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Abstract. We propose the GeoMap abstract data type as a uni�ed
representation for image segmentation purposes. It manages both topol-
ogy (based on XPMaps) and pixel-based information, and its interface
is carefully designed to support a variety of automatic and interactive
segmentation methods. We have successfully used the abstract concept
of a GeoMap as a foundation for the implementation of well-known
segmentation methods.

1 Introduction

The goal of image segmentation is to identify regions that are conceptually co-
herent and serve as a basis for further analysis steps. Segmentation methods
rely on local information on both direct properties of pixels and regions and the
neighborhood. Today, computer vision researchers agree that correct handling of
topology is needed when dealing with regions and boundaries, in order to avoid
problems like the connectivity paradox.

Information on neighborhood-relations is conveniently stored in graph struc-
tures like the well-known region adjacency graphs (RAG [1]). These structures
di�er in expressiveness; some have problems with representing certain con�gura-
tions occurring in image analysis (separate contours / holes, see e.g. [2]). Thus, a
number of advanced formalisms for �nite topology have been proposed for solv-
ing these problems [3,2,4,5]. Another problem related to these graph structures
is that usually, the geometry of the regions is stored separately (in so-called la-
bel images, edgel lists, or the like), and an algorithm has to modify both the
graph and the external data when for example regions are merged. This puts
the burden of preventing inconsistencies between the graph representation and
the pixel geometry on the user (i.e. developer of the algorithm).

Furthermore, there are several possible de�nitions of regions and boundaries
in discrete images - like crack edges, 8-connected boundaries between 4-connected
regions or vice versa, or working with a hexagonal grid (some examples follow
in Sect. 2, see Fig. 1 on page 4) - but they cannot be used interchangeably, since
algorithms usually work directly on the pixel layer. We can generalize algorithms
by formulating them on a higher abstraction level, and managing all relations
between the topology and geometry on the pixel level in one abstract data type.



TheGeoMap we introduce here will i) allow to work on a natural abstraction
level with faces, edges, and vertices as basic entities (resulting in more concise,
readable and reusable code), while ii) o�ering access to both their neighborhoods
and their associated pixels at any time. This leads to considerable advantages:
Having a common, uni�ed representation for di�erent automatic and interactive
segmentation algorithms makes it possible to use them not only alternatively,
but also together on one image. Furthermore, it facilitates the separation of the
basic segmentation approach i) from the de�nition of topology on the pixel layer,
but also from e.g. ii) cost de�nitions driving an optimization process, and thus
allows to recombine parts from di�erent publications.

2 The GeoMap Concept

As mentioned above, the GeoMap builds upon the XPMap formalism [5], and
extends it by integrating the required geometrical information. We will now
formally introduce the concept of a GeoMap, then carefully design an applica-
tion interface suitable to exploit the advantages of our uni�ed representation in
Sect. 2.1, and �nally propose a possible internal representation for our abstract
data type (ADT) in Sect. 2.2. First, we need to de�ne combinatorial maps.

De�nition 1. A combinatorial map is a triple (D,σ, α) where D is a set of
darts (half-edges), and σ, α are permutations de�ned on D such that all α orbits
have length 2 and the map is connected, i.e. there exists a σ-α-path between any
two darts:

∀d1, d2 ∈ D: ∃π ∈

 ∏
0≤i≤k

τi

∣∣∣∣∣∣ τi ∈ {σ, α} , k ∈ N

: π (d1) = d2

The orbits of σ, α, and the composed permutation ϕ = σ−1◦α are called vertices,
edges, and faces respectively.

A combinatorial map is planar, if and only if its number of vertices, edges, and
faces ful�lls Euler's equation (|α| denotes the number of orbits in α):

|σ|−|α|+|ϕ|=2 (1)

An obstacle when trying to use planar combinatorial maps for image segmen-
tation is that they cannot represent multiple boundary sets, which occur if we
have regions with holes.

A common solution is to introduce auxiliary bridges which connect the con-
tours (cf. [2]), but this complicates further handling, since i) algorithms working
with edges have to explicitly check for these, and ii) there is no naturally de�ned
place where these bridges should be attached to the contours. The latter becomes
even more bothersome when we add geometrical information to the combinato-
rial structure. Then the auxilliary bridges also need geometric representations,
which is unnecessary and may even be impossible if the geometry is de�ned
with �nite resolution as in our pixel-based approaches below. Furthermore, such



bridges are undesirable if they have to be distinguished from �real� bridges that
represent incomplete boundaries information.

We avoid auxilliary bridges by means of the XPMap formalism [5]:

De�nition 2. We call a tuple (C, c0, exterior, contains) extended planar map
(XPMap) where C is a set of non-trivial planar combinatorial maps (the com-
ponents of the XPMap), c0 is a trivial map that represents the in�nite face of
the XPMap, exterior is a relation that labels one ϕ-orbit of each component in C
as the exterior orbit, and contains is a relation that assigns each exterior orbit
to exactly one non-exterior ϕ-orbit or to the in�nite face of c0.

Note that an XPMap naturally de�nes permutations σ, α, and ϕ, which are
simply the compositions of all permutations of the combinatorial maps in C.

XPMaps are a powerful representation for �nite topology and suitable for
image segmentation; however, segmentation algorithms are normally not entirely
topology-based, but in general need to access the geometry and other (pixel-)
properties of the boundaries and regions, such as brightness and gradient. Due
to this important observation, we will now introduce the GeoMap.

Consider a complete partitioning of the plane into a set P of open regions that
we call basis cells (which normally correspond to pixels or Khalimsky cells [6]).
Furthermore, consider a relation dim: P → {0, 1, 2} that assigns a dimension to
each basis cell. We then group connected basis cells of the same dimension into
block cells according to the following rules (where Pd := {p ∈ P|dim (p) = d}):

V := CC
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#
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where pc denotes the closure of p and CC [. . .] is the set of connected com-
ponents. These three types of block cells are called vertices, edges, and faces
respectively. Fig. 1 shows some example (P, dim) pairs; these variants will be
discussed in Sect. 2.2.

The neighborhood of a block cell c is de�ned as N(c) := {ci | c ∪ ci is connected}
where c, ci ∈ V ∪E∪F . Note that N(c) will never contain cells ci 6= c of the same
type as c, since the basis cells would have identical types and thus be combined
into one connected component.

If all vertices and edges are simply connected (i.e. have no holes), and ∀e ∈ E :
((|N (e)| ≥ 3) ∧ (N (e) ∩ V ≤ 2)) holds, we can represent the discrete topology
of the block cells with an XPMap [7], and use this to build a GeoMap.

De�nition 3. A GeoMap is a tuple (P, X, g) where P is a set of basis cells,
X is an XPMap that represents their induced topology, and g : V ∪E ∪F → 2P

is a relation that assigns the set of contained basis cells to each block cell.

The handling of both basis- and block cells is simpli�ed by introducing labels:
We require each basis cell p to have a unique label b = label (p) (usually, this
will be the pixel coordinate) and assign unique labels l to the block cells. Note
that we do not require the block cell labels to be continuous, since this leads to
di�culties later with modi�cations which remove cells.
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Fig. 1. Example GeoMap cells (left to right: 8-connected pixel boundaries, inter-pixel
interpretation, explicit crack edges, example boundary on hexagonal pixel grid)

2.1 GeoMap Interface Design

In order to make theGeoMap a useful representation in practice, it is important
that we de�ne an abstract interface that re�ects all requirements of segmentation
algorithms. In [8] we systematically examined these needs of several algorithms;
the results will be summarized in the following.

Topology Queries There are several topology-related tasks that must be sup-
ported: Testing whether two regions are adjacent, querying all boundary
components of a face, and listing all adjacent faces.

Cell Geometry Queries Segmentation algorithms frequently need to know
the shape of block cells, for example for collecting statistics on their ba-
sis cells' properties (i.e. boundary strength, mean region color).

Inverse Geometry Queries Interactive segmentation requires a mapping from
a speci�c basis cell (e.g. position obtained with a pointing device) to the block
cell at that position.

Transformations Considering segmentation as the transformation of an initial
partitioning of the image plane into the desired result, we need operations
like removing single edges or completely merging faces.

Application-Speci�c Data Algorithms will rely on application-speci�c prop-
erties of the cells, for example to decide about which regions to merge. Thus,
it must be possible to store and update this information in such a way that
it is kept consistent with the current segmentation.

The last requirement is satis�ed through the association of labels with each
block cell, which can be used to index arrays with application-speci�c data; it
is important however that these labels do not change in unde�ned ways. We
will now explain solutions to the other tasks in detail, and then illustrate our
implementation in Sect. 2.2.

Topology Queries: The DartTraverser Concept Since the GeoMap

is based on XPMaps, the basic entities used to encode its topology are darts. In
order to make inspection of the topology as easy as possible, we introduce the
DartTraverser concept, which uses a dart d to represent the current position
during navigation within the GeoMap.



A GeoMap de�nes the permutations σ, α, and ϕ on its darts. The current
position of a DartTraverser can be changed by moving to the successor or
predecessor of the current dart in σ (which corresponds to turning around the
vertex), α (jumping to the opposite side of the edge), or the composed permu-
tation ϕ = σ−1 ◦ α (following the contour of the face to the left):

nextSigma: d := σ (d) nextAlpha: d := α (d) nextPhi: d := φ (d)

prevSigma: d := σ−1 (d) prevAlpha: d := α−1 (d) prevPhi: d := φ−1 (d)

Now we do not only want to navigate on the darts, but we also want to access
any information associated with the vertices, edges, or faces, so the DartTra-
verser interface also allows to query the identifying labels of the vertex which
the current dart is attached to (represented by the orbit σ∗ (d)), the edge it
belongs to (α∗ (d)) and the face to the left (ϕ∗ (d)).

startNodeLabel: d 7→ label (σ∗ (d)) endNodeLabel: d 7→ label (σ∗ (α (d)))
edgeLabel: d 7→ label (α∗ (d))

leftFaceLabel: d 7→ label (φ∗ (d)) rightFaceLabel: d 7→ label (φ∗ (α (d)))

Geometry Queries As stated above, there need to be means to i) get the block
cell associated with a given basis cell or to ii) query all basis cells belonging to
one block cell. In order to answer the �rst question, the GeoMap o�ers

cellAt: b 7→ l

which returns the label l of the block cell for which g (l) contains the basis
cell labelled b. The second task - �nding all basis cells belonging to a cell - is
usually closely related to collecting properties of these basis cells (e.g. �nding
the mean color, inspecting the gradient, calculating the center of mass). This
can be accomplished by querying the GeoMap for a CellScanIterator:

cellScanIterator: l 7→ CellScanIterator ({label (p) |p ∈ g (l)})

This CellScanIterator is then used to iterate over the basis cell labels, which
are needed in order to look up the properties for the corresponding cells.

Transformations Since image segmentation is a dynamic process, the Ge-

oMap would be useless without means for modi�cation. An important design
decision for this part of the interface is that the GeoMap should o�er a small
set of simple transformations, which makes formal correctness proofs possible
and ensures that the representation stays in a consistent state. Non-admissible
transformations can be rejected by checking the preconditions of each operation.

Köthe [5] proposes a set of Euler Operators [9] for image segmentation; these
are operators that leave Euler's equation on the number of cells and connected
boundary components |C| in a planar XPMap valid: |V | − |E| + |F | − |C| = 1.
We de�ne the following operations on the GeoMap G, which all take the form
G, d 7→ G′ and return a G′ = (P, X ′, g′) with X ′ and g′ created from X and g
as follows:



merge edges merge the two edges α∗ (d) and α∗ (σ (d)) and the vertex σ∗ (d)
(must have degree 2) into one single edge (|V ′| = |V | − 1, |E′| = |E| − 1)

remove bridge merge the edge α∗ (d) (which must be a bridge) into the sur-
rounding face ϕ∗ (d) (|E′| = |E| − 1, |C′| = |C| + 1)

remove isolated vertex merge an isolated vertex represented by the empty
orbit α∗ (d) into the surrounding face ϕ∗ (d) (|V ′| = |V | − 1, |C′| = |C| − 1)

merge faces merge the two faces ϕ∗ (d) and ϕ∗ (σ (d)) (must not be identical)
and their common edge α∗ (d) into one face (|E′| = |E| − 1, |F ′| = |F | − 1)

The relation g′ is derived from g by assigning the basis cells of all cells being
merged to the resulting cell.

Note that each of the above operations is a reduction (reducing the number
of cells). Conceptually, they all have inverse operations that could be used to
e.g. split block cells, e�ectively creating new ones from the same basis cells.
Additionally, split operations could be applied on basis cells, which would change
P. However, adding geometric information introduces an asymmetry between
split and merge operations (the former are no longer parametrizable with a
single dart), which is why split operations are beyond the scope of this paper.

Note that the GeoMap handles both updating the geometry and the topol-
ogy, but the application-speci�c information on the cells has to be updated by
the application. Usually, it is possible to combine the statistics of the cells be-
ing merged in order to get the statistics of the resulting cell, and a GeoMap

implementation can provide hooks for callbacks to ensure that this happens.

Building GeoMap Pyramids We consider segmentation as the transforma-
tion of an initial partitioning of the image plane into the desired result. Usually,
the initial tessellation is an oversegmentation as resulting from a watershed trans-
form or optimal cut [10], or the trivial one where every pixel is a separate region
(i.e. the �rst segmentation step is to look for any boundary evidence). In this set-
ting, further segmentation stages can be computed by using the above reduction
operators, and one can arrange the results over time in a pyramid, where each
level contains less cells than the one below. This corresponds to the approach of
irregular pyramids [3,2,4], which can be used to create more coarse, abstracting
segmentations without losing the ability to represent important detail.

2.2 CellImage Realization

So far, we have concentrated on the abstract properties of a GeoMap; now we
focus on a possible implementation.

We propose a straight-forward extension of the common label images as in-
ternal representation for a GeoMap: The geometry information is stored in a
CellImage, the pixels of which are the basis cells and each carry a dimension
(specifying their type - vertex, edge, or face pixel) and the label of the block cell
they belong to. The complete topological information is derived from this inter-
nal representation (see Fig. 2) according to De�nition 3, which o�ers consistent
views on the same segmentation from both perspectives.



The relation dim (page 3) is crucial for the correct derivation of topology from
the basis cells (i.e. pixels). In the past, researchers have concentrated on crack
edge-based interpretation of region images (inter-pixel boundaries, [11,4,1]), but
it has also been shown that a topological representation can be derived from
�thin�, 8-connected boundaries (resulting from a watershed segmentation for ex-
ample) [7]. Note that inter-pixel contours are commonly made explicit by dou-
bling the image size and inserting boundary pixels, but the resulting 4-connected
contours are visually much less appealing than 8-connected contours due to
strong staircase e�ects. On the plus side, inter-pixel nodes always consist of one
basis cell and have limited degree, which makes crack edge contours much easier
to use. De�nition 3 allows for both inter-pixel contours and explicitly represented
ones on square or hexagonal pixel grids. We will concentrate on the interesting
case of 8-connected boundaries in the following, since it has not yet received as
much attention as the inter-pixel approaches.

Moving in the Orbits Lets have a look at how navigation through the topology
works in some examples. Our internal representation of a DartTraverser is a
pixel position and a direction, pointing to one of the pixel's neighbors (indicated
by the arrows in Fig. 2).

α-orbit: Finding the opposite half-edge is accomplished by simply following
the edge pixel-wise to the next vertex pixel and turning around. Both crack-
edges and the boundary pixel classi�cation by Köthe [7] guarantee by de�nition
that each edge pixel has a unique successor and predecessor.

σ-orbit: Finding the next dart in the σ-orbit of a Khalimsky vertex is straight-
forward, since its degree is limited to the number of four direct neighbors. In
the case of 8-connected boundaries it involves a more complex procedure: Here,
vertices can consist of more than one pixel, which means that their contour has
to be followed in order to �nd the σ successor (cf. Fig. 2 right).

Giving Access to the Geometry Section 2.1 introduced the geometry-related
part of the GeoMap ADT, notably the CellScanIterator, which allows to
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Fig. 2. Left : TwoDartTraversers cycling through their α- and σ-orbits, respectively.
Right : Detailed series of intermediate states for �nding two σ successors.
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Fig. 3. CellScanIterator scanning edge 183 in a gradient magnitude image

iterate over the labels of all basis cells (pixels) of a given block cell (cf. g in
Def. De�nition 3). It can be e�ciently realized by scanning the internal Cell-
Image (restricted to the cached bounding box of the block cell) and stopping
at pixels belonging to the cell being queried. At each step, the iterator returns
the basis cell's label (i.e. its position), which is then used to look up properties
in any application-speci�c image, for example to �nd the mean color of a region
in the original image, or the gradient estimates on a given edge (cf. Fig. 3).1

3 Application

TheGeoMap is designed to serve as a versatile representation for many segmen-
tation algorithms. We have employed it to implement a variety of approaches,
some of which we will describe here.

Canny Hysteresis Canny's segmentation approach is undoubtedly the most
well-known one, and its steps are still representative for its state-of-the-art
descendants: After collecting initial evidence for edges (the initial overseg-
mentation in our case), the candidate set is �ltered to get the �nal result.
We implemented this hysteresis thresholding on the basis of the edges in our
GeoMap. However, we are not limited to assess the edges based on gradi-
ent information, but also implemented measures based on the adjacent faces
(e.g. di�erence of their mean colors, T-test, . . . ).

Contraction Kernels The GeoMap allowed us to implement irregular pyra-
mids as in [2] by grouping a set of Euler Operations into complex contrac-
tions. Furthermore, the CellScanIterator made it easy to implement
(e.g. color-based) salience measures to de�ne the contraction kernels.

Active Paintbrush In contrast to the above, this tool relies entirely on human
interaction; is allows to �paint over� region boundaries to initiate region
merge operations [12]. It is very useful to interactively mark �ne structure in

1 A more e�cient implementation directly scans the target image in parallel, making
the indirection via the position unnecessary.



Canny-like Hysteresis Thresholding:

Active Paintbrush:

(six paintbrush trajectories indicated with red lines)

Intelligent Scissors:

cross: last seed-point
arrow: current pointer

Fig. 4. Example screenshots showing the tools in action

low-contrast images (e.g. angiography). Since our framework is based on one
common representation, it is also possible to use the paintbrush to correct
errors made by the other, automatic tools. To facilitate this, we augmented it
with a means to protect the boundary of single regions from being changed.

Intelligent Scissors After the selection of an initial seed point on a contour,
this semi-interactive tool highlights the optimal path to the current pointer
position in real-time with a live-wire [13]. A complete contour can be delin-
eated with only a few additional selections. In order to de�ne the optimal
path, we measure and combine the signi�cance of single edges - another ex-
ample where the abstraction level of the GeoMap formalism led to directly
reusable components, namely the cost measures from the hysteresis tool.

Implementing these algorithms based on the GeoMap formalism means to ab-
stract from the boundary de�nition. We have used all these algorithms with both
a crack edge representation and 8-connected thin boundaries [7] in an irregular
pyramid, whose level 0 contained a watershed oversegmentation. This conforms
to the recent approach of starting with superpixels [10], not pixels directly.

Note that our experimental results prove that it is possible to achieve this
level of abstraction not only without losing �exibility, but that generic pro-
gramming techniques allow for very e�cient realizations of the formalism. For
example, the GeoMap of a 640× 480 image initially segmented into 11.161 ver-
tices, 17.930 edges, and 6.775 faces can automatically be reduced (based on face
statistics) into a �nal result with about 30 regions in 3.6 seconds on a Pentium
III notebook with 800 MHz.



4 Conclusion

The GeoMap formalism demonstrates that the integration of topology and ge-
ometry in one uni�ed representation leads to a versatile basis for image segmen-
tation. Adapting algorithms to this framework leads to concise, comprehensible
code and does not sacri�ce speed. At the same time, the GeoMap introduces
a level of abstraction that facilitates the decomposition of published segmenta-
tion methods and (re-)combination of approaches, i.e. interchange edge salience
de�nitions or apply several algorithms on the same image.

In the future, we want to extend the GeoMap formalism to work with other
(subpixel- or 3D) boundary de�nitions and add split operations and means to
re�ne the contours retroactively. On the application side, we are currently work-
ing on the integration of learning methods and more sophisticated edge salience
measures based on boundary continuity.
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