
1

Abstract. Computer diagnosis systems grounded on hand-crafted
fault trees are wide-spread in industrial practice. Since the complex-
ity of technical systems increases and innovation cycles get shorter,
the need for systematic fault tree generation and maintenance arises.
In this paper, the MAD system is introduced which generates fault
trees based on models of technical devices. In addition to qualitative
device modeling, MAD allows context-dependent quantitative mea-
surement modeling such that tests in fault trees refer to quantitative
parameter threshold values which corresponds to usual industrial
practice. It is demonstrated that quantitative measurement modeling
is essential for accurate fault tree generation. MAD has been suc-
cessfully evaluated in cooperation with the German forklift manu-
facturer STILL GmbH Hamburg.

1 INTRODUCTION

More than 100.000 forklifts made by the German company STILL
GmbH Hamburg are in daily use all over Europe. In order to reduce
forklift downtimes, approximately 1100 STILL service workshop
trucks utilize fault tree-based computer diagnosis systems for work-
shop diagnosis. In case of a malfunction, service technicians attach
a computer diagnosis system to a forklift. Then the diagnosis system
performs automated testing and it also instructs service technicians
to carry out manual tests. Test sequences are specified by fault trees
which are diagnostic decision trees allowing fault identification. In
STILL fault trees, nodes represent fault sets. Edges are labeled by
the tests (involving measurements, observations, display values and
error codes) which must be carried out to verify the corresponding
child node.

Due to the complexity of the electrical circuits employed in fork-
lifts, fault trees may consist of more than 5000 nodes. When forklift
model ranges are modified or new model ranges are released, the
central service division manually generates or adapts fault trees.
Dealing with this task, service engineers apply detailed expert
knowledge concerning faults and their effects. Adapting fault trees
to new model ranges can take a service engineer several months.
This practice is costly and quality management is difficult. Further-
more, fault trees are not optimized and fault identification cost is un-
necessarily high. Hence, there is a need for computer methods to
systematically support the design, modification, and optimization of
fault trees. The introduction of new diagnosis techniques, however,
raises challenges.

First, cost of new diagnosis system integration into current diag-
nosis and service processes has to be low. Long terms of training for
service technicians and service engineers are not acceptable. Sec-

1 Laboratory for Artificial Intelligence, University of Hamburg, Vogt-
Koelln-Str. 30, 22527 Hamburg, Germany, email: milde@informatik.uni-
hamburg.de, hotz@informatik.uni-hamburg.de

ond, if a new diagnosis system is established, cost of diagnosis
equipment generation, modification, and maintenance has to be low.
Third, the current diagnostic performance should be exceeded.
Fourth, average fault identification cost should be reduced.

Facing these requirements, innovative model-based techniques
seem to be advantageous because they provide a systematic way for
design, modification, and optimization of diagnosis equipment. But
for STILL, completely replacing fault trees is not an immediate op-
tion for economical reasons. Hence, in principle, automatically gen-
erating fault trees from device models is a promising strategy.
Although the basic concepts of model-based fault tree generation are
already described in [1] and [2], for the reader’s convenience, we
briefly outline the main ideas of the approach in the following.

The first step to model-based fault tree generation is to model a
device. This step is supported by component libraries and a device
model archive (see Figure 1). Design data and knowledge from the
design process (knowledge concerning intended device behavior,
expected faults, available measurements) are integrated into the de-
vice modeling process. In a second step, behavior predictions are au-
tomatically computed from the device model and stored in the so-
called fault relation. The third step is to build fault trees from the
fault relation. This step is supported by a fault tree archive and a cost
model for the tests which can be performed. Fault tree generation can
be performed automatically or guided by service know-how, i.e.
knowledge concerning preferable fault tree topologies.

Figure 1. Basic concepts of model-based fault tree generation

In order to realize these concepts, the MAD system (Modeling, An-
alyzing and Diagnosing) was implemented which is specified in this
paper. A more detailed description of MAD can be found in [4]. In
industrial practice, in fault trees, component faults are usually de-
scribed qualitatively. Thus, in principle, for model-based fault tree
generation, qualitative system modeling is adequate. To overcome
deficiencies of pure qualitative approaches, MAD integrates both
qualitative and quantitative system modeling. The latter is realized
by the latest extension of MAD, i.e. the so-called context-dependent
quantitative measurement modeling which is described in
Section 3.3. It is demonstrated that, quantitative measurement mod-

design data

cost model

device model

behavior predictions

device model archive

component libraries

fault trees

design know-how

service know-howfault tree archive

(fault relation)

Generating Fault Trees from Mixed Quantitative and
Qualitative Electrical Device Models

Heiko Milde1 and Lothar Hotz1

2

els are essential for accurate fault tree generation. Due to quantita-
tive measurement models, tests in MAD’s fault trees refer to
quantitative parameter threshold values which corresponds to usual
industrial practice. In Section 2, we introduce the accelerator pedal
circuit showing typical characteristics of diagnosis in the forklift ap-
plication scenario. Section 3 presents device modeling including
context-dependent quantitative measurement modeling. Fault tree
generation is described in Section 4. Finally, Section 5 summarizes
our findings including evaluation and conclusions.

2 THE ACCELERATOR PEDAL CIRCUIT

Figure 2 shows the wiring diagram of the accelerator pedal circuit
which enables the electronic control unit (ECU) to measure the ac-
celerator pedal position. The ECU provides a supply voltage VCC
whose value is in the interval [9.8V, 10.1V]. The accelerator pedal
determines a potentiometer position which controls the value of volt-
age UFG. In addition, the pedal is connected to a switch controlling
voltage UFGS. When the pedal is kicked down the switch 1S16 con-
nects wire 2 and wire 5. In this case, UFG is in the interval [8.3V,
9.4V]. If the pedal is not operated, wire 1 and wire 2 are connected
and 4.6V < UFG < 5.3V holds. The ECU measures both UFG and
UFGS. Thus, the pedal position is supplied redundantly to secure re-
liability of the measurements. Note that, in order to cope with limited
measurement accuracy and production tolerances as well as ageing
and temperature effects, in the STILL application, correct circuit be-
havior is described by intervals rather than by sharp quantitative pa-
rameter values.

Figure 2. Wiring diagram of a forklift accelerator pedal circuit.

Beside the quantitative value of UFG, the ECU provides two error
flags UFG_HIGH and UFG_LOW with values “OK” and
“NOT_OK” indicating that UFG exceeds or falls below certain
threshold values. The ECU automatically maps the quantitative val-
ue of UFGS to two values “OPEN” and “CLOSED”. In addition to
these automated measurements, for fault identification, service tech-
nicians can manually measure the voltage drop from wire 8 at con-
nector X16 to ground.

Fault trees of the current diagnosis system allow to identify the
following faults: Wires located between the ECU and connector X16
may break due to mechanical stress. The mechanical connection be-
tween the accelerator pedal and the switch 1S16 may also break.
The supply voltage VCC may be supplied incorrectly. Additionally,
the mechanical connection between accelerator pedal and potenti-
ometer 1B1, may not be adjusted correctly or may even be broken.
If a fault occurs, symptoms ranging from slight parameter deviations
to total loss of functionality may appear.

3. MODELING AND BEHAVIOR PREDICTION

In our application, qualitative electrical device models are adequate
because, in current STILL fault trees, component faults and symp-
toms are described qualitatively. Additionally, qualitative models
are advantageous because, in principle, dealing with product vari-
ants is possible. Anyhow, in Section 3.3, it is demonstrated that fault
trees based on pure qualitative device models are insufficient for ac-
curate fault identification. To overcome this deficiency, the so-
called context-dependent quantitative measurement modeling is in-
troduced. In Section 3.1, MAD’s qualitative network analysis is
briefly presented. Details of MAD’s internal models of electrical cir-
cuits and the computation of qualitative parameter values can be
found in [3].

3.1 MAD’s qualitative network analysis

As known from electrical engineering, MAD represents electrical
circuits by equivalent networks. These networks consist of standard
component models which show no internal structure but they show
well-defined and idealized behavior. Controlled versions of standard
component models exist. MAD only provides two different types of
standard component models, i.e. passive and active models showing
passive and active behavior modes, respectively. Passive behavior
modes are “consumer”, “insulator”, and “conductor”. Active models
qualitatively represent idealized voltage sources providing different
voltage levels. Standard component models can be connected in
combinations of series, parallel, star and delta (triangular)
groupings. This simple internal representation of electrical circuits is
sufficient for the following reasons.
• In STILL service workshops, only steady-state diagnosis of elec-

trical circuits is performed. Therefore, only steady-state behavior
of physical components has to be represented in component
models. In particular, an explicit representation of temporal
dependencies is not necessary.

• A small number of qualitative standard component models suf-
fices, because, often, different physical components show similar
electrical behavior, i.e. their current/voltage characteristics differ
only slightly. Qualitative versions of these current/voltage char-
acteristics are frequently identical.

• MAD's standard component models are deliberately selected so
that important behavior classes of the application domain can be
adequately represented.

Due to analogies between electrics, mechanics and hydraulics,
MAD's internal circuit models are, in principle, also adequate for
other technical domains.

Physical parameters are described by qualitative values standing
for intervals or landmarks. To facilitate the analysis of faulty device
behavior, MAD’s parameter representation is three-valued. That is,
actual parameter values, reference values, and parameter deviations
are explicitly represented. Only signs of parameter deviations are
represented, i.e. “-”, “0”, and “+” are MAD’s qualitative deviation
values. As an example, Figure 3 shows MAD’s qualitative absolute
voltage values and their semantics. These values are utilized to char-
acterize actual and reference values of voltage. In MAD’s internal
circuit models, there are no quantitative parameter values represent-
ed but the value 0. Note that, negative_landmark = -
positive_landmark holds. The meaning of these landmarks is further
specified by their utilization in the modeling process. For instance,
the value of the supply voltage VCC of the accelerator pedal circuit
is modeled by “positive_landmark”. Thus, for all voltage in the de-

accelerator
pedal

A
D

ECU

VCC

UFG

UFGS

VCC

1S16

1B1

wire1

wire2

wire3

wire4

wire5

wire88/X16

3/X16

4/X16

1/X16

2/X16

5/X16

potentiometer

switch

X16

connector
R1

R2
R4

R5

A
D

3

vice model, “positive-landmark” represents the value of VCC.

Figure 3. Qualitative and quantitative absolute voltage values

In order to secure high quality of generated fault trees MAD’s
qualitative calculus shows certain features to improve the accuracy
of circuit behavior prediction. In the following, two of these features
are briefly summarized.
• First, rather than relying on qualitative versions of basic arith-

metics, MAD computes qualitative values for current and volt-
age by a set of qualitative operators which are qualitative
versions of complex quantitative equations. In principle, for net-
work analysis, a limited number of operators suffices because
MAD's internal representation of electrical circuits offers a lim-
ited number of standard component models and elementary net-
work structures. Operators are represented by a set of tables
comprising more than 30.000 entries which had to be generated
by computer in order to secure reliability.

• Second, for computation of qualitative values, MAD utilizes a
set of equations which would be redundant if quantitative values
were used. It can be shown that if qualitative values are com-
puted, MAD's set of equations is not redundant but sharpens
qualitative behavior predictions.

3.2 COMEDI (COmponent Modeling EDItor)

To improve acceptance among engineers, MAD provides a user in-
terface called COMEDI which is similar to a CAD tool (see
Figure 6). Figure 4 describes the modeling process which is based
on predefined models from three different libraries. Providing li-
brary models is fundamental because utilization of libraries massive-
ly reduces the complexity of the modeling process which is essential
for the acceptance of MAD in the application.

Figure 4. COMEDI libraries and the device modeling process

Using MAD, device modeling is a two step process. In the first step,
application component class models are build from generic compo-
nent class models which are MAD’s modeling primitives. In the sec-
ond step, device models are assembled from application component
class models. By this means, complexity of the modeling process is
reduced and modeling is facilitated because if an application compo-
nent class model (e.g. logical AND gate model) is once defined it can
be massively reused for device modeling. In the following, the li-

braries and the modeling process are briefly described.
Generic component class models show both correct and faulty be-

havior modes. To COMEDI users, these behavior modes are de-
scribed in colloquial language similar to engineers thinking of how
components work. For example, a certain generic component class
model shows two behavior modes, i.e. “ok_consumer” and
“fault_insulator”. Internally, behavior modes are represented by
MAD’s three-valued qualitative parameter description. 728 different
generic component class models exist which are generated by the
combinatorics of correct and faulty behavior modes. All these mod-
els are provided by the generic component library which cannot be
extended. COMEDI completely hides MAD’s internal parameter
representation from users to facilitate the modeling process.

The application component library contains models of compo-
nent and subcircuit classes occurring in a certain application. To
build a certain application component model, structure and behavior
of the model have to be determined. The model structure is generated
by assembling generic component class models on the screen. Model
behavior is implicitly given by the model structure and the behavior
of generic component class models. Additionally, causal parameter
dependencies can be represented in behavior tables based on user-
defined qualitative parameter values. By this means, generation of
abstract qualitative models for complex components or subsystems
such as logical circuits and software controlled components is facil-
itated. For accelerator pedal circuit modeling, only 11 different ap-
plication component class models are required. Since other circuits
were also modeled, up to now, the application component library
consists of about 50 models.

The device model archive allows systematic reuse and modifica-
tion of device models that were created during former modeling ses-
sions. These models are assemblies of application component
models. That is, for device modeling a structure description is creat-
ed on the screen. Device behavior modes are interactively defined by
combinations of application component behavior modes. Measure-
ments and their costs can be determined. Multiple faults to appear in
fault trees can also be defined. Additionally, context-dependent
quantitative measurement models can be individually defined which
is described in the following.

3.3 Context-dependent quantitative measurement
modeling

Usually, if physical parameters are measured, sharp quantitative val-
ues are obtained. In order to utilize results of measurements for fault
identification together with pure qualitative circuit models, quantita-
tive parameter values have to be mapped to qualitative values. This
mapping seems to be simple if qualitative values show well-defined
quantitative semantics, e.g. semantics of sign-based qualitative pa-
rameter values “-”, “0”, and “+” is obvious. Surprisingly, strictly
mapping quantitative measurement values to qualitative values ac-
cording to their semantics can lead to spurious fault identifications.
This can be demonstrated considering voltage UFG of the accelera-
tor pedal circuit. It is assumed that the pedal is not kicked down.

According to MAD’s qualitative accelerator pedal circuit model,
in the faultless state, the actual value of UFG is “positive_low”. If
wire 8 is broken, the actual value of UFG is “zero”. In practice, if
wire 8 is broken, the circuit part downstream from wire 8 is not con-
nected with any source and it is connected with ground only once. In
such circuit topologies, slight physical phenomena occur, such that
voltage drops may be around 0V. Thus, if wire 8 is broken, 0.05V

U0

zero

positive_lownegative_high negative_low positive_high

positive_landmarknegative_landmark
qualitative

quantitative

modeling

modeling

generic component library

application component library

device model archive

component

device

application

4

may be measured for UFG. Strictly following semantics of qualita-
tive values, if 0.05V is measured, “positive_low” holds for UFG and
“zero” is not valid. Thus, according to the measurement and the
qualitative circuit model, correct circuit behavior is confirmed and
faulty behavior is ruled out although, in practice, wire 8 is broken.
For correct fault identification, it must be taken into account that all
UFG values between -0.05V and +0.1V may be instances of the
same fault symptom and, thus, these values have to be treated iden-
tical. Hence, for adequate qualitative modeling of UFG, the interval
[-0.05V, 0.1V] should be explicitly represented. Obviously, MAD’s
internal qualitative parameter values cannot deal with this task be-
cause semantics of landmarks is predefined.

In general, as described in [6], significant parameter value dis-
tinctions are context-dependent and, thus, for adequate qualitative
parameter modeling, predefined landmarks are inadequate. That is,
landmarks have to be individually defined. In order to deal with this
challenge, MAD allows context-dependent quantitative measure-
ment modeling. For each measurement of the device model, COME-
DI users can individually specify significant landmarks bringing in
expert knowledge concerning nominal circuit behavior and domain
specific typical fault symptoms. Note that, typical fault symptoms
are not known from simulation but from service and diagnosis prac-
tice. Nominal circuit behavior is usually known from the design
phase.

User-defined landmarks divide the quantitative parameter value
space into intervals. For fault identification, all quantitative parame-
ter values located in the same interval are treated identical. One in-
terval can be marked as reference interval, i.e. in the faultless state,
the parameter value is expected to be in this interval. Landmarks
must be given by sharp quantitative parameter values. They are de-
fined with respect to MAD’s internal qualitative absolute parameter
values only. For quantitative measurement modeling, MAD’s inter-
nal qualitative deviation values do not have to be considered. The
quantitative counterparts of MAD’s three-valued qualitative param-
eter descriptions can be computed from definitions of quantitative
landmarks and the reference interval. Note that, quantitative mea-
surement models hold with respect to a certain device operating
mode. That is, landmarks represent a certain context. In the follow-
ing, considering voltage UFG of the accelerator pedal circuit, quan-
titative measurement modeling is demonstrated assuming that the
accelerator pedal is not kicked down.

In the forklift application, service and diagnosis practice has
shown that a voltage measurement in the interval [-0.05V, 0.1V]
may indicate that the connection to source is broken or the source
does not provide any voltage drop at all. A voltage measurement in
the interval [9.8V, 10.1V] indicates that, possibly, there is a short cir-
cuit to the source. From the design phase, it is known that
4.6V < UFG < 5.3V holds in the faultless state. Thus, reasonable
landmarks for the UFG measurements are -0.05V, 0.1V, 4.6V, 5.3V,
9.8V, and 10.1V. Note that, these landmarks are not derived from
complex simulation but they are grounded on service, diagnosis, and
design expertise.

In order to model significant distinctions concerning UFG, CO-
MEDI users can partition the quantitative value space of voltage as
presented in Figure 5. The interval [4.6V, 5.3V] can be explicitly
marked as reference behavior. Since the supply voltage VCC is be-
tween 9.8V and 10.1V and, in the supply voltage model, MAD’s in-
ternal qualitative value “positive_landmark” is utilized to represent
the value of VCC, in Figure 5, “positive_landmark” also has to be
located between 9.8V and 10.1V.

Table 1 shows some examples of MAD’s three-valued qualitative
voltage representation and their quantitative counterparts which are
computed from the measurement model shown in Figure 5. For ex-
ample, MAD’s qualitative voltage value triple (positive_low,
positive_low, -) (see shaded row in Table 1) corresponds to all quan-
titative values which are larger than the smallest quantitative value
corresponding to qualitative “zero” and smaller than the largest
quantitative confirmation of the reference behavior. That is,
(positive_low, positive_low, -) is mapped to (-0.05, 5.3).

Figure 5. User-defined quantitative measurement model

Table 1. MAD’s internal voltage values and corresponding intervals

Considering the UFG measurement of 0.05V again, according to
Table 1, among other qualitative actual values, “zero” is confirmed
and, thus, according to MAD’s qualitative device model, wire 8 is
possibly broken which is a correct fault identification. This example
demonstrates that, due to context-dependent quantitative measure-
ment modeling, accurate fault identification is possible.

3.4 Modeling the accelerator pedal circuit

In Figure 6, the COMEDI device model of the accelerator pedal cir-
cuit is presented. The device operating mode “STANDARD” is
modeled which means that the switch 1S16 is in the position shown
in Figure 2, i.e. the pedal is not kicked down. Correct and faulty be-
havior of wire 4 is presented in the small window in the center of
Figure 6.

To model the error flags UFG_LOW, UFG_HIGH, and UFGS,
functional labeling [5] is utilized, i.e. strings such as “OPEN”,
“CLOSED”, “OK”, and “NOT_OK” can be attached to MAD’s
qualitative parameter values. Note that, these strings occur in the
fault relation shown in Figure 7. The manual voltage measurement
UG described in Section 2 is modeled by a special multimeter com-
ponent model. There are context-dependent quantitative measure-
ment models for UFG and UG. Thus, for these parameters,
quantitative intervals occur in the fault relation.

Automated behavior predictions are performed for all possible
component behavior (correct and faulty) and all device operating
modes considered in the accelerator pedal circuit device model.
Figure 7 shows fault symptom associations which hold in the device
operating mode “STANDARD”.

internal
actual value

internal
reference value

internal
deviation

quantitative
UFG model [V]

negative-low positive_low - [-10.1, 0.1]

zero positive_low - [-0.05, 0.1]

positive_low positive_low - (-0.05, 5.3)

positive_low positive_low 0 [4.6, 5.3]

positive_low positive_low + (4.6, 10.1)

positive_landmark positive_low + [9.8, 10.1]

MAD

values

user-defined
quantitative

-0.05 0.1 4.6 5.3 9.8 10.1

zero positive_landmark

positive_low positive_highnegative_low

landmarks [V]ref

5

Figure 6. COMEDI model of accelerator pedal circuit

Figure 7. Parts of fault relation of the accelerator pedal circuit

4. FAULT TREE GENERATION

MAD offers three different possibilities to generate fault trees. First,
based on fault relations, fault trees can be created automatically.
Second, fault trees from archives can be reused. Third, in order to
permit manual adoption and modification of fault trees, MAD offers
basic editing operations, such as moving a certain fault from one
fault set to another and recomputing the corresponding tests. In the
following, automated fault tree generation is presented in more de-
tail. Since MAD generates fault trees based on fault relations, alter-
native device operating modes are considered because fault relations
contain fault symptom associations for all operating modes defined
in a device model. For automated fault tree generation, one can
choose from the following criteria to guide fault tree generation.
• Grouping by symptoms. Fault trees are generated such that sub-

sets of faults correspond to a prespecified symptom. For instance,
all faults are grouped together which lead to an unexpected value
of the accelerator pedal voltage UFG.

• Grouping by aggregate structure. If the aggregate structure of
the device is known, fault trees can be generated such that subsets
of faults correspond to the same physical component. For
instance, faults occurring in the ECU may be grouped together.

• Minimization of average diagnosis cost. Automated fault tree
generation uses the well-known A*-algorithm to select the tests
which minimize the average fault identification cost according to a
cost model.

Since minimization of average diagnosis cost is one of the basic re-
quirements for the acceptance of MAD in the STILL application, in
the following, cost optimized fault tree generation is described. Fault

probabilities are not taken into account because, in the STILL appli-
cation, these probabilities are not available. A promising approach
for fault tree generation considering fault probabilities is presented
in [2]. Figure 8 shows parts of a cost optimized fault tree of the ac-
celerator pedal circuit.

Cost optimized fault tree generation is based on the A*-algorithm
which performs a search in a state space. A state contains a set of
fault sets which are the current leaves of a growing fault tree. The
start state consists of one fault set containing all n faults of the fault
relation. The goal state consists of fault sets containing faults which
cannot be discriminated. A successor of a state is generated by par-
titioning one leaf fault set into at least two subsets by selecting a par-
titioning test T. All successors of a state are generated by applying
each partitioning test to each leaf. Each path in the state space repre-
sents a possible fault tree.

A test has corresponding costs and a set of different possible test
results, i.e. a test domain. For instance, the seven quantitative inter-
vals presented in Figure 5 are the domain of UFG if the accelerator
pedal is not kicked down. In general, test are not exclusive, i.e. if a
test partitions a fault set into subsets, certain faults can occur in more
than one subset.

Each state is evaluated by the functions g and h. g is defined as
the sum of the diagnostic effort for each fault f. The diagnostic effort
of a fault f is the sum of all test cost C(T) on the path between the
current leaf fault set containing f and the root fault set. To guide the
search, the heuristic function h estimates cost of fault identification
assuming that, in the fault identification process, a certain state is al-
ready reached. In Figure 9, the definitions of g() and h() are given.

To demonstrate that h never overestimates real cost of fault iden-
tification in a cost-optimized tree, a certain leaf b is considered.
There is a set of available tests Ti not yet used on the path between b
and the root. These test allow the generation of a cost-optimized sub-
tree below b. Available tests show costs ci and domains. kmax is the
maximum size of these test domains.

The following two properties guarantee that the heuristic function
h underestimates fault identification cost in a cost-optimized subtree.
First, h considers an impossible subtree in which fault identification
is cheaper than in a cost-optimized subtree. Second, rather than pre-
cisely computing fault identification cost in the impossible subtree,
h underestimates diagnosis cost.

The impossible subtree and the cost-optimized subtree show the
same faults, but, in the impossible subtree, the following character-
istics secure that fault identification in the impossible subtree is
cheaper than in the cost-optimized subtree.

First, in the impossible subtree, all available test are exclusive.
That is, if a test partitions a fault set, each fault occurs in only one
subset. Second, all available tests split fault sets into kmax subsets.
Due to these two properties, in the impossible subtree, the discrimi-
nating power of available tests is higher than in the cost optimized
subtree. Third, in the impossible subtree, the test first performed for
fault identification, is as expensive as the cheapest available test of
the cost-optimized subtree. All tests performed in the second level of
the impossible subtree are as expensive as the second cheapest test
of the cost-optimized subtree, and so on. Fourth, in the impossible
subtree, if a fault set is partitioned into subsets, all of these subsets
contain the same number of faults, i.e. the impossible subtree is bal-
anced. Provided the first three properties hold, a balanced tree yields
to lowest fault identification cost.

For the estimation of fault identification cost in the impossible
subtree, it is assumed that the depth of the subtree is

, (is the floor operation) which, in general, iskmax b()log …

6

an underestimation. Based on this assumption, for each fault in b,
cost of fault identification in the impossible subtree can be underes-
timated as:

, with Ti is i-th cheapest unused Test T

In the fault tree, in Figure 8, the final row of a fault set is the corre-
sponding test. The root contains 13 faults which are not explicitly
shown. Note that, in MAD fault trees, faults are sometimes discrim-
inated by so-called direct fault identifications such as
“w3 = {BROKEN-WIRE}” (see Figure 8). Direct fault identifica-
tions are described in detail in [4].

, with

, with

, with Ti is i-th cheapest
unused Test T

Figure 9. Cost function g and heuristic function h

5 EVALUATION AND CONCLUSIONS

The prototypical implementation of MAD allows model-based be-
havior prediction and automatic generation as well as manual modi-
fication of fault trees. All faults considered in the device model occur
in the generated fault tree, and tests are selected correctly to discrim-
inate fault sets. This holds even when fault trees are modified man-
ually. Furthermore, average diagnosis cost is minimal within the
constraints imposed by a prespecified fault tree structure. Fault trees
have been successfully integrated into existing STILL diagnosis sys-
tems. It has been found, that due to the development of MAD’s con-
text-dependent quantitative measurement modeling, accuracy of
behavior predictions and fault trees is significantly improved.

MAD has been evaluated in the STILL application scenario and
it has been found that using the modeling techniques of MAD with
some extensions regarding the implementation of certain network
analysis concepts, more than 90% of the faults of the current hand-
crafted diagnosis system can be handled successfully. In some cases,
since component-dependent parameter threshold values are not ex-
plicitly represented in MAD models, in fault trees, correct and faulty
behavior cannot be distinguished definitely. Using MAD, an accel-
erator pedal fault tree was automatically generated from the circuit
model and imported into the STILL diagnosis system. STILL ser-
vice experts found that this fault tree can be used for fault identifica-
tion.

ACKNOWLEDGEMENTS

This research has been supported by the Bundesministerium für Bil-
dung, Wissenschaft, Forschung und Technologie (BMBF) under the
grant 01 IN 509 D 0, INDIA - Intelligente Diagnose in der Anwen-
dung.

REFERENCES

[1] Cascio, F., Console, L., Guagliumi, M., Osella, M., Panati, A., Sottano,
S., Theseider Dupré, D.: On-board diagnosis of automotive systems:
from dynamic qualitative diagnosis to decision trees, IJCAI-99, Work-
shop on Qualitative Reasoning for Complex Systems and their Con-
trol,1999.

[2] Faure, P.-P., Trave-Massuyes, L., Poulard, H.: An Interval Model-
Based Approach for Optimal Diagnosis Tree Generation, in: Proc. DX-
99, 10th International Workshop on Principles of Diagnosis, 1999.

[3] Milde, H., Hotz, L., Kahl, J., Wessel, M.: Qualitative Analysis of Elec-
trical Circuits for Computer-based Diagnostic Decision Tree Genera-
tion, in: Proc. DX-99, 10th Int. Workshop on Principles of Diagnosis,
1999.

[4] Milde, H., Hotz, L.: Facing Diagnosis Reality - Model-Based Fault
Tree Generation in Industrial Application, in: Proc. DX-00, The Elev-
enth International Workshop on Principles of Diagnosis, 2000.

[5] Price, C., Pugh, D.: Interpreting Simulation with Functional Labels, in:
Proc. QR’96, 10th International Workshop on Qualitative Reasoning
about Physical Systems, 1996.

[6] Struss, P., Sachenbacher, M.: Significant Distinctions Only - Context-
dependent Automated Qualitative Modeling, in: Proc. DX-99, 10th In-
ternational Workshop on Principles of Diagnosis, 1999.

C Ti()
i 1=

kmax
b()log

∑

g state() de f
i

()

i 1=

n

∑= de fi() C T()
T path fi()∈

∑=

h state() h b()
b leaves state()∈

∑=

h b() b C Ti()

i 1=

kmax b()log

∑⋅=

Figure 8. Parts of cost optimized fault tree of accelerator pedal circuit

