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Abstract

Existing theories on shape digitization impose strong constraints on admissible
shapes, and require error-free data. Consequently, these theories are not applicable
to most real-world situations. In this paper, we propose a new approach that over-
comes many of these limitations. It assumes that segmentation algorithms represent
the detected boundary by a set of points whose deviation from the true contours is
bounded. Given these error bounds, we reconstruct boundary connectivity by means
of Delaunay triangulation and α-shapes. We prove that this procedure is guaranteed
to result in topologically correct image segmentations under certain realistic condi-
tions. Experiments on real and synthetic images demonstrate the good performance
of the new method and confirm the predictions of our theory.
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1 Introduction

Image segmentation is an important component of many image analysis sys-
tems. Since the performance of subsequent analysis steps depends on the
quality of the segmentation, it is important to understand to which degree
a computed image segmentation corresponds to some underlying real-world
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partitioning. A number of partial answers to this question have been obtained
in the past, but they are not sufficiently realistic to model many actual imaging
situations (see below). In this paper, we present a new approach that over-
comes many of these limitations. In particular, it explicitly takes into account
that real-world data is never free of measurement errors.

The analysis we are going to present is based on a clear distinction between
the ideal geometric image, which cannot be observed in practice, and the
actually available digital image. The geometric image is defined as a perfect
geometric projection of the scene onto a plane and has infinite resolution
(i.e. is an analog function). However, we do not consider the details of the
projection in this work, but consider the geometric image as a given geometric
partitioning of the plane into distinct regions. The interior of each region
is described by some simple function (possibly even by a constant), while
the transitions between regions are discontinuous. Boundaries in the ideal
image mostly correspond to object boundaries in the real world, but may
also include other visible boundaries such as shadow edges. In our model, this
ideal analog image is then transformed into a digital image by a real camera.
Besides geometric projection, real cameras are characterized by their point
spread function and by the sensor’s sampling grid, quantization method, and
noise properties. Other effects, such as chromatic aberrations and defocus blur,
are not explicitly considered in this work, but are easily included when their
consequences can be quantified in terms of known error bounds.

Low-level image segmentation is now defined as the task of reconstructing, as
well as possible, the ideal geometric partition from the limited and distorted
information in the digital image. In this sense, the partition of the ideal ge-
ometric image plays the role of ground-truth, i.e. defines the desired result
of low-level segmentation. We ask how accurate the ground truth can be re-
produced by a digital reconstruction. In particular, we investigate conditions
which ensure that the regions of the reconstruction correspond to the true re-
gions of the ideal geometric partition. That is, we are interested in the question
whether and when low-level segmentation methods are able to correctly infer
important properties such as the number of regions and their neighborhood
and inclusion relations. Since our answers to this question are closely related
to the sampling properties of digital images and digital boundaries, we refer
to our main results as “geometric sampling theorems”.

So far, a number of geometric sampling theorems have been developed that are
restricted to binary partitionings, i.e. the plane is split into (not necessarily
connected) fore- and background components. Under these conditions, it has
been proven that the topology of the partition is preserved under various
discretization schemes when the original regions are r-regular (see definition
below) and the sampling grid has a maximum pixel radius of at most r′ <
r [1,2]. By making slightly stronger assumptions (r′ + p < r), this property is
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preserved when the shapes are blurred by a disc or square of radius p prior to
discretization [3,4]. It is even possible to relax the requirement of r-regularity
somewhat to r-halfregularity [5], when the size of the regions is sufficiently
large.

However, the above approaches have two important limitations. First, they
are not applicable to images where regions cannot be labeled as either fore- or
background, e.g. when three distinct regions meet at a junction. Second, they
do not predict what happens when the segmentation contains a certain mea-
surement error, i.e. when the available image data is distorted and corrupted
by noise. These limitations are partly caused by the fact that the theorems
are based on the assumption of a regular (or fixed irregular) sampling grid. In
this paper, we are going to drop this assumption in favor of adaptive sampling
where the location of the sampling points is adapted to the data. In particular,
we assume that sampling points are placed roughly along the contour of the
regions to be segmented.

We can obtain an adaptive contour sampling in two ways: First, we can keep
the restriction to points defined by a regular grid (i.e. to points at pre-defined
coordinates), but select suitable subsets of these points, namely points located
near the contours of interest. Two variants of this approach are common: we
can either retain points in the grid itself, thus arriving at a so-called pixel
edges, or we can retain points in the dual grid, thus arriving at the crack
edge or inter-pixel boundary located between digitized regions (cf. section 4.1,
Fig. 4 and 5 respectively).

Alternatively, we can allow sampling points to be placed on arbitrary coor-
dinates in the plane. These points may, for example, result from a geometric
smoothing of the inter-pixel boundary (Euclidean paths [6]), a sub-pixel ac-
curate version of Canny’s algorithm [7], or from exact contour following in a
smoothly interpolated image, e.g. by means of the predictor-corrector method
or the sub-pixel watershed transform [8–10] (Fig. 8). These approaches may
be computationally more expensive, but will allow for significantly higher ac-
curacy than the grid-based approaches.

Our analysis of adaptively placed sampling points is inspired by research on
laser range scanning. Here, a number of isolated points is scattered over the
surface of the object of interest, and the task is to reconstruct the surface
from the set of points. A successful solution of this problem is the concept
of α-shapes [11, 12]. The α-shape is essentially defined as the subset of the
Delaunay triangulation of the points where the Delaunay cells’ radius is below
α ∈ R+. Under certain conditions, an α-shape is homeomorphic or at least
homotopy equivalent to the desired object surface.

By applying this idea to the problem of image segmentation, we are able to
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derive a new condition on object shape which ensures homotopy equivalence
of the computed segmentation with the plane partition of the ideal geometric
image. In particular, this means that there is a one-to-one mapping between
the computed and the ground-truth regions. By imposing slightly stronger
requirements on region shape, these properties can even be guaranteed when
the segmentation is subject to measurement errors. Our theoretical framework
further allows us to give sufficient conditions for preserving neighborhood re-
lations.

After giving preliminary definitions in the following section, our main con-
tribution is made in section 3 in the form of our reconstruction algorithm
and corresponding boundary sampling theorem. Subsequently, we apply our
method in section 4 to derive both theoretical properties of existing sampling
and segmentation methods and experimental results on synthetic and real
image data. Finally, the topic of neighborhood relations and a method for
thinning our reconstructed boundaries are considered in section 5.

2 Preliminaries

We consider the task of reconstructing the plane partition of an ideal geometric
image from a given digital image. The plane partitions to be recovered are
defined as follows (see for example [13,14]):

Definition 1 A partition of the plane R2 is defined by a finite set of points
P = {pi ∈ R2} and a set of pairwise disjoint arcs A = {ai ⊂ R2} such
that every arc is a mapping of the open interval (0, 1) into the plane, the
start and end points ai(0) and ai(1) are in P (but not in ∪Aai). The union
of the points and arcs is the boundary of the partition B = P ∪ A, and the
regions R = {ri} are the connected components (maximal connected sets) of
the complement of B.

A partition is called binary when we can assign two labels (foreground and
background) to its regions such that every arc is in the closure of exactly one
foreground and one background region.

A binary partition is called r-regular, when at every boundary point there
exist two osculating discs of radius r which are entirely in the foreground and
background respectively. This implies that the regions are morphologically
open and closed with respect to discs of radius ≤ r, and that the curvature
of the boundary cannot exceed 1/r. This, in turn, means that regions cannot
have corners, and that it is impossible to represent junctions between three or
more regions.
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Figure 1. An r-stable plane partition does not change the homotopy type when
dilated with a disc of radius of at most r (light gray), while dilations with bigger
radius (dark gray) may connect different arcs at waists as marked by the circle.

These restrictions are somewhat relaxed by the notion of r-halfregular par-
titions, where an osculating r-disc must exist at least in the foreground or
the background, and the number of regions (connected components) must not
change under either morphological opening or closing with discs of radius ≤ r.
This definition makes corners possible, but still requires a binary partition that
cannot have junctions. The two notions of r-regularity and r-halfregularity
have been central to all existing geometric sampling theorems.

In this work, our only requirement is that the boundary of a plane partition
does not to change topologically when we thicken it to a certain amount.
Therefore we need the topological concept of homotopy type [15]. The general
definition of homotopy type for spaces of any dimension is rather complicated.
In the 2D case however, it has been shown that two bounded sets in R2 have the
same homotopy type if their enclosure trees are isomorphic [2]. The enclosure
tree (or enclosure hierarchy) of a bounded set A is defined as follows: The
tree’s root is given by the unique infinite component of Ac, and its children
are the components of A that are adjacent to the root. Each node has all
adjacent regions as children that are not already its parent. Thus, any region
of A or Ac is enclosed by its parent in the enclosure tree. In our context, the
role of A will be played by the boundary set B of the partition, whereas Ac

will be the union of all regions.

Now the class of admissible plane partitions used in this work is defined as
follows:

Definition 2 A plane partition is called r-stable when its boundary B can be
dilated with a closed disc of radius s without changing its homotopy type for
any s ≤ r.

In other words, we can replace an infinitely thin boundary with a strip of
width 2r such that the number and enclosure hierarchy of the resulting re-
gions is preserved. In particular, “waists” are forbidden, whereas junctions
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are allowed, see Fig. 1. The set of r-stable partitions includes r-regular and r-
halfregular partitions, but also allows for non-binary partitions and partitions
with junctions. In particular, polygonal partitions (all arcs are straight lines)
are always r-stable for some sufficiently small r. Thanks to these generaliza-
tions, the notion of r-stability is a much more realistic model for the images
occurring in practice than r-regularity and r-halfregularity. Unfortunately, the
traditional method of proving geometric sampling theorems – which is to es-
tablish a topological equivalence between the original and its reconstruction
on a fixed sampling grid – cannot be applied to r-stable partitions: since region
adjacency is not in general preserved (cf. theorem 18), the reconstruction of
an r-stable partition is usually not homeomorphic to the original.

Therefore, we consider another approach to digitization: We approximate the
boundary of the partition with a finite set of adaptively placed sampling points.
Such sampling points are selected somehow “near” the boundary. We formalize
this as follows:

Definition 3 A finite set of sampling points S = {si ∈ R2} is called a (p, q)-
sampling of the boundary B when the distance of every boundary point b ∈ B
to the nearest point in S is at most p, and the distance of every sampling point
s ∈ S to the nearest point in B is at most q. The elements of S are called
edgels. 1 The sampling is said to be strict when all sampling points are exactly
on the boundary, i.e. q = 0.

The Hausdorff distance between the boundary and its sampling is dH(S, B) ≤
max(p, q) (it is equal to max(p, q), if both p and q are chosen to be mini-
mal). Non-zero edgel shifts q > 0 can be caused by systematic or statistical
measurement errors.

2.1 Possible Sources for Boundary Sampling Points

Edgels may be determined in various ways. We distinguish between bound-
ary digitization and boundary detection. In boundary digitization, the ideal
geometric partition is given, but has to be encoded in digital form. Thus, the
transition to a finite representation (including round-off of real values to inte-
gers) is the only source of error in digitization. Our results can be used in the
context of digitization to predict the fidelity of a rendering method, e.g. how

1 Various definitions of the term edgel exist in the literature. In some cases, an edgel
is a pixel that has been marked as belonging to an edge. Other authors use the term
for a very short 1-dimensional piece of edge, equipped with an orientation. In the
present paper, it is a 0-dimensional point located near the true edge. Considering
that edgel is an abbreviation for “edge element”, all three usages are plausible in
their respective contexts.
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accurate a letter will be reproduced on a digital display. In contrast, boundary
detection is concerned with the reconstruction of real world shapes from their
digital images. Here, the correct partition is generally unknown (except in
specific experimental settings for algorithm verification), and additional real
camera effects such as blurring and noise have to be taken into account.

In boundary digitization, we can start from a set of candidate points at pre-
defined positions (e.g. on some regular grid) and select a subset of these points
representing the boundary of interest. If grid points themselves are retained
in the subset, the representation may be referred to as a boundary’s grid
intersection or supercover digitization (see Fig. 4 and formal definitions in
section 4). These representations result, for example, from the pixel-accurate
version of Canny’s algorithm and from many variants of region growing and
the watershed transform [7,16].

Instead, one can also select points of the pixels’ dual grid by using crack
edges, i.e. edgels are located at the vertices of the inter-pixel boundary (Fig. 5
and formal definition in section 4). These representations typically result from
thresholding, but also from grid-based energy minimization approaches such as
level-set methods or graph cuts. Alternatively, we can represent the boundary
by points at arbitrary plane positions, independent of a grid. For example, we
can improve grid-based methods by shifting initial edgels to sub-pixel positions
that are supposedly closer to the true boundary, as done in the subpixel-
accurate version of Canny’s algorithm (Fig. 8a) or when defining Euclidean
paths based on discrete tangents [6]. Grid-independent edgels can also be
obtained from sub-pixel accurate edge following algorithms [8–10] (Fig. 8b)
and active contours [17], to mention just a few possibilities.

In other words, our results can be applied to any segmentation method that
represents the computed boundary by a set of points. It is only required that
the accuracy of the representation, i.e. the maximum errors p and q, can be
estimated when the algorithm is applied to the image class of interest. We then
reconstruct a connected boundary from the points by means of the algorithm
introduced in section 3.

2.2 Triangulations and α-Shapes

Our new algorithm is based on the Delaunay triangulation:

Definition 4 The Delaunay triangulation D of a set of points S is the set of
all triangles formed by triples t ⊂ S such that the open circumdisc (i.e. the
interior of the circumcircle) of every triangle does not contain any point of
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S. 2 If the points are in general position (i.e. no four of them are on a common
circle), the Delaunay triangles, their edges and corners (also denoted as 2-,
1- and 0-cells in this context) form a uniquely defined, connected simplicial
complex. The union of all cells |D| = ⋃

c∈D c is called the polytope of D.

The Delaunay triangulation completely partitions the plane into edges and
triangles. However, in the context of segmentation we are only interested in
those edges and triangles of the Delaunay triangulation that are related to the
boundary of the desired segmentation. Edges and triangles lying within the
regions of the desired segmentation should be removed. A suitable subset of
the Delaunay triangulation is defined by the α-complex introduced in [11]:

Definition 5 The α-complex Dα of a set of points S is defined as the sub-
complex of the Delaunay triangulation D of S which contains all cells c such
that

• the radius of the smallest circumcircle of c is smaller than α, and the interior
of this circle contains no point of S, or

• an incident cell c′ with higher dimension is in Dα.

The polytope |Dα| is called α-shape. Since cells are removed from the De-
launay triangulation, the α-complex has holes which are closely related to the
regions of the desired segmentation. In order to make this relationship precise,
the following theorem is of fundamental importance (the proof can be found
in [12]):

Theorem 6 (Edelsbrunner) The union of closed discs of radius α centered
at the points si ∈ S covers the polytope |Dα|, and the two sets are homotopy
equivalent.

The intuitive meaning of the theorem is as follows: Suppose the edgels si ∈ S
are located near the boundary of a given plane partition. Then, the polytope
|Dα| is homotopy equivalent to this plane partition if and only if the dilation
of the edgels with α-discs is homotopy equivalent to the boundary of the
partition. The following theorem shows that this requirement is indeed fulfilled
under certain conditions:

Theorem 7 (Bernardini & Bajaj) Suppose the plane partition is r-regular,
and S is a strict sampling of its boundary B such that p ≤ r, q = 0. Then the
polytope |Dα| is homotopy equivalent and even homeomorphic to the boundary
B for all p < α < r.

2 Note that an open circumdisc does not contain the corners of the constituting
triangles since it does not contain its own boundary.
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(a) (b) (c)

Figure 2. It may happen that the α-dilation (a) of the boundary of an α-stable plane
partition is not homotopy equivalent to the union (b) of the α-discs centered at the
edgels. Thus the α-shape (c), which is always homotopy equivalent to the union of
discs (b), may contain unwanted holes. These holes consist of Delaunay triangles of
radius greater than α, thus there exists an α-disc centered in the hole which does
not cover any edgel, as shown in (c).

The proof of this theorem is given in [18]. Under these particular conditions,
Dα does not contain any triangles – it only consists of edges and points and
thus defines a plane partition in itself. According to the theorem, this plane
partition is topologically equivalent to the original partition whose bound-
ary was sampled by S. In other words, the α-complex completely defines the
correct linking of edgels into edge chains.

Unfortunately, this no longer applies when the original partition is not r-
regular and/or the edgels are not exactly on the original boundary. Fig. 2
shows an example where the r-dilation of the boundary is homotopy equivalent
to the boundary (i.e. the partition is r-stable), but the dilation of the edgels
is not.

3 Segmentation with Alpha-Shapes

Since the holes of an α-complex do not necessarily correspond to regions of
the original plane partition, we must characterize these holes in more detail.

This is facilitated by the following definition:

Definition 8 Consider the Delaunay triangulation D of a point set S and the
complement DC

α = R2 \ |Dα| of the corresponding α-polytope with α > 0. A
connected component of DC

α is called an α-hole of |Dα|. When the radius of
the circumcircle of the largest Delaunay triangle in an α-hole’s closure is at
least β ≥ α, we speak of an (α, β)-hole.

For simplicity, we also use the term “hole” for the component which contains
the infinite region. It is an (α, β)-hole for arbitrary large β.
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Figure 3. Any circumcircle around p4 and p5 contains p1, p2, and p3 (see lemma 9).

It follows from theorem 6 that there is a 1-to-1 relation between α-holes and
the holes in the union of α-discs around the edgels. The following lemma
establishes that a similar relationship exists for (α, β)-holes:

Lemma 9 An α-hole h is an (α, β)-hole if and only if it contains a point v
whose distance from the nearest edgel is at least β.

PROOF. I (dH(v ∈ h, S) ≥ β ⇒ h is an (α, β)-hole): when v is in the infi-
nite region, the claim follows immediately. Otherwise, v is contained in some
Delaunay triangle. By assumption, the corners of this triangle must have dis-
tance ≥ β from v. Therefore, the radius of the triangle’s circumcircle must be
at least β, and the claim follows.

II (h is an (α, β)-hole ⇒ ∃ v ∈ h with dH(v, S) ≥ β): by assumption, the
closure of h contains a Delaunay triangle t with circumradius β′ ≥ β ≥ α.
Consider the center v of its circumcircle. If v is within the triangle t, it is also
in h and the claim follows. Otherwise, v is at least in some (α, β)-hole (since
the open β′-disc contains no edgel), and we must prove that t is in the same
hole. Suppose the contrary, and consider Fig. 3, which shows the triangle t
and its circumcircle (gray) with center v. For v and t to be in different α-holes,
there needs to exist a Delaunay triangle t′ or a single edge e between t and v
whose smallest circumcircle is smaller than α. The corners of t′ or e cannot
be inside the circumcircle of t because otherwise t would not be a Delaunay
triangle. Neither t′ nor e can contain v because their circumcircle radius would
then be at least β. Let the points p4 and p5 be the end points of e or of one
side of t′. Their distance |p4 p5| must be greater than |p1 p3|. Consequently, any
circumcircle with radius ≤ α (dashed) around p4 and p5 contains t, contrary
to the condition that it must not contain any other edgel (according to the
definition of the α-complex). The claim follows from the contradiction. 2

The reason for defining (α, β)-holes is that even for optimally chosen α, the
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α-complex does not necessarily have the same homotopy type as the ground-
truth boundary, since it may contain too many holes, as can be seen in Fig. 2.
We solve this problem by introducing a second parameter β for the size of such
holes (we will soon determine a proper value for β), i.e. we use the notion of
(α, β)-holes to “repair” α-complexes that contain too many holes:

Definition 10 An (α, β)-boundary reconstruction from a set of edgels S is
defined as the union of the polytope |Dα| with all α-holes of Dα that are not
(α, β)-holes.

In other words, holes smaller than a certain size are simply “painted over”,
and (α, β)-boundary reconstruction essentially amounts to edgel linking by
hysteresis thresholding on the triangle size of a Delaunay triangulation. Our
complete boundary reconstruction algorithm is thus summarized as follows:

(1) Compute the Delaunay triangulation D of the edgels S.
(2) Mark all triangles in D (including their edges) with a circumradius < α.
(3) Additionally mark Delaunay edges whose circumcircle contains no edgel

and has a radius smaller than α.
(4) Find connected components of unmarked triangles and edges.
(5) For each component from step 4 which does not contain any triangle with

a circumradius of at least β, mark all its triangles and edges.

A key feature of the algorithm is that it does not enforce the boundary to be
thin. This is important because the accuracy of the edgels may be insufficient
to decide unambiguously and precisely where the boundary runs. Instead of
forcing possibly wrong decisions at such locations, our algorithm keeps trian-
gles in the boundary which cover the correct boundary without deciding on
their precise location. It is even possible that a piece of expanded boundary
covers several pieces of the correct boundary running in close vicinity to each
other, when the accuracy of the edgels does not allow to tell whether or not
these pieces meet, and if they meet, exactly where that happens.

Thanks to this relaxed definition of the boundary, the (α, β)-boundary re-
construction algorithm manages to preserve exactly those holes that are in
one-to-one correspondence to the regions of the ground-truth, as long as the
values of α and β are properly chosen. This is demonstrated in the follow-
ing theorem which can be interpreted as a new sampling theorem for region
boundaries.

Theorem 11 (Boundary sampling theorem) Let P be an r-stable plane
partition, and S be a (p, q)-sampling of P’s boundary B. Then the (α, β)-
boundary reconstruction R defined by S is homotopy equivalent to B, and the
(α, β)-holes of R are topologically equivalent to the regions ri of P, provided
the following conditions are met:
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(1) p, q < α ≤ r − q
(2) β = α + p + q
(3) every region ri contains an open γ-disc with γ ≥ β + q > 2(p + q).

PROOF. Let U = S ⊕ Bo
α be the union of open α-discs centered at the

points of S. Furthermore, let B⊕
q = B ⊕Bq be the dilation of B with a closed

q-disc, B⊕
α+q = B ⊕ Bo

α+q the dilation of B with an open (α + q)-disc, and
r	i = ri 	 Bα+q the erosion of region ri ∈ P with a closed (α + q)-disc.

(Same number of components in B and |Dα|)3 Due to r-stability of the par-
tition P and α + q ≤ r (which follows from condition 1), both B⊕

q and
B⊕

α+q have as many connected components as B. According to the defi-
nition of a (p, q)-sampling, B⊕

q covers S. Moreover, along with condition
p < r this definition ensures that every component of B⊕

q covers at least
one edgel from S. Thus, the number of edgels is at least as big as the num-
ber of components in B. Since B⊕

α+q and U are obtained from B⊕
q and S

by dilation with an open α-disc, B⊕
α+q covers U , and every component of

B⊕
α+q contains at least one component of U . It follows that the number of

components in U is at least as big as the number of components in B.
Conversely, since α > q and α > p, every open α-disc around a point

of S intersects B, and the union U of these discs covers the entire bound-
ary B. It follows that U cannot have more components than B, because
otherwise there would be an edgel in S with distance of at least α from
B, in contradiction to the definition of a (p, q)-sampling. The number of
components of B and U is thus equal. Due to homotopy equivalence of U
and |Dα| (theorem 6), this also holds for the components of |Dα|.

(Injective mapping from regions to α-holes) Since P is r-stable with r ≥ α +
q, each r	i is a connected set with the same topology as ri. The intersection
r	i ∩B⊕

α+q is empty, and r	i cannot intersect U ⊂ B⊕
α+q and |Dα| ⊂ U . Hence,

r	i is completely contained in a single α-hole of |Dα|, and a function which
maps every region ri onto the α-hole containing r	i is injective.

(Injective mapping from regions to (α, β)-holes) Due to condition 3, ri con-
tains a point whose distance from B is at least γ = β +q. Its distance from
S is therefore at least γ−q = β. Due to lemma 9, the α-hole which contains
r	i is therefore also an (α, β)-hole. Thus, the function already defined for
α-holes is an injective mapping from regions to (α, β)-holes.

(Bijective mapping from regions to (α, β)-holes) An α-hole that does not in-
tersect any region r	i must be completely contained within B⊕

α+q. Every
point v ∈ B⊕

α+q has a distance d < α+ q to the nearest point of B. In turn,

3 This part of the proof is based on the following general property of sets: Let
U ⊂ V be two sets, and cc(U), cc(V ) the numbers of their (connected) components.
Then, if every component of V contains at least one point of U , it follows that
cc(U) ≥ cc(V ).
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every point in B has a distance of at most p to the nearest point in S.
Hence, the distance from v to the nearest point of S is d′ < α + p + q = β.
According to lemma 9, this means that an α-hole contained in B⊕

α+q cannot
contain a triangle with circumradius β and cannot be an (α, β)-hole. This
implies that the already defined mapping is also surjective.

(Bijective mapping between the components of B and |R|) The previous ob-
servation has two consequences: (i) All holes hi remaining in R intersect
a region r	i . Therefore, the correspondence between ri and hi is 1-to-1,
and B and |R| enclose the same number of regions. (ii) All differences be-
tween R and Dα (i.e. all Delaunay cells re-inserted into R) are confined
within B⊕

α+q. This implies that |R| cannot have fewer components than
B⊕

α+q and B. Since all re-inserted cells are incident to Dα, |R| cannot have
more components than |Dα|, which has as many components as B (see first
observation). Hence, B and |R| have the same number of components.

(Homotopy equivalence of B and |R|) Consider the components of the com-
plement (r	i )C and recall that r	i is a subset of both ri and hi for any i. Since
B and |R| have the same number of components, it is impossible for hC

i to
contain a cell that connects two components of (r	i )C . This means that the
sets rC

i and hC
i have the same number of components. This finally proves

the topological equivalence of ri and hi, and implies homotopy equivalence
of B and |R|. 2

If there exists no r such that all conditions of theorem 11 are fulfilled for a
given plane partition (or if the chosen α is too large), it cannot be guaranteed
that the regions of the (α, β)-boundary reconstruction have the same topology
as the ground-truth ones. E.g. if a ground-truth region is too small, it may
happen that it is lost in the reconstruction, because the resulting edgels are
so close to each other that the configuration could also have resulted from
measurement errors along a single boundary. On the other hand, if a region
has an s-waist for s ≤ 2α, i.e. if the s-dilation of the boundary cuts the region
into two or more components, edgel localization errors may cause a single true
region to be split into two or more holes of the (α, β)-boundary reconstruction.
In case of very narrow waists, i.e. when s+2p+2q ≤ α, this is even guaranteed
to happen, i.e. the two sides of a narrow waist are always connected by at least
one line segment in the reconstruction (and if the different parts of the original
region are big enough, every part occurs in the reconstruction as a separate
region).

Even if a plane partition does not fulfill the requirements of our sampling
theorem, we may still derive useful properties of its reconstruction. Suppose
that the original plane partition has waists whose width is below some desired
distance 2r. Now construct a new plane partition where these waists are closed
by drawing a new arc between the two sides of every narrow waist. When the
modified plane partition fulfills the requirements (in particular, when it is
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(a) (b)

Figure 4. (a) Where the boundary intersects the dual grid, the nearest sampling
points form the grid intersection digitization. (b) The supercover digitization con-
tains all sampling points whose pixel facets intersect the arc.

now r-stable with the desired r), the theorem now guarantees preservation of
the modified topology. Thus, (α, β)-reconstruction handles narrow waists in a
well-defined, predictable way, namely as if they had been connected. This fact
is illustrated by the example shown in the second row of Fig. 13.

4 Application to Common Sampling and Segmentation Schemes

In theorem 11, the parameters p and q are assumed to be given. In order to
make their meaning and effects more intuitive, we compute or estimate these
numbers for common sampling and segmentation schemes in the following.

4.1 Sampling Schemes

Let’s first look at digitization schemes, i.e. at the case where the ground-truth
partition is known and has to be represented by means of a regular or irregular
grid. This situation is common in the context of rendering, and the sampling
theorem may be used to compute at which resolution a given shape should be
rendered in order to ensure topological correctness of the rendered shape.

4.1.1 Grid Intersection Digitization

One important digitization scheme called grid intersection digitization is de-
fined on regular grids:

Definition 12 Consider a plane partition P with boundary B and a square
grid. Compute all intersection points of B with the grid lines (i.e. with the lines
connecting 4-adjacent grid points) and round their coordinates to the nearest
grid point coordinate. The set of edgels thus defined is called grid intersection
digitization of B, see Fig. 4a.
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(a) (b) (c)

Figure 5. The inter-pixel boundary (dashed) can be extracted from the subset digi-
tization (a). It includes both the midcrack digitization (b) and the endcrack digiti-
zation (c).

For simplicity, let the grid size (i.e. the smallest distance from one sampling
point to another) be unity. When each component of B crosses at least one
grid line, the distance p of any point of B to the nearest selected grid point
is less than

√
2, and the distance q of any grid intersection to its rounded

coordinate cannot exceed 1/2. Inserting this into the conditions of theorem 11,
we get α ≥

√
2, r ≥

√
2 + 1

2
, β ≥ 2

√
2 + 1

2
≈ 3.3, and γ ≥ 2

√
2 + 1 ≈ 3.8.

However, the worst case configurations giving rise to the values of β and γ in
the theorem cannot actually occur in a square grid because Delaunay edges
between grid points cannot have arbitrary length. It can be shown that the
largest circumradius in an undesirable α-hole is below

√
34 ≈ 2.9, so that

γ ≈ 3.4 (circle area 37 pixels) is sufficient.

Generally the grid intersection digitization of a connected curve is an 8-
connected digital curve. It is identical to Bresenham’s digital straight line
in case of a straight arc. Moreover the grid intersection digitization is a subset
of the supercover digitization on a square grid, which produces a 4-connected
digital curve for any connected curve:

Definition 13 Let P be a plane partition with boundary B and G a finite set
of sampling points such that the Voronoi cells of G have a radius of at most
g. The supercover digitization of B is the set of all sampling points whose
Voronoi cell intersects B, see Fig. 4b for the common case that G is a square
grid.

The constraint on the size of the Voronoi cells implies that p = g and q < g.
Hence, α > g, r > 2g, β > 3g and γ > 4g are required. For example, in a unit
square grid we have q < p =

√
2/2 and γ > 2

√
2 ≈ 2.8. Thus, the supercover

digitization imposes weaker constraints on the original plane partition P than
the grid-intersection digitization. This is mainly due to the denser sampling of
the boundary (smaller spacing of the edgels) in the former. As stated in [19],
the supercover digitization is a Hausdorff discretization, i.e. a set of sampling
points which minimizes the Hausdorff distance to the boundary B. Since this
Hausdorff distance is equal to max(p, q), the given bounds for α, β and γ are
sufficient for all Hausdorff discretizations.
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Figure 6. left: An r-stable region (hatched) whose subset digitization r̂i (black cir-
cles) has a different topology (note the isolated point indicated by the arrow).
center and right: In order to preclude (θ, d)-spikes, the contour must contain a path
between its two points x1 and x2 which remains entirely within the shaded region.
(center : θ > 90◦, right : θ < 90◦)

4.1.2 Inter-pixel Boundaries from Region-Based Methods

Another interesting question is what can be said about region based digitiza-
tion methods, in particular the subset digitization:

Definition 14 Let P be a plane partition with regions R = {ri} and G a finite
set of sampling points such that the Voronoi cells (i.e. the pixels) of G have
a radius of at most g. The subset digitization r̂i of region ri is the union of
all Voronoi cells whose sampling point is in ri, see Fig. 5a. The union of the
boundaries of all r̂i is called the inter-pixel boundary. A boundary digitization
scheme where all edgels are on the inter-pixel boundary B is an inter-pixel
digitization. Two examples are the the midcrack digitization (Fig. 5b) where
the center points of all pixel edges inside the inter-pixel boundary B are chosen
as edgels, and the endcrack digitization (Fig. 5c) where all pixel corner points
lying on the inter-pixel boundary B are used.

Thus, boundary-based digitizations like endcrack and midcrack digitization
can be derived from the region-based subset digitization. While the maximal
distance q of any edgel to the nearest boundary point cannot exceed g, the
distance p from any boundary point to the nearest edgel can be arbitrary
large, as the following considerations illustrate:

An r-stable region is not necessarily r-regular. In particular, the region may
have spikes as shown in Fig. 6 (left). Consequently, there is no guarantee that
the subset digitization r̂i of the region ri is topologically equivalent to ri. As
illustrated in that figure, r̂i may even be disconnected (despite ri being con-
nected), and the distance between the components of r̂i can become arbitrarily
large.

Obviously, this prevents us from defining a useful upper bound for the value
of p. Thus, we need a condition which is stronger than r-stability, but weaker
than r-regularity and which preclude these undesirable spikes:
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Definition 15 Let P be a plane partition with boundary B. We say two points
x1, x2 ∈ B delimit a (θ, d)-spike, if the distance from x1 to x2 is at most d and
if there exists no path on B from x1 to x2 which contains only points y with
∠(x1 y x2) ≥ θ.

Conversely, we say that P has no (θ, d)-spikes if for any pair of boundary
points x1, x2 ∈ B with distance of at most d, there exists a path Y ⊂ B
between x1 and x2 such that ∠(x1 y x2) ≥ θ for all points y ∈ Y .

This definition is illustrated by Fig. 6 (center and right): Let x1 and x2 be two
points on B with distance d. Then, the points which enclose angles of at least
θ with x1 and x2 are necessarily located in the shaded region (center: θ < 90◦,
right: θ > 90◦). Among these points, the indicated point y has the maximal
distance from x1 and x2, namely d

2 sin θ
2

. By requiring a path on the contour

between x1 and x2 which remains entirely within the shaded region, the size
of admissible spikes is restricted with Def. 15.

Intuitively, two points delimit a (θ, d)-spike, if the shortest boundary path
between them deviates too much from a straight line, i.e. it leaves the shaded
region in Fig. 6. But this intuitive description cannot be used for the definition,
since we want to apply it to fractal arcs as well. A fractal arc has infinite length,
so the notion of shortest path is not applicable, but the arc may nevertheless
be free of θ-spikes (see below).

It should be noted that the definition also covers the unintuitive situation
where the two points x1 and x2 are located on different components of the
boundary B. Since no path exists between these points at all, the partition
P can only be free of (θ, d)-spikes if the distance between x1 and x2 is larger
than d. This requirement is closely related to the absence of waists in P . Thus,
this counter-intuitive kind of “spikes” cannot occur in practice if P is r-stable
with r > d/2.

In case of r-regular sets we can give a precise bound for the possible angle θ
given two boundary points x1, x2 with some distance d: Due to r-regularity,
there exists a path from x1 to x2 on B, which lies inside the intersection of
the two r-discs that have x1 and x2 on their exterior. By simple geometric
construction it follows that for any point x inside this intersection, the angle
∠(x1 x x2) is at most equal to 2 arctan

(
d

2r−
√

4r2−d2

)
. Thus, an r-regular parti-

tion has no (θ, d)-spikes for all d ≤ r and θ = 2 arctan
(

d
2r−

√
4r2−d2

)
(e.g. for

θ = 90◦, 60◦ we get d = r and d =
√

3r respectively). By sampling the bound-
ary of an r-regular partition densely enough, we can make d arbitrary small,
which implies that the angles θ = ∠(x1 y x2) become arbitrarily flat, i.e. tend
toward 180◦. In other words, we can always enforce absence of (θ, d)-spikes
by making d small. In general, absence of (θ, d)-spikes will not even imply
r-stability (let alone r-stability), so we have to require both.
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Absence of spikes does not only restrict the angle between points of the original
ground-truth contour. It also implies a restriction on the angles between pair
of adjacent line segments in the boundary reconstruction, provided the edgels
are placed with sufficient density (small distance along the contour). Consider
Fig. 6 and let y be a point on the contour path Y connecting the contour points
x1 and x2. It is easily seen that the distance from y to the nearer point among
x1 and x2 is at most d

2 sin θ
2

. When all edgels lie on the contour (i.e. q = 0), this

immediately implies that adjacent line segments of the reconstruction cannot
enclose an angle smaller than θ. If q > 0 (e.g. if the digitization suffers from
round-off error), the conclusion is not so simple, but the following theorem
shows that the absence of (θ, d)-spikes can still be used to compute an upper
bound for p:

Theorem 16 Let G be a square grid with sampling distance h (pixel radius
g = h√

2
). Further, let P be a plane partition such that every region ri ∈ P

contains a closed g-disc and the boundary B has no (θ, d)-spikes. Then the
endcrack digitization of B is a (p, q)-boundary sampling with q = h√

2
and p =

q+
(

h
2

+ q
)
/ sin θ

2
, provided that h ≤ d

1+
√

2
. Likewise, the midcrack digitization

is a (p, q)-boundary sampling with q = h
2

and p = q +
(

h
2

+ q
)
/ sin θ

2
, provided

that h ≤ d
2
.

PROOF. First, we prove the bounds on q. Let x, y be two 4-adjacent square
grid points. Their common pixel edge is in the inter-pixel boundary if and only
if x and y lie in different regions ri and rj, i.e. the grid line between x and
y intersects the boundary B in at least one point v. The endcrack edgels are
exactly the end points of these pixel edges, and their distance to v is at most
h√
2
. It follows that q = h√

2
for the endcrack digitization. The midcrack edgels

are the center points between x and y, so their maximum distance to v is h
2
.

Hence, q = h
2

for the midcrack digitization. The maximum distance between
neighboring edgels on the inter-pixel boundary is h in both cases.

Now, we prove the bound on p given q. By definition B =
⋃

∂ri, where ∂ri is
the boundary of region ri. Since every region contains a closed disc of radius
g = h√

2
, and every such disc contains at least one grid point, every region ri

contains a grid point, i.e. r̂i is not empty, and there exist at least four edgels
near ∂ri. Due to the nonexistence of (θ, d)-spikes any two boundary points
with distance of at most d must belong to the same component. This implies
that any two components (∂ri)j and (∂ri)l of the boundary ∂ri must have a
minimum distance of more than d. Note that d ≥ 2h = 4q holds. So, for every
component there exists a set of edgels which are closer to (∂ri)j than to any
other component.
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(a) (b) (c)

Figure 7. (a) Koch Snowflake; (b) subset digitization of (a) with midcrack edgels
marked (note the topology violations); (c) (α, β)-boundary reconstruction from mid-
crack edgels. Uncertain areas where the edgels do not unambiguously determine the
shape of the original boundary pop out by being thick.

Obviously, every contour (∂ri)j constitutes a closed curve. Thus by mapping
every edgel to the nearest point of B, one gets a cyclic list of points [bk]

(ij) for
every component (∂ri)j, and each point bk has a distance of at most h+2q to its
successor bk+1 in the list. For endcrack edgels, we have h+2q = (1+

√
2)h ≤ d,

and for midcrack edgels h+2q = 2h ≤ d. Thus, the boundary part between bk

and bk+1 includes no point with an angle smaller than θ. As shown in Fig. 6,
this implies that the distance from any boundary point between bk and bk+1

to the nearer one of these two points is at most
(

h
2

+ q
)
/ sin θ

2
. Thus, the

maximum distance to the nearest of the two edgels which are mapped onto bk

and bk+1 is p = q +
(

h
2

+ q
)
/ sin θ

2
. 2

For instance, when h = 1 and the plane partition has no (60◦, d)-spikes with
d > 2.4, we get p ≈ 3.12, q ≈ 0.71 for endcrack and p = 2.5, q = 0.5 for
midcrack digitization. It follows that midcrack digitization should be favored
over endcrack digitization.

The nonexistence of spikes allows us to even digitize objects topologically
correctly that have a fractal boundary, like the Koch Snowflake (see Fig. 7):
Let K be the object bounded by the Koch Snowflake based on a triangle of side
length 1. It follows that K is r-stable for all r < 1√

3
, it has no (60◦, d)-spikes

for d < 1√
3
, and it contains a γ-disc for any γ ≤ 1√

3
. Thus, the (α, β)-boundary

reconstruction based on the midcrack digitization with a square grid of grid
size h is correct for all h < 1√

27
≈ 0.192.

4.2 Segmentation Schemes

Let us now turn our attention from digitization to segmentation, where the
distortions of real cameras have to be taken into account. Many segmentation
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(a) (b)

Figure 8. Subpixel-accurate edgels from Canny’s algorithm (a) and the subpixel
watershed algorithm (b). Note the lower density and higher displacement of the
edgels in (a).

algorithms (e.g. zero-crossing-based edge detectors and the watershed algo-
rithm) compute image labellings similar to subset digitization, which can be
used to define endcrack and midcrack edgels. However, their error bounds dif-
fer from the ideal ones obtained above. To quantify these differences, we need
a model of the transformation from analog to digital images in real cameras:

fij = (PSF ? f(x, y))ij + nij (1)

where f(x, y) is the ideal geometric image, PSF is the point spread function,
subscripts denote sampling, and nij is additive Gaussian white noise. (Lens
effects not captured by the PSF, such as vignetting and coma, and gray-level
quantization are neglected). We assume that the ideal geometric image is
composed from regions ri whose interior can be described by a set of smooth
functions fi, but the transition between two such functions fi and fj is almost
everywhere discontinuous along the common boundary between regions ri and
rj. The ideal image is thus defined as

f(x, y) =
∑

i

ρi(x, y)fi(x, y) (2)

where ρi is the indicator function of region ri. The discontinuities between
the regions define a plane partition which we regard as the ground truth of
the segmentation problem. Convolution of f(x, y) with PSF (which shall be
band-limited) suppresses high spatial frequencies, and the resulting smooth
transitions between regions allow for sub-pixel accurate edge localization. On
the other hand, systematic localization errors are introduced because blurring
distorts curved edges and boundaries near corners and junctions. Noise causes
additional statistical errors in p and q.

We have estimated these errors for a number of exemplary edge detectors.
In this work, we consider two variants of the watershed transform, Canny’s
algorithm, and the Haralick detector respectively. The latter serves as an ex-
ample of zero-crossing-based algorithms, while the former methods represent
gradient-based edge detection.

The watershed transform and Canny’s edge detector look for relative maxima
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of the gradient magnitude g =
√

f 2
x + f 2

y which indicates discontinuities. The

methods differ in the definition of (1-dimensional) maxima: When interpreting
the values of g as the height of a terrain, watersheds are those ridges which shed
raining water into separate catchment basins. A common method for finding
these ridges is a simulated flooding of the terrain [16], which produces a pixel-
accurate segmentation with inter-pixel boundaries defining end-crack or mid-
crack edgels (in our experiments, we use end-crack edgels). Higher accuracy
is possible by means of the subpixel watershed algorithm, which first locates
the saddle points in the continuously interpolated gradient magnitude image
g and then traces edges by upwards path-following from these points [9, 20],
see examples in the left column of Fig. 9.

Canny’s algorithm [7] looks for relative maxima along the gradient direction
(center column of Fig. 9). In its pixel-accurate variant, the resulting edgels are
similar to a grid-intersection digitization, i.e. we get 8-connected edgel chains.
Better localization (significantly smaller q) is achieved by placing the edgels at
the subpixel maxima of the gradient g, either by means of an approximating
parabola across the edge, or by means of Newton iterations on a continuously
interpolated version of the gradient image. Fig. 8 shows that the results of the
subpixel watershed algorithm are slightly better than those of the subpixel
Canny algorithm, mostly because Canny’s algorithm can find at most one
edgel per pixel, resulting in rather large values for p.

In contrast, Haralick [21] defines edgels at the zero-crossing of the second
derivative along the gradient direction:

b = f 2
xfxx + 2fxfyfxy + f 2

y fyy = 0 (3)

provided that the third derivative along the same direction is negative (in-
dicating a local gradient maximum), and the gradient magnitude is above a
threshold. Crack edges between positive and negative pixels of b where the
constraints are fulfilled define a set of end-crack or midcrack edgels (in the
experiments, we use midcrack edgels). The limited accuracy of this grid-based
representation can be improved when a continuous function b̃ is computed by
means of spline interpolation of b, and edgels are located in b̃ by means of
Newton iteration along the gradient direction. In our implementation of this
variant, edgels are placed roughly at a distance of 0.1 pixels along the edge,
Fig. 9 right column.

We estimate p and q on a large set of synthesized images. The original geomet-
ric images of the test set consisted of straight lines, curved lines, corners, and
junctions at various angles, translations and contrasts. The actual test images
were generated from the ground truth by numerical solution of the convolution
integral (1) with a Gaussian PSF at scale σPSF = 1 and additive white noise
with various signal-to-noise ratios, see Fig. 9. Derivatives are computed by
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Gaussian filters at scale σE. To avoid aliasing in the sampled filter coefficients
we use σE = 1 (cf. [22]).

First, consider low-noise straight edges (SNR = 100). In this case, a radially
symmetric PSF does not cause the edge detector to exhibit localization bias,
and q should be close to zero. Subpixel methods achieve q ≈ 0.05 pixels.
With the exception of the subpixel-accurate watershed algorithm and Haralick
operators (which places edgels at a maximal distance of 0.2 and 0.1 pixels
respectively), p roughly equals the pixel radius. Row 1 in Table 1 lists the
maximum errors we found.

The effect of higher noise levels on straight edge localization was analyzed
by Canny [7]. When the noise is Gaussian distributed with zero mean and
standard deviation sN , the expectation of the squared localization error (in
units of pixel2) is

E[ξ2] =
3

8

(
sN

a

)2
(

1 +
σ2

PSF

σ2
E

)3

(4)

where a is the height of the step, and a/sN is the signal-to-noise ratio (SNR).

When σPSF ≈ σE, we get
√

E[ξ2] ≈ 1.7 sN

a
. For σE →∞, the error approaches

0.6 sN

a
(the common belief that the error increases with σE is only justified in

1D). In typical images a
sN

is between 5 and 100. The expected statistical error

is then below 0.2 pixels, and the maximum error does not exceed 3
√

E[ξ2] =
0.6 pixels with probability 0.997. Rows 1 and 2 of Table 1 confirm these
predictions.

Smoothing of curved boundaries with the PSF results in biased edgel positions.
When the ground-truth contour is a disc with radius ρ and contrast a, the
expected value of the gradient magnitude in the digital image is [23]

g(r) = |a| ρ

σ2
e−

r2+ρ2

2σ2 I1

(
rρ

σ2

)
(5)

where r is the distance from the center of the disc, I1 is the modified Bessel
function of order 1, and σ2 = σ2

PSF + σ2
e is the combined scale of the PSF

and edge operator. The edge is located at the maximum of this function. The
bias of this position relative to the ground-truth edge position depends on the
curvature radius ρ and the scale σ. The displacement is directed toward the
concave side of the curve when σ < 0.8ρ (which is true in most practical situ-
ations). Row 3 of Table 1 compares theoretical predictions and experimental
estimates for ρ = 4. It can be seen that subpixel-accurate methods are very
close to the theoretical limit.

A bias toward the concave side of the contour is also observed at corners.
Its magnitude depends on σ and the corner angle ϕ and is maximal along
the bisector of the corner. The location of the gradient maximum along the
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watershed algorithm: Canny’s algorithm: Haralick’s algorithm:

α = 0.71 α = 0.8 α = 0.71

The errors of pixel-accurate algorithms are dominated by the round-off to grid.

α = 0.2 α = 0.8 α = 0.2

The subpixel variants of the same algorithms are much more accurate, and their
errors are determined by the signal-to-noise ratio.

α = 0.2 α = 0.8 α = 0.2

Systematic distortions occur at corners, but the topology is not violated if the
regions are large enough.

Edge detector responses near a junction are often topologically incorrect (left: phan-
tom region, center/right: gap between two regions), which requires much larger α.

α = 2.0 α = 2.8 α = 2.6

The corresponding (α, β)-reconstructions recover the correct region topology by
creating a thick boundary where the edge detector responses are uncertain.

Figure 9. (α, β)-reconstruction (black) on generated test images with σPSF = σE = 1
and SNR = 30. We set α = p according to the errors reported in Table 1 and
β = α. The ground truth is marked in red/yellow (dotted). (In rows 1 to 3, the
(α, β)-reconstruction is identical to the original edge detector response).
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Watersheds
(crack edge)

Watersheds
(sub-pixel)

Canny
(pixel-based)

Canny
(sub-pixel)

Haralick
(midcrack)

Haralick
(sub-pixel)

p q p q p q p q p q p q

straight line 0.71 0.71 0.13 0.06 0.79 0.52 0.73 0.09 0.71 0.53 0.11 0.09

SNR = 100 [0.71] [0.71] [0.11] [0.05] [0.79] [0.5] [0.72] [0.05] [0.71] [0.5] [0.07] [0.05]

straight line 1.0 2.4 0.61 0.58 1.21 1.01 1.14 0.48 0.99 0.96 0.62 0.57

SNR = 10 [1.4] [0.52] [1.0] [0.52] [1.0] [0.52]

disc, radius = 4 0.78 1.0 0.30 0.29 0.96 0.74 0.79 0.34 0.87 0.72 0.34 0.33

SNR = 100 [0.96] [0.25] [0.75] [0.25] [0.75] [0.25]

corner 90◦ 1.34 1.55 1.06 0.74 1.17 0.75 1.29 0.73 1.43 0.96 1.06 0.74

SNR = 100 [1.0] [0.71] [1.0] [0.71] [1.0] [0.71]

corner 30◦ 2.84 1.84 3.00 0.94 2.69 0.99 2.85 0.60 2.34 0.84 2.42 0.55

SNR = 100 [2.4] [0.62] [2.4] [0.62] [2.4] [0.62]

T-junction ≥ 15◦ 3.19 4.54 2.89 3.81 3.46 1.68 3.40 1.40 3.26 3.88 3.21 3.40

SNR = 100

T-junction ≥ 30◦ 2.30 4.54 2.00 3.81 2.89 1.32 2.80 1.40 2.61 3.88 2.60 3.40

SNR = 100

X-junction 2.65 4.53 3.87 2.86 3.01 2.2 3.07 1.86 3.07 3.31 2.78 3.82

SNR = 100

Table 1
Experimental estimates of the maximum errors p and q (pixels). Theoretical pre-
dictions (if available) are given in brackets.

bisector (i.e. the estimated edge location) has been computed by [24]. Let r0

be the solution of the implicit equation

1√
2π

exp

(
−r2

0

2

)
−
(
tan

(
ϕ

2

))2 r0

2

(
1 + erf

(
r0√
2

))
= 0 (6)

where erf is the error function. Then the bias is

r = σ r0

√
1 +

(
tan

(
ϕ

2

))2

(7)

The sharper the corner, the higher the bias. E.g. for ϕ = 90◦, 45◦, 15◦ we get
r ≈ 0.71σ, 1.33σ, 2.20σ respectively. Rows 4 and 5 in Table 1 show that actual
errors are even slightly bigger than theory predicts.

The situation at junctions is even more complicated. The large number of
degrees of freedom (number of constituent regions, angles, intensities) does
not allow the error to be described in a simple formula. In general, the error
becomes quite large when two contours enclose a very small angle. Moreover,
many edge detectors are unable to maintain closed contours near a junction.
The resulting gaps contribute to large values of p in the neighborhood of
junctions, as rows 6 to 8 of Table 1 show. The watershed algorithms do not
have this problem, so their p-error is comparatively smaller. However, they
tend to produce oversegmentations, i.e. false positive edges, which leads to an
increase in q (because false positive edgels tend to be far from the true edge).
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α = 0.1 α = 0.7 α = 1.2 α = 1.7

Figure 10. Chinese character (white: contours extracted by level-contour tracing [8]),
(α, β)-boundary reconstructions with increasing values of α (red : before thinning,
black : minimal boundary reconstruction)

Fig. 10 and Fig. 14 show results of α, β-reconstruction in real images. Re-
gion topology is correctly recovered when α and β are properly chosen. Since
edgels are considered as isolated points, our new algorithm also facilitates the
combination of edgels from different sources, cf. Fig. 11: The edgels computed
by Canny’s algorithm are not very accurate near corners and junctions, and
this requires large α and β causing the reconstruction to be thick in problem-
atic areas (gray). In a second step, a maximum likelihood junction position
is computed from the gradient magnitudes and directions at the edgels in a
neighborhood of each thick area, resulting in the red points. These points are
simply added to the set of edgels, and the reconstruction from the new set is
much more accurate than the original one.

Taking everything together, we arrive at the following approximate bounds:
suppose the original partition is r-stable and free of (60◦, 2r)-spikes (i.e. cor-
ners enclose at least 60◦, curved arcs have at least curvature radius ρ =
2r/

√
3), and the combined PSF and edge detector scale is at most σ = 0.8r.

Moreover, σ should not be smaller than 0.9 pixels in order to avoid aliasing [22],
so the pixel distance must be h ≈ r. Then q does not exceed 0.9σ + 0.3 ≈ 1.1
pixels when the boundary contains corners or junctions and SNR = 10 (this is
quite visible noise), and q ≈ 0.2 pixels when the partition is (4-pixel)-regular
and SNR = 30. Note that these bounds are maximum errors, the average er-
ror is much lower and approaches zero along straight edges. When the edgels
are not represented with subpixel accuracy, a round-off error of h/

√
2 must

be added, and the average error cannot fall below 0.4 pixels (the standard
deviation of a uniform distribution in the unit square) even in case of straight
edges.

5 Boundary Thinning and Neighborhood Relations

The boundary sampling theorem presented in section 3 tells us how to re-
construct all regions of a plane partition with correct topology and how to
reconstruct the boundary of the partition with correct homotopy type. How-
ever, it does not consider the preservation of neighborhood relations for the
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Figure 11. Left: original image and ROI;center: (α, β)-boundary reconstruction from
subpixel Canny edgels (black and gray), thinned reconstruction (black only) and
additional edgels to be added (red);right: modified reconstruction including new
edgels.

(a) (b)

Figure 12. Narrow spikes can lead to a boundary reconstruction where originally
unconnected regions (a) look like they had a common boundary edge (b).

following two reasons: First, it is not straightforward to define adjacencies
when the boundary representation can be thick (i.e. may contain triangles).
Second, two regions whose reconstructions are adjacent (i.e. have a common
thin boundary) have indeed not necessarily been neighbored in the original
partition, as can be seen in Fig. 12. In this section, we will discuss these two
problems and show when and how they can be solved.

5.1 Recovering a Thin Boundary

Many algorithms that build upon segmentation results cannot handle par-
tially thick boundary representations. We can recover a thin (i.e. locally 1-
dimensional) boundary by topology-preserving thinning, which works similar
to skeletonization in a pixel-based region representation.

An edge in the (α, β)-boundary reconstruction is called simple if its removal
does not change the topology of the reconstructed regions. Simple edges can
be easily recognized: they bound an (α, β)-hole on one side and a triangle
in the boundary reconstruction on the other. Thinning removes simple edges
until any further removal would change the topology (i.e. create an isolated
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α = 4.5

β = 6.67

α = 1.56

β = 3.73

Figure 13. Top row : generated image, reconstructions before (red and black) and
after (black only) boundary thinning. Second row : details (left: original with edgels).
Note the connectivity error in the center image where α is too large.

sampling point or merge two regions). The algorithm is as follows:

(1) Find all simple edges of the given (α, β)-boundary reconstruction and put
them in a priority queue (the sorting will be discussed below).

(2) As long as the queue is not empty:
(a) Get the edge e with the highest priority from the queue.
(b) If e is not simple anymore, it has lost this property during the removal

of other edges. Skip the following and recommence with step 2.
(c) Otherwise, remove e and the adjacent triangle t ∈ R from the bound-

ary reconstruction R.
(d) Check whether the other edges adjacent to t have now become simple

and put them in the queue if this is the case.

As far as region topology is concerned, the ordering of the edgels in the priority
queue is arbitrary. For example, we can measure the contrast (image gradi-
ent) along each edge and remove weak edges first. A particularly interesting
ordering however is defined by the length of the edges:

Definition 17 A (not necessarily unique) minimal boundary reconstruction
is obtained from an (α, β)-boundary reconstruction by means of topology-pre-
serving thinning where the longest edges are removed first.

An example for resulting boundaries is given in Fig. 13. Since region topology
is preserved, each minimal boundary reconstructions is homotopy equivalent
to the boundary of the original plane partition B = ∂P . The two boundaries
do not in general have the same topology, because the adjacency relations
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(a) original images (b) (α, β)-boundary re-
construction

(c) minimal reconstruc-
tion after thinning

Figure 14. Boundary reconstruction examples on real images (Edgels have been
computed by Canny’s algorithm on a color and intensity gradient, respectively).

between regions may differ (see below for details), and the reconstruction may
contain “dangling” edges, which end in the interior of a region. Since only the
shortest edges survive, dangling edges cannot reach very far into a region.

Since a minimal boundary reconstruction can be shown to be a shortest pos-
sible one with correct topology, the surviving edges connect edgels closest
to each other. Neighboring edgels therefore align in an optimal way on the
thinned boundary. The length dmax of the longest surviving edge is a measure
of the density of the boundary sampling. The maximum distance p between a
true boundary point and the nearest edgel may be much larger than dmax/2
if the displacement of neighboring edgels is highly correlated as is usually the
case in practice. For example, edgels along a circular arc are consistently bi-
ased toward the concave side of the curve. When we set α′ = dmax/2 + ε < p
(with arbitrarily small ε), an (α′, β) reconstruction of the edgel set is still cor-
rect in the sense of theorem 11: since a minimal reconstruction is a subset of
the (α′, β) reconstruction, no true regions can get merged. Since α′ < α, no
region can get lost, and since β remained unchanged, no additional holes can
be created. In fact, β′ = α′ + p + q < 2p + q would have been sufficient.

We found experimentally that undesirable holes (α-holes that are not (α, β)-
holes) are actually quite rare, and their largest triangles are hardly ever as
large as the maximal possible circumradius β allows. Therefore, an (α′, β′)-
boundary reconstruction with β′ even smaller than α′+p+q often produces the
correct region topology. We are currently investigating the conditions which
permit weaker bounds. This is important, because a smaller β leads to a cor-
respondingly reduced γ, i.e. the required size of the original regions is reduced,
and more difficult segmentation problems can be solved correctly.
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5.2 Preservation of Adjacency Relations

So far, we have only shown under which circumstances the topology of each
single region of a plane partition can be correctly reconstructed. This does
not imply that the region adjacencies are also correct. It may happen that
some reconstructed regions become connected while the respective original
regions are not, and vice versa. E.g. if two regions of a plane partition have a
distance of at most 2p, their reconstructions may appear as connected. Thus a
minimal boundary reconstruction does not necessarily reproduce the original
region adjacencies and it is interesting to ask whether some neighborhood
relations can nevertheless be recovered from a (p, q)-boundary sampling and
the associated (α, β)-boundary reconstruction.

We demonstrated with Fig. 12 that narrow spikes in the original boundaries
may cause false adjacencies. When the boundary B is free of (θ, d)-spikes, thin
parts of the boundary reconstruction that exceed a certain length can never
arise from unfortunate spike configurations, but reflect the true adjacency of
two original boundaries:

Theorem 18 Let P be an r-stable plane partition with regions ri and bound-
ary B having no (θ, d)-spikes. Further, let S be a (p, q)-sampling of B and
R the (α, β)-boundary reconstruction of S with regions hi, such that all re-
quirements of theorem 11 are fulfilled. Si = ∂hi ∩ S denotes the set of edgels
on the boundary of hi. When d ≥ 2 (α + q) the following holds with p′ :=

d/
(
2 sin θ

2

)
+ q:

(1) If the distance between the two nearest edgels of Si and Sj exceeds 2p′, the
corresponding original regions ri, rj are not adjacent, i.e. ∂ri ∩ ∂rj = ∅.

(2) When there exists a point x with dH(x, Si) ≤ p′, dH(x, Sj) ≤ p′ and
dH(x, Sk) > 2p′ for all k 6= i, j, the original regions ri, rj are arc-adjacent.

(3) If two regions ri, rj have a distance greater than 2 (p′ + q), the conditions
of item 1 are always fulfilled.

(4) If two regions ri, rj have a common boundary point x such that dH(x, rk) >
3p′ for all k 6= i, j, the conditions of item 2 are always fulfilled, i.e. adja-
cency of ri and rj can be detected in the boundary reconstruction.

PROOF. (1) For any st ∈ Si let xt ∈ ∂ri be the nearest boundary point
from st. Then for any two st1 , st2 being connected by a line segment of ∂hi,
the distance between xt1 and xt2 is smaller than 2 (α + q). Since (θ, d)-spikes
do not exist, the distance of each point of ∂ri to the nearest xt cannot exceed
d/
(
2 sin θ

2

)
and thus the distance of ∂ri to ∂hi is bounded by p′. The same

holds for hj. When the shortest distance between Si and Sj is larger than 2p′,
∂ri and ∂rj cannot intersect.
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(2) Both Si and Sj intersect the disc Bp′(x). Since dH(x, Sk) > 2p′ for every
k 6= i, j, no part of ∂rk can intersect Bp′(x). Thus ri and rj are the only regions
which intersect Bp′(x), which is only possible when they have a common edge.
(3) Since the distance between ri and rj exceeds 2 (p′ + q), Si, Sj have to be
more than 2p′ away from each other.
(4) Due to the absence of (θ, d)-spikes, the distance dH(x, Sk), k 6= i, j must be
greater than 2p′. For the same reasons, dH(x, Si) ≤ p′ and dH(x, Sj) ≤ p′. 2

As Fig. 12 shows, junctions of P with degree 3 or higher are not automati-
cally reconstructed topologically correctly. If however every junction of P has
only degree 3, a sufficiently dense boundary sampling is enough to reconstruct
not only the topology of every region of a plane partition, but also the com-
plete neighborhood relations. We only have to ensure that p′ and q are small
enough such that 2p′ + q does not exceed the smallest distance between two
non-adjacent regions. Then it follows with theorem 18 that the complete topo-
logical structure of the original plane partition and of the reconstruction are
identical for the right choice of α.

6 Conclusions

To our knowledge, this paper proposes the first geometric sampling theorem
that explicitly considers measurement errors. Moreover, our new theorem ap-
plies to a much wider class of shapes (r-stable partitions) than existing the-
orems (r-regular partitions). The situation in real images is thus modeled
much more faithfully because shapes may now have corners and junctions,
and standard segmentation algorithms can be used. We carefully derive the
theoretical properties of several well-known edge detectors in order to apply
our new theorem and demonstrate theoretically correct edgel linking. The re-
sulting segmentations are similar to what one gets from traditional heuristic
edgel linking, but their properties can now be formally proven thanks to their
theoretical foundation in Delaunay triangulation. The key to these advance-
ments has been the shift of attention from region-based digitization models
to boundary-based ones: The assumption that no sampling points are in the
interior of any region (beyond the known error bound) allows us to reliably
recover region and boundary connectivity. Our approach (including boundary
thinning) provides a novel way for computing a combinatorial map represen-
tation [10,14] of the boundaries in real images.

We demonstrated that many known digitization and segmentation methods
can be analyzed and applied in the new framework by simply determining
their error bounds. We can predict whether a given image will be handled
properly by an algorithm with a certain error bound. When the error in-
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creases, the performance degrades gracefully: First, the recovered boundary
becomes thick when the detailed curve shape or junction connectivity can no
longer be unambiguously determined. Then, regions get split at too narrow
waists, and finally too small regions will be lost. When additional edgels are
added within the thick part of the (α, β)-boundary reconstruction, the error
bounds p and q will never increase. This opens up new possibilities for algo-
rithm combination. For example, one could start with an edge detector, which
produces thick boundaries near corners and junctions. Additional edgels can
then be computed by a corner detector whose output is confined to these ar-
eas, so that it cannot produce false positives within regions. In future research
we will investigate how false positives (large q) and false negatives (large p)
can be recognized and removed.
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