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Abstract. Although many interactive segmentation methods exists, none
can be considered a silver bullet for all clinical tasks. Moreover, incom-
patible data representations prevent multiple algorithms from being com-
bined as desired. We propose the GeoMap as a unified representation
for segmentation results and illustrate how it facilitates the design of
an integrated framework for interactive medical image analysis. Results
show the high flexibility and performance of the new framework.

1 Introduction

Currently, fully automatic segmentation of medical images is neither feasible nor
desirable. Having a “user in the loop” is necessary from both a clinical and a le-
gal point of view. Following the paradigm of interactive segmentation, a number
of approaches were proposed which combine the cognitive abilities and medical
experience of humans with the reproducable accuracy and computational power
of machines. Such approaches differ in how they balance speed, ease-of-use, accu-
racy, reliability and other design criteria. No single method achieves the optimal
balance for all classes of images or at least for all clinically relevant regions of a
single image. Therefore, combinations of several methods are required.

Current toolkits (e.g. [4,11]) usually contain various segmentation algorithms,
but offer only limited means to combine them on a single image. Ideally, a fully
integrated tool environment would make it possible to i) switch to the most ap-
propriate method depending on the local image content (e.g. employ edge and
region detectors in the same image), and ii) reuse components of one method in
another one (e.g. Canny’s hysteresis thresholding within a watershed segmenta-
tion). Such combinations are currently difficult because different algorithms use
incompatible data representations for almost all levels beyond the pixel matrix.

To solve this problem, a unified data representation based on sound computer
science principles is needed. Therefore, we link image analysis know-how with
the ideas of abstract data types and modern generic programming techniques
[1]. As a first result of our research program we propose the GeoMap, a new
representation based on topological maps [5] which covers the requirements of
a large number of algorithms. By using GeoMaps for intermediate and final
segmentation results, the combination of algorithms is made possible and, in
fact, easy to realize. Our new approach can be implemented very efficiently,
achieving interactive response times even on a low-cost PC.



2 Requirements for Method Integration

In order to achieve the high degree of method integration briefly discussed above,
we have to i) identify common characteristics of all segmentation methods,
ii) cope with their differences, and iii) develop a unified representation to work
with. In general, segmentation approaches can be classified into edge-based and
region-based ones. One key to unification is to exploit the duality of boundaries
and regions. Duality requires the inverse of an edge representation to be a re-
gion representation and vice versa. Unfortunately, the standard implementations
of popular algorithms do not possess this property. By relying on duality, one
can easily switch back and forth between edge- and region-based approaches as
needed and without information loss. Segmentation then amounts to finding the
most significant boundaries among a large number of candidates. In region-based
approaches, edge significance is derived from statistics of the adjacent regions,
whereas most edge-based ones employ locally computed edge strength measures.

Below we will specify our proposed representation as an abstract data type
(ADT) whose capabilities are derived from a requirement analysis of segmenta-
tion algorithms. We can only summarize requirements here, for details see [7]:

Basic Entities Low-level segmentation algorithms typically extract three types
of features: regions, edges, and corners/junctions. These three correspond
to the topological entities that are theoretically required for a consistent
partitioning of the plane (in both the continuous and discrete domains).
Therefore, our ADT supports three types of cells : faces, edges, and vertices.

Topology Queries The topological part of our representation encodes com-
plete information about the neighborhoods of and adjacencies between all
cells describing a particular partitioning of the image plane. The ADT pro-
vides convenient access to these relations.

Geometry Queries The geometric part of our representation associates shape
information with the abstract topological cells. This can be used to either
derive geometric cell properties or to access the cells’ underlying pixels in
order to compute intensity statistics.

Transformations We consider segmentation as the transformation of an initial
partitioning of the image plane (possibly a trivial one where every pixel is a
separate region) into the desired result. Thus our ADT offers a set of Euler

operations which i) perform atomic transformations (e.g. removing one edge)
and ii) can be composed in arbitrary order (e.g. to merge several regions).

Inverse Geometry Queries Interactive segmentation tools require a mapping
from coordinates (e.g. obtained by a pointing device) to the associated cells.
This mapping can also be used to visualize the current segmentation.

Application-Specific Information The ADT must support the association
of additional information (like region statistics) with each cell.

Note that in our current implementation we have not yet realized the full po-
tential of the theoretical framework, but restricted ourselves to transformations
that start with an initial oversegmentation to be reduced (as discussed below).



3 The GeoMap Framework and its Implementation

In order to fulfill the above requirements, we define the GeoMap data type. The
name reflects the fact that we augment the notion of an extended combinatorial
map with the necessary geometry-related functionality [5,7]. The GeoMap itself
provides access to a CellInfo object for each cell (either by enumerating all cells
of a given type or via a cell label or pixel coordinate) and allows to invoke Eu-
ler operations. The CellInfo objects contain the necessary application-specific
data, the coordinates of all pixels belonging to the cell, and a set of DartTra-

versers that can be used to query the topological relations of the cell.
A DartTraverser is similiar to a cursor in a word processor: it refers to

a specific location during traversal of a GeoMap’s cells. At any given traversal
step, it is located on a vertex and points along an edge starting there. Thus,
it uniquely defines a starting vertex, an edge, and a face to the left. It offers
functions to i) reverse the orientation, ii) turn around the start vertex, iii) follow
the contour of the left face, and iv) access the CellInfos of incident cells.

In contrast to other frameworks that provide topological data structures
[4,11], consistency of the representation is automatically enforced by the Ge-

oMap because Euler operations are guaranteed to perform only admissible trans-
formations. This takes a major burden off the algorithm implementer and facil-
itates the execution of formal complexity analysis and correctness verification.

In principle, the GeoMap framework can be used to improve an arbitrary
initial segmentation, but its realization is much simplified when we start with
an oversegmentation. In this case, only Euler operations reducing the number
of cells are needed. This can be seen as an example of the superpixel approach
recently introduced by Malik [10]. We define superpixels by performing a water-
shed transform of the gradient image at fine scales. Several studies suggest this
to be a good starting point for medical image segmentation [6,9].

Superpixel representations and the GeoMap complement each other in an
ideal way: i) Computational cost is reduced, since the number of superpixels is
much lower than the number of raw pixels. Moreover, generic programming tech-
niques [1] can almost entirely eliminate the abstraction penalty usually imposed
by topological approaches. ii) Being region-based, superpixel properties are more
informative than pixel-based measurements. Additionally, the connection to the
pixel plane is never lost during the segmentation process, and one can always
access the original data to compute additional cell properties. iii) Edge detection
can be interpreted as selecting significant edges among all superpixel boundaries,
whereas region growing boils down to merging superpixels.

The restriction to simplifying Euler operators allows to store a sequence of
reductions in a GeoMapPyramid which logs the operation applied in each
step. This enables the user to backtrack to any previous segmentation state if
the process arrived at a wrong result. Each level of the pyramid is a GeoMap, so
any GeoMap-based algorithm can be applied at any time to compute additional
pyramid levels. Our pyramid achieves a much finer granularity (in fact, the finest
possible) than other irregular pyramid definitions (e.g. [2]), where a large number
of reductions is always executed in parallel.



Fig. 1. Brainweb Image (181x217) (ITK example)
simulated MR slice originally from
http://www.bic.mni.mcgill.ca/brainweb/

Preprocessing: 2.5 sec.
Ventricles & outer brain contour (Canny-like): 2.5 sec.
Gray vs. White matter (Active Paintbrush): 1 min.
Outer Skull (Intelligent Scissors): 25 sec.

4 Application of GeoMaps in the Medical Domain

In the current prototypical system, we realized the following algorithms:

Canny-like edge detection Canny’s algorithm [3] is based on gradient mea-
surements like the watershed transform which we use instead of Canny’s
non-maxima suppression to get closed superpixel contours. Edgel linking is
implicitly performed upon superpixel insertion into a GeoMap. Hysteresis
thresholding then amounts to the removal of GeoMap edges based on gra-
dient strength measurements.
In addition, our framework allows to use alternative edge significance mea-
sures on the basis of edge orientation or region similarity. Due to edge–region
duality, region merging is essentially the same process.

Active Paintbrush Edges are removed when the mouse pointer crosses them.
This serves to quickly merge several regions by “painting over the edges” [6].

Intelligent Scissors After selecting a seed point on a contour, a live-wire in-
dicating the optimal edge from the seed to the current pointer position is
shown in real-time. By coarsely marking a few additional points, a complete
contour can be delineated. We implemented the tobogganing variant of this
algorithm where candidate edges are restricted to superpixel boundaries [8].

A typical session in our framework may proceed as follows: after preprocessing
and creation of the initial superpixel-based GeoMap, the user performs a num-
ber of automatic reductions by means of the Canny-like algorithm to remove
insignificant edges. Then important contours are marked with the intelligent
scissors tool which makes these edges immune against removal. In some areas
with either low contrast or many edges, edge removals with the active paint-
brush may be preferred for marking regions, whose contours are then protected
by a single command. Finally, all unprotected edges are removed automatically.
Throughout the process false reductions can be undone. Figs. 1 and 2 show re-
sults obtained this way, along with the time each step took. Note that we do not
claim clinical correctness due to a lack of ground-truth. Note that the dynamic
nature of our tools can only be fully appreciated in a software demonstration.

5 Conclusions

The GeoMap framework introduced in this paper combines image analysis with
computer science concepts in order to define a new integrated representation



Fig. 2. original CT slice superpixels in ROI segmentation (≈40sec.)

for intermediate and final results of segmentation algorithms. After algorithms
have been adapted to this framework (which is not difficult and often leads to
more readable code), they can be freely combined even within the same image.
Thus, the most appropriate algorithm can be applied at any image location.
This is especially suitable for interactive image analysis where the user guides
the segmentation process and may backtrack whenever a step does not yield the
desired result.

In the future many more algorithms will be integrated into our framework,
especially learning based ones. It will also be necessary to collect data with clini-
cal ground truth in order to validate our results. The extensions of our approach
to 3D is also on our agenda. This promises more accurate segmentations, but re-
quires the development of more sophisticated data structures and the application
of advanced 3D interaction methods.
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