing this edge model we
develop a novel theoretical framework for optimal scale selection for cir-
cular edge extraction through which the effects of curvature as related to
scale can be analyzed. Moreover, we carry out a validation study in order
to investigate on the level of principal performance how well the experi-
mental results obtained from application of the developed framework to
2-D synthetic images match the theoretical results.

1 Introduction

Edge extraction is one of the key issues in image analysis and computer vision.
The goal of edge extraction is to obtain a rich and meaningful description of an
image by characterizing its intensity changes. Image intensity changes occur with
many spatial scales depending on their physical origin. Only some of these stand
out locally and seem to be more significant than others. Therefore, a natural
requirement is to measure the local scale for each edge. This is the main motiva-
tion behind multiscale approaches to edge extraction on the basis of the linear
scale-space theory (see e.g. [11]). A multiscale analysis for the purpose of coping
with the problem associated with fixed scale approaches to edge extraction can
reveal precious information about the nature of the underlying physical process
which gives rise to edges in the image. Provided that any a priori knowledge
about the local edges to be extracted is unknown, it is necessary to select the
scale (or support) of the edge operator which optimally adapts to the local scale
of the edge in order to perform edge extraction correctly.

Most existing approaches to higher dimensional edge extraction have used the
1-D step or, respectively, the 1-D sigmoid edge profile as a model in an either
implicit or explicit way (see e.g. [5], [6], [9]). However, the 1-D sigmoid edge
model represents an ideally smooth 1-D intensity change and by generalizing it to
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higher dimensions its scale cannot be always accurately determined. This can be
easily seen for the case when a large scale operator has to be necessarily applied
to a 2-D high-curvature contour undergoing a large Gaussian blurring: The large
scale of the operator conflicts with the high curvature. As a consequence, only
for the case of a linear replication of the 1-D sigmoid along the second orthogonal
dimension a large scale operator can be safely applied as yet. A typical example
of high curvature contours is a corner, and arbitrary Gaussian smoothing of its
curve results in destroying its salient properties (see e.g. [10]).

In this paper, we consider the issue of optimal scale selection for circular
edge extraction in the context of higher dimensional multiscale edge extraction
and we focus on the principal way of how to analyze the effects of curvature
as related to scale in multiscale edge extraction. First, based on a classification
of higher dimensional edges according to local curvature, we exemplarily estab-
lish a 2-D circular edge model. Utilizing this model, we develop a theoretical
framework for optimal scale selection and we analyze the effects of curvature as
related to scale. Then, we present the results of a validation study of our op-
timal scale selection approach, where we investigate how well the experimental
results obtained from application of the developed framework to 2-D synthetic
images match the theoretical results. Note that we here deal with the 2-D case
only, however, the basic approach can be potentially generalized to the higher
dimensional case.

2 Towards Higher Dimensional Edge Models

We coarsely classify higher dimensional edges according to their local curvature
into three types, i.e. straight edges, circular edges, and corners, while assuming
a sigmoid-like profile. In more concrete terms, for a given radius R of a circular
edge its corresponding curvature K is given by the reciprocal of the radius (i.e.
|K| = 1/R), and the curvature is assumed to be constant. Furthermore, we
assume edge points on an edge contour of descending curvature to form straight
or straight-like edges and edge points on an edge contour of ascending curvature
to represent corners or corner-like structures.

As a matter of fact, one can differently classify higher dimensional edges
according to other alternative criteria. Our classification for establishing higher
dimensional edge models is the first attempt to approach higher dimensional edge
extraction theoretically in order to analyze the effects of curvature as related to
scale in multiscale edge extraction, although our 2-D edge models based on this
classification may not be sufficiently general to represent all edge types in real
images. In this paper, we concentrate on the circular edge case.

2.1 Circular Edge Model

A unit circular edge of radius R is described by H(R2 − x2 − y2), where H
denotes the Heaviside function. Similar types of the circular edge model based
upon the Heaviside function have been used for modeling curved edges with
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constant curvature e.g. in [4]. The sigmoid unit circular edge with edge width
tE is represented by convolution of the Heaviside function with a Gaussian, i.e.

Ec(x, y; tE) = H(R2 − x2 − y2) ∗ G(x, y; tE)

= R

∫ 1

−1
G(x − R · γ; tE)

(
Φ
(
y + R

√
1 − γ2; tE

)
− Φ

(
y − R

√
1 − γ2; tE

))
dγ,

where Φ is the normalized error integral function and the edge width tE corre-
sponds to the scale of edge. Unfortunately since the general analytical solution of∫

G·Φ is unknown ([4]), Ec(x, y; tE) cannot be determined analytically. However,
we can transform Ec(x, y; tE) represented in Cartesian coordinates into polar co-
ordinates without loss of generality since H(R2 − x2 − y2) and G(x, y; tE) are
rotationally symmetric in Cartesian coordinates.

2.2 The Gradient in Polar Coordinates

For a multiscale analysis, we derive the scale-space representation of a sigmoid
circular edge, which we denote LEc(x, y; t) and this is given by convolution with
the Gaussian of variance t. For the further derivation, LEc(x, y; t) in Cartesian
coordinates must be transformed into LEc(r; t) in polar coordinates (r2 = x2 +
y2):

LEc(r; t) = H(R − r) ∗ G(r; tE + t) (tE , t > 0), (1)

where tE and t, respectively, correspond to the edge width of a circular edge and

the scale parameter, and G(r; tE + t) = 1
2π(tE+t)e

− r2
2(tE+t) .

Considering the polar coordinates (r, θ), for any point P = (x, y) in Cartesian
coordinates we have
{

x = r cos θ
y = r sin θ

,

{
r =

√
x2 + y2

θ = tan−1
( y

x

) , and






∂r
∂x = x√

x2+y2
= r cos θ

r = cos θ
∂r
∂y = y√

x2+y2
= r sin θ

r = sin θ
.

Then, the gradient of LEc(r; t) is given by

∇LEc(r; t) =
(
∂LEc(r; t)

∂x
,
∂LEc(r; t)

∂y

)T

=
(
∂LEc(r; t)

∂r
· cos θ,

∂LEc(r; t)
∂r

· sin θ

)T

,

and the gradient magnitude of LEc(r; t) is given by

|∇LEc(r; t)| =

√(
∂LEc(r; t)

∂r

)2

· cos2 θ +
(
∂LEc(r; t)

∂r

)2

· sin2 θ =
∣∣∣∣
∂LEc(r; t)

∂r

∣∣∣∣ .

In sum, we obtain

|∇LEc(r; t)| =
R

tE + t
e−

r2+R2
2(tE+t) I1

(
R · r
tE + t

)
(2)
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(see Appendix for the detailed derivation), where I1 denotes the modified Bessel
function of integer order 1, which is a monotonously increasing function. Note
that the modified Bessel function of integer order n is defined by In(z) =
1
2π

∫ 2π
0 cos(nθ)ez cos θ dθ (cf. [1]).

3 Scale Selection in Circular Edge Extraction

Using the circular edge model in polar coordinates, we attempt to analyze the
behavior of circular edges over scales for the purpose of selecting their optimal
scale values. Let M(t) be a response function of the gradient magnitude given
in (2) at edges (r = R); that is, M(t) = |∇LEc(R; t)|. M(t) is a monotonously
decreasing function of t, which means that the edge operator response becomes
weaker as the scale parameter increases, and thus M(t) is not suitable for optimal
scale selection.

On the other hand, by utilizing M(t) we intend to find a response function
from which an optimal scale (i.e. the edge width tE) is uniquely selected. Al-
though finding such a response function is quite difficult due to the complexity of
M(t), fortunately one can simplify M(t) in a special case. Let S(t) be a response
function obtained from multiplying M(t) with eR as given by

S(t) =
R

tE + t
e

−R2+R(tE+t)
tE+t I1

(
R2

tE + t

)
, (3)

from which one can observe that, when tE + t = R, S(t) reduces to I1(R)
(i.e. S(t)|tE+t=R = R

Re
−R2+R2

R I1(R) = I1(R)), which implies that S(t) gives the
response I1(R) when tE + t = R. That is, the scale value satisfying S(t) = I1(R)
corresponds to t = R − tE . For a given R, I1(R) is known, from which one can
uniquely obtain the value t satisfying S(t)=I1(R). The obtained value t, in turn,
can be used to derive the optimal scale value tE (i.e. tE = R − t).

It is worth noting that there does not exist any t in the response of S(t)
satisfying S(t)=I1(R) where R ≤ tE . As a matter of fact, from a theoretical and
practical viewpoint it is meaningless to consider the case for which the radius
of a given circular edge is smaller than its edge width (see Sect. 4.1 for the unit
of R, t, and tE). Our theoretical derivation shows that R ≤ tE corresponds to
t ≤ 0. We denote the relationship R ≤ tE the curvature-scale constraint. This
constraint can be used as a natural limit condition of curvature as related to the
edge width for a given circular edge. Consequently, the optimal scale value for
circular edges can be uniquely selected using the response function S(t) given in
(3) such that the optimal scale value of a given circular edge with the radius R
is given by tE = R − t, where t satisfies S(t) = I1(R).

4 Validation of the Optimal Scale Selection Approach

In this section, we validate the developed theoretical framework using synthetic
images through investigating how well the experimental results obtained from
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application of the developed framework to an image match the theoretical re-
sults. Through this validation study, i) we aim to check experimentally for the
correctness of our theoretical derivation, ii) we demonstrate in practice the prin-
cipal performance of optimal scale selection, and (iii) we can probe the limits for
some extreme cases. Since the optimal scale value (i.e. the edge width) must be
known a priori for our validation study, we use synthetic images and control the
degree of edge width as well as the level of noise in the experiments. Note that
the full range of experiments, e.g. by fine-sampling of the continuous parameter
space, is beyond the scope of this paper and thus left open for future work.

4.1 Experimental Setting

For edge extraction, we use the discrete scale-space (DSS) kernel as well as its
first-order odd-number-sized differencing kernel (i.e. T"odd) both of which are
validated as best performing kernels in [7] and [8], and we employ the non-
maxima suppression method by Canny [3].

We apply the developed framework for optimal scale selection to blurred
noisy synthetic images and observe whether the theoretically expected scale is
selected correctly. For a given synthetic image, we control the degree of edge
width by convolving the image with the DSS kernel, the variance (tE) of which
varies from 1

3 to 13
3 (i.e. tE = k

3 , k = 1, 2, . . . , 13) in our experiments. Given a
blurred synthetic image, we add two different levels of Gaussian noise. We use
three synthetic images Ci representing three different types of a circular edge
(see Fig. 1). For a given degree of edge width k, let us denote τ(k) a selected
scale value resulting from the application of the developed framework for optimal
scale selection to Ci of Fig. 1. With respect to τ(k), we consider the mean (τ (k))
and the standard deviation (τσ(k)) of τ(k) along the edge contour. According to
the optimal scale selection scheme theoretically derived in the previous section,
τ(k)

3 = R − k
3 viz. τ(k) = 3R − k must hold.

Fig. 1. Synthetic images C1 (left), C2 (middle), and C3 (right) representing three
different types of circular edge. The radius of a circle is R = 10 (occupying 10 pixels)
in our experiment. The in-between-distance of neighboring circles in C2 corresponds
to the diameter of the given circle, while that in C3 corresponds to the radius of the
given circle. The white contour marks the edge loci to be observed.
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4.2 Experimental Results and Assessment

Fig. 2 gives a graphical illustration of the experimental results for C1, C2, and
C3 in terms of {τ , τσ} compared with the theoretical result. One can notice
several remarkable aspects from Fig. 2. First, the obtained experimental results
are in general very close to the theoretical results. The slight deviation of the
experimental results from the theoretical ones may be rightfully assumed to
be caused by an inevitable gap between a well-founded continuous theory and
the implemented discrete case. In other words, even though the circular edge
contours of the synthetic images used in our experiment were obtained from
the mathematical equation of a circle, strictly speaking, they are not perfectly
circular in a digital image. Second, the experimental results are affected by noise
only little. This is because that the radius value of a circular edge plays a decisive
role in the developed framework for optimal scale selection, where the selected
optimal scale value mainly depends on the radius value, and thus the level of
noise has less influence. Moreover, the degree of the in-between-distance has little
effect on the result of optimal scale selection, where ‘little’ is only valid with
respect to our experiment regarding the condition that the in-between-distance
of neighboring circles should be larger than 10 pixels (see Fig. 1).
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Fig. 2. Graphical illustration of experimental results for C1, C2, and C3 compared with
the theoretical result. Each column differs in the type of circular edge and each row
differs in the level of noise (n5 and n10 denote weak noise and strong noise, respectively).
‘· · · · · · ’ corresponds to the theoretical result (i.e. τ (k) = 3R − k for R = 10; see
Sect. 4.1), while ‘ ’ with error bar represents the experimental result.
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5 Summary and Conclusions

In this paper, we proposed a theoretical framework for optimal scale selection in
circular edge extraction. We established a 2-D circular edge model based on a
classification of 2-D edges according to local curvature. By transforming the cir-
cular edge model from Cartesian coordinates for which the analytical solution is
unknown into polar coordinates, we were able to analyze the effects of curvature
as related to scale, which is a novel approach based on a careful mathematical
derivation. Moreover, we presented the results of our validation study in which
we investigated how well the experimental results obtained from application of
the developed framework to 2-D synthetic images match the theoretical results.
Our validation study shows that the experimental results are generally close to
the theoretical results on the whole. Future work will include an investigation of
the 3-D case. Also, it is necessary to consider how robustly and accurately edge
extraction based on our developed framework performs in real-world images.

Appendix: Transformation of the circular edge model from
Cartesian coordinates into polar coordinates

Provided that f(r) and g(r) are both rotationally symmetric, convolution of f(r)
with g(r) in polar coordinates is defined ([2, p. 339]) by

f(r) ∗ g(r) =
∫ ∞

0

∫ 2π

0
f(r′)g(s)r′ dr′ dθ′

(
s2 = r2 + r′

2 − 2rr′ cos θ′
)

,

according to which (1) is derived as (denoting T = tE + t)

L(r; t) = H(R − r) ∗ G(r; T ) =
∫ ∞

0

∫ 2π

0
r′H(R − r′)

1
2πT

e−
r′2+r2−2rr′ cos θ′

2T dr′dθ′

=
1
T

∫ R

0
r′e−

r′2+r2
2T

∫ 2π

0

1
2π

e
rr′ cos θ′

T dθ′ dr′ =
1
T

∫ R

0
r′e−

r′2+r2
2T I0

(
rr′

T

)
dr′,

where I0(·) is the modified Bessel function of integer order 0 (see Sect.2.2 for the
definition). Then dL(r;t)

dr = 1
T

∫ R
0 r′ d

dr

(
e−

r′2+r2
2T I0( rr′

T )
)

dr′ is derived as

1
T

∫ R

0

[
r′2

T
e−

r′2+r2
2T I1

(
rr′

T

)
− rr′

T
e−

r′2+r2
2T I0

(
rr′

T

) ]
dr′ (cf. I ′0(z) = I1(z))

=
1
T

∫ R

0



−r′
d
(
e−

r′2+r2
2T

)

dr′
I1

(
rr′

T

)
− e−

r′2+r2
2T

rr′

T
I0

(
rr′

T

)

︸ ︷︷ ︸
∗∗



 dr′.

Using the recurrence relations of the Bessel functions I ′n(z) = In−1(z)+In+1(z)
2 and

In(z) = z
2nIn−1(z) − z

2nIn+1(z) (see [1] for details), the above term rr′

T I0

(
rr′

T

)
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denoted by ‘**’ corresponds to

rr′I0

(
rr′

T

)
+ rr′I0

(
rr′

T

)

2T
=

rr′

2T
I0

(
rr′

T

)
+ I1

(
rr′

T

)
+

rr′

2T
I2

(
rr′

T

)

=
I0

(
rr′

T

)
+ I2

(
rr′

T

)

2
rr′

T
+ I1

(
rr′

T

)
= r′

d
(
I1

(
rr′

T

))

dr′
+ I1

(
rr′

T

)
dr′

dr′
.

As a consequence, dL(r;t)
dr is derived as

1
T

∫ R

0

[
−r′

d
(
e−

r′2+r2
2T

)

dr′
I1

(
rr′

T

)
− e−

r′2+r2
2T



r′
d
(
I1

(
rr′

T

))

dr′
+ I1

(
rr′

T

)
dr′

dr′




]

dr′

=
1
T

∫ R

0
−

d
(
r′e−

r′2+r2
2T I1

(
rr′

T

))

dr′
dr′ = −R

T
e−

R2+r2
2T I1

(
Rr

T

)
.
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