
1

Qualitative Model-Based Decision Tree Generation for
Diagnosis in Real World Industrial Application

Heiko Milde, Lothar Hotz, Jörg Kahl, Stephanie Wessel
Laboratory for Artificial Intelligence, University of Hamburg

Vogt-Koelln-Str. 30, 22527 Hamburg, Germany
milde@kogs.informatik.uni-hamburg.de

phone: ++49 (0)40 42883-2606, fax: ++49 (0)40 42883-2572

Abstract
Computer diagnosis systems grounded on hand-crafted decision trees are wide-spread in industrial prac-
tice. Since the complexity of technical systems increases and innovation cycles get shorter, the need for
systematic decision tree generation and maintenance arises. In this paper, the MAD system is introduced
which generates decision trees based on a new method for qualitative electrical circuit analysis. Different
resources such as design data and expert design know-how as well as diagnosis knowledge can easily be
integrated into decision tree generation. Since a decision tree can be generated automatically based on a
device model, the cost for providing, modifying, and maintaining diagnosis equipment can be drastically
reduced and quality management of diagnosis equipment can be facilitated. Furthermore, the cost of de-
cision-tree-based fault identification can be reduced because model-generated decision trees can be op-
timized. We have successfully evaluated the MAD system in cooperation with the german forklift
manufacturer STILL GmbH Hamburg.

1 Introduction

More than 100.000 forklifts made by the german company STILL GmbH Hamburg are in daily
use all over Europe. In order to reduce forklift downtimes, approximately 1100 STILL service
workshop trucks utilize decision-tree-based computer diagnosis systems for off-line diagnosis.
Due to the complexity of the electrical circuits employed in forklifts, decision trees may consist
of more than 5000 objects. When forklift model ranges are modified or new model ranges are
released, decision trees are manually generated or adapted by service engineers who apply de-
tailed expert knowledge concerning faults and their effects. Obviously, this practice is costly
and quality management is difficult. Furthermore, the cost of decision-tree-based fault identifi-
cation is unnecessarily high because decision trees are not optimized. Hence, there is a need for
computer methods to support systematic modifications and reuse as well as optimization of di-
agnosis systems. The introduction of new diagnosis techniques, however, raises challenges.

• First, it is essential to integrate innovative with established concepts. A total redesign of the
existing diagnosis systems is unacceptable for economical reasons. In particular, for STILL,
replacing decision trees was not acceptable.

• Second, it is essential to utilize available resources such as expert knowledge and available
product data for diagnosis system generation. This way, the cost of diagnosis systems can
be reduced and the trustworthiness of diagnosis data can be improved.

Model-based decision tree generation is a promising answer to the challenges noted above be-
cause, in principle, model-based techniques facilitate integrating available resources into the di-
agnosis equipment. Furthermore, grounding diagnosis systems on a model provides a
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systematic way for modification, reuse and optimization.

In the STILL application scenario, nodes of decision trees represent fault sets. Edges are labeled
by the tests (involving measurements, observations, display values and error codes) which must
be carried out to verify the corresponding child node. Although the basic concepts of model-
based generation of such decision trees are already described in [Friedrich and Nejdl, 89] and
[Mauss, 98], for the reader’s convenience, we briefly outline the main ideas of the approach in
the following.

The first step to model-based decision tree generation is to model a device. This step is support-
ed by a component library and a device model archive (see Figure 1). Design data and knowl-
edge from the design process (knowledge concerning intended device behavior, expected faults,
available measurements) are integrated into the device modeling process. In a second step, cor-
rect and faulty device behavior is predicted automatically by evaluating the device model. The
third step is to build decision trees from behavior predictions. This step is supported by a deci-
sion tree archive and a cost model for the tests which can be performed. Decision tree generation
can be performed automatically or guided by service know-how, i.e. knowledge concerning
preferable decision-tree topologies and fault probabilities. In order to realize these concepts, we
implemented the MAD system (Modeling, Analyzing and Diagnosing) whose main parts are
described in this paper.

In principle, model-based techniques provide a systematic way for predicting the behavior of
electrical devices, including faulty behavior. However, since adequate modeling of heteroge-
neous electrical circuits is still a challenge we developed a new method for model-based qual-
itative network analysis which allows accurate device behavior prediction. Section 2 presents
device modeling in MAD. In Section 3, model-based behavior prediction is described. Section
4 briefly outlines the decision tree generation. The evaluation of the MAD system described in
Section 5 was performed in cooperation with the STILL GmbH Hamburg.

2 Device modeling

In our application, model-based approaches have to deal with electrical circuits of the automo-
tive domain. These circuits usually consist of components that show a variety of different be-
havior types, such as analog, digital, static, dynamic, linear, nonlinear and software-controlled
behavior. Considering model-based generation of diagnostic decision trees in the forklift appli-
cation scenario, we could identify the following requirements for reasoning about fault effects
in electrical circuits.

1. Qualitative modeling is essential. Considering model-based decision tree generation, for

Figure 1: Basic concepts of model-based decision tree generation
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all fault models of the device model, device behavior has to be predicted. Thus, for the sake
of tractability, the number of fault models has to be limited. However, in heterogeneous cir-
cuits, the number of component faults is unlimited because, if faults occur, analog parame-
ters such as resistances may have any value. Hence, describing faults by exact figures would
be highly inappropriate. However, a single qualitative fault model can represent a certain
component fault class consisting of an infinite number of different faults. Thus, qualitative
network analysis is the essential basis for automated decision tree generation if heteroge-
neous electrical systems are investigated.

2. Steady state behavior prediction suffices. If STILL service workshops apply decision-
tree-based diagnosis equipment, only steady state diagnosis is performed. Therefore, only
steady state behavior of physical components has to be represented in component models.
In particular, an explicit representation of temporal dependencies is not necessary.

3. Integration of expert knowledge is essential. Adequate device models are fundamental
for accurate behavior prediction and for dealing with complex circuits which consists of a
large number of components. To assure accurate device modeling, expert knowledge con-
cerning intended device behavior as well as know-how referring to ignorable physical
effects should guide the modeling process. This reflects the insight that the design of mod-
ern technical systems and of appropriate innovative diagnosis systems is inseparable.

4. Dealing with slight parameter deviations and handling changes in circuit structures is
essential. Faults may slightly modify component behavior or may even change device
structures. Hence, heterogeneous symptoms, such as slight deviations of parameter values
or total loss of functionality may occur. Thus, to assure accurate fault modeling and symp-
tom predicting in different operation modes, reasoning about deviations from reference val-
ues as well as reasoning about actual parameter values is fundamental.

5. Spurious behavior predictions have to be avoided. If a decision tree is based on spurious
behavior predictions, certain faults may not be distinguishable in the decision tree although,
in practice, these faults can be easily discriminated. As another point, possibly, decision
trees obviously grounded on spurious behavior predictions will not be accepted by service
technicians at all. Hence, avoiding spurious behavior predictions is essential.

Established methods for qualitative electrical circuit analysis such as the FLAME system [Pugh
and Snooke, 96], the qualitative SPS method [Mauss and Neumann, 96], and the Connectivity
method [Struss et al., 1995] are promising but they do not fulfill all of the requirements enumer-
ated above. In particular, these approaches cannot deal with slight parameter deviations and
some of these methods generate spurious behavior predictions. Thus, according to the require-
ments enumerated above, we developed a new method for qualitative electrical circuit analysis
described in the following.

2.1 COMEDI
COMEDI (COmponent Modeling EDItor), the user interface of MAD facilitates the integration
of expert know-how into device models. That is, in COMEDI, expert knowledge concerning in-
tended device behavior and know-how referring to ignorable physical effects can guide the
modeling process as summarized in the following.

• Using COMEDI’s model builder, one can create component models based on MAD’s inter-
nal standard components and qualitative values described in Section 2.2 and 2.3. Due to
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space limitations, we do not elaborate on the model builder.

• In COMEDI, predefined component models can be taken from a library. Unlike some other
qualitative methods, for each library component, COMEDI users can choose from alterna-
tive behavior models that represent different physical phenomena. For instance, the library
contains two battery models, one ignoring the internal resistance of the battery whereas the
other model explicitly represents the internal resistance.

To facilitate adequate selection of library models, component behavior is described in colloqui-
al language that should be similar to engineer’s thinking about component behavior. For in-
stance, a library model of a battery is called “idealized-battery”. The behavior is described as
“Battery modeled as idealized voltage source, no internal resistance.” Note that, due to the in-
formal character of these behavior models, they cannot be utilized for automated behavior pre-
diction. Internally, COMEDI models are represented by formalized standard components
described in the following section. These components, in principle, allow automated behavior
prediction.

In COMEDI, each behavior model represents a single ok behavior mode and it may show one
or even more corresponding fault modes. Exemplarily, a behavior model of a battery is shown
in Figure 2. It consists of two behavior modes, ok: idealized-battery and fault: battery-voltage-
low.

COMEDI users perform the following steps to model a certain operation mode of a device.
First, in order to determine the model structure, COMEDI users assemble icons representing
components. Second, for each component, an adequate behavior model is selected. Third, for
each behavior model determined in the previous step, a behavior mode (correct or faulty) is se-
lected. A simplified COMEDI model of a forklift frontlight and backlight circuit is shown in
Figure 2.

Figure 2: Forklift frontlight and backlight circuit in COMEDI and behavior modes of a battery behavior model

For modeling devices, in COMEDI, component models can be easily combined because of their
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local internal behavior descriptions (no-function-in-structure principle, [de Kleer and Brown,
84]) presented in the following subsections.

2.2 Standard components
Internally, COMEDI models are mapped to formalized standard components showing well de-
fined and idealized behavior. MAD provides four different standard components, i.e. idealized
voltage sources, consumers, conductors and barriers. The behavior of idealized voltage sources
is well-known from electrical engineering. Consumers are passive and their current/voltage
characteristic is monotonous, i.e. they show positive resistances. Idealized conductors do not al-
low any voltage drop. Thus, they do not show any resistance at all. Idealized barriers do not al-
low any current, that is, their resistance is infinite. Standard components can be connected in
combinations of series, parallel, star and delta groupings. This simple internal representation of
electrical circuits is sufficient for the following reasons.

• A small number of qualitative standard components suffices, because, often, different phys-
ical components show similar electrical behavior, i.e. their current/voltage characteristics
differ only slightly. Qualitative versions of these current/voltage characteristics are fre-
quently identical.

• MAD’s standard components are deliberately selected so that important behavior classes of
the application domain can be represented adequately.

• An explicit representation of temporal dependencies is not necessary because MAD focuses
on steady state behavior analysis.

Due to analogies between electrics, mechanics and hydraulics, the internal MAD representation
is, in principle, also adequate for other technical domains.

2.3 Qualitative representation of physical parameters and variables
In MAD, for each physical parameter type actual values and deviations from reference values
are explicitly represented because, as stated above, reasoning about these values is essential.
Additionally, reference values are also explicitly represented because, if qualitative values are
considered, reference values are not redundant. Moreover, in [Milde et al., 99] we demonstrate
that MAD’s threefold parameter representation is essential for accurate behavior predictions. In
the following, MAD’s qualitative parameter representation is described in detail.

For each parameter type, MAD’s qualitative representation consists of three attributes, i.e. ac-
tual value, reference value and deviation value. For each of these attributes, MAD provides a
specific set of qualitative interval-based values. Table 1, 2, and 3 show attributes and corre-
sponding qualitative value sets of resistances, currents, and voltages (abbreviations in brackets).
The semantics of the qualitative values should be obvious.

attributes qualitative values

actual value (act) zero (0), positive (pos), positive-infinite (pos-inf)

reference value (ref) zero (0), positive (pos), positive-infinite (pos-inf)

deviation value (dev) negative-infinite (neg-inf), negative (neg), zero (0), positive (pos),
positive-infinite (pos-inf)

Table 1: Qualitative representation of resistances
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Note that in MAD’s internal models of electrical devices, infinite current values may occur be-
cause MAD provides idealized voltage sources and idealized conductors (zero resistances) as
standard components.

MAD’s set of standard components does not include idealized current sources. Thus, in MAD’s
internal device models, voltages show certain limits and voltage values beyond these limits can
be considered as impossible values.

Due to the MAD’s explicit representation of voltage limits, in principle, dealing with logical cir-
cuits is possible. For instance, logical values (low, high) can be mapped to MAD’s voltage val-
ues zero and positive-maximum. Furthermore, MAD’s qualitative voltage representation allows
to handle electrical devices showing more than only one source. In particular, the representation
of impossible voltage values paves the way to define a qualitative version of the superposition
principle well-known from electrical engineering. Dealing with logical values as well as han-
dling multiple sources is the basis for dealing with hybrid systems consisting of both analog and
digital subsystems.

3 Automated behavior prediction

In order to compute qualitative values, local propagation methods have been investigated
[Struss, 90]. Since detailed studies proved that local propagation in electrical networks is not
successful, we follow a different approach first presented by [Mauss and Neumann, 96]. That
is, networks are transformed into trees which explicitly represent the network structures. Ex-
ploiting these structure trees, qualitative device behavior can in fact be computed by local prop-
agation. Unlike other qualitative methods such as the FLAMES system, the qualitative SPS
method, and the Connectivity method, MAD offers certain features to improve the accuracy of
qualitative behavior predictions. In the following, these features are summarized. A more de-
tailed presentation of MAD’s automated behavior prediction can be found in [Milde et al., 99].

3.1 Complex qualitative operators
Rather than relying on qualitative versions of basic arithmetics, MAD computes qualitative at-
tribute values by a set of qualitative operators which are qualitative versions of quantitative
equations. In the following, we outline how MAD’s qualitative operators are defined by exem-

attributes qualitative values

actual value (act) negative-infinite, negative, zero, positive, positive-infinite

reference value (ref) negative-infinite, negative, zero, positive, positive-infinite

deviation value (dev) negative-infinite, negative, zero, positive, positive-infinite

Table 2: Qualitative representation of currents

attributes qualitative values

actual value (act) negative-impossible, negative-maximum, negative-between, zero,
positive-between, positive-maximum, positive-impossible

reference value (ref) negative-impossible, negative-maximum, negative-between, zero,
positive-between, positive-maximum, positive-impossible

deviation value (dev) negative, zero, positive

Table 3: Qualitative representation of voltages
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plarily regarding a parallel grouping of two resistances. We demonstrate that MAD’s utilization
of qualitative versions of equations is fundamental for accurate device behavior prediction.

The compensation resistance of a parallel grouping of two resistances R1 and R2 can be com-
puted by applying the equation Rp = (R1 * R2) / (R1 + R2). In MAD, qualitative values of Rp
are computed by applying the qualitative operator QRp_act/ref, which is a qualitative versions
of Rp = (R1 * R2) / (R1 + R2). This operator computes the actual (reference) values of the com-
pensation resistance Rp from actual (reference) values of R1 and R2. QRp_act/ref is defined by
applying the corresponding quantitative equation to the intervals represented by the qualitative
actual (reference) values of R1 and R2. That is, for the definition of QRp_act/ref, sign arithmetic
is performed and certain limits are calculated. Table 4 presents the definition of QRp_act/ref.

Note that, qualitative actual and reference values of Rp cannot be derived by applying qualita-
tive basic arithmetics. In particular, evaluation of Rp = (R1 * R2) / (R1 + R2) by stepwise ap-
plying qualitative basic arithmetics is impossible because qualitative multiplication is
undefined if R1 and R2 show the qualitative actual value zero and positive-infinite, respectively
(see shaded cells in Table 4). Therefore, MAD’s definitions of qualitative operators provide a
way for accurate computation of qualitative values. In the following, we briefly summarize
some of MAD’s features and properties which are described more detailed in [Milde et al., 99].

3.2 Further features and properties of MAD’s calculus
In order to avoid spurious predictions, attribute values of currents and voltages are computed
twice. For example, considering a parallel grouping of two resistances R1 and R2, the current
I1 through resistance R1 is computed by applying the well-known current divider rule. Addi-
tionally, I1 is calculated by applying Ohm’s law.

Qualitative deviation values are computed from actual and reference values. Additionally, out-
put deviation values are inferred from input deviation values, assuming that parameter depen-
dencies are monotonous. It can be shown that MAD’s exploitation of properties of monotony
avoids spurious deviation predictions.

MAD’s qualitative calculus is based on about 100 qualitative operators represented by a set of
tables comprising more than 30.000 entries. These tables had to be generated by computer in
order to secure reliability. A limited number of operators suffices because MAD’s internal rep-
resentation of electrical circuits offers a limited number of standard components and elementary
network structures.

If certain assumptions such as the single fault assumption hold, MAD’s qualitative calculus
based on local propagation is sound and complete. In [Milde et al., 99], these assumptions are
enumerated and the proof of soundness and completeness is sketched.

R1_act | R2_act
R1_ref | R2_ref

0 pos pos-inf

0 0 0 0

pos 0 pos pos

pos-inf 0 pos pos-inf

Table 4: QRp_act/ref, computation of actual values and reference values of compensation resistance Rp
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If circuit structures show nested star and delta groupings, MAD’s computation of qualitative
values described so far may be unsound. In order to overcome this deficiency, in addition to lo-
cal propagation of qualitative values, MAD globally analyses network structures and structure
trees to eliminate spurious predictions.

Some electrical components show internal dependencies. That is, their behavior depends on cer-
tain current or voltage values. For instance, a relay switch is closed only if there is current
through the corresponding relay coil. MAD’s dealing with these components is similar to the
FLAME system. That is, behavior models show model conditions which are tested after behav-
ior prediction. If model conditions are violated, alternative behavior models are instantiated and
behavior prediction is restarted.

3.3 Generation of fault-symptom tables
In order to generate decision trees, behavior predictions are performed for all operation modes
of the device for which diagnosis support is required. That is, for all combinations of different
ok behavior, faults, and fault combinations, all symptoms (measurements, observations, error
codes, display values) are computed which are in principle available for diagnosis. The output
of the prediction step is model-based diagnosis knowledge in form of an extensive table of fault-
symptom associations. This table is the basis for decision tree generation.

4 Decision tree generation

In order to facilitate the integration of diagnosis expert know-how as well as existing diagnosis
data into automatic decision tree generation, MAD offers three different possibilities to generate
decision trees. First, based on fault-symptom tables, decision trees can be created automatically.
Second, decision trees from archives can be reused. Third, in order to permit manual adaptation
and modification of decision trees, MAD offers basic editing operations, such as moving a cer-
tain fault from one fault set to another and recomputing the corresponding tests. In the follow-
ing, automated decision tree generation is presented in more detail. One can choose from the
following criteria to guide decision tree generation.

• Minimization of average diagnosis cost. Automated decision tree generation uses the
well-known A*-algorithm [Hart et al., 68] to select the tests minimizing the average diagno-
sis cost according to a cost model (see Figure 1).

• Grouping by observations, error codes, display values. Decision trees are generated such
that subsets of faults correspond to a prespecified symptom. For instance, all faults are
grouped together which cause the frontlights not to shine correctly.

• Grouping by aggregate structure. If the aggregate structure of the device is known, deci-
sion trees can be generated such that subsets of faults correspond to the same physical com-
ponent. For instance, faults occurring on a certain board may be grouped together.

Figure 3 shows a decision tree for the forklift frontlight and backlight circuit. This decision tree
was generated automatically, guided by the criterion minimization of average diagnosis cost.
Our model-based prediction and automated decision tree generation guarantee, that decision
trees are correct and complete with respect to the underlying device model. All faults considered
in the device model occur in the generated decision tree, and tests are selected correctly to dis-
criminate fault sets. This holds even if decision trees are modified manually. Furthermore, av-
erage fault identification cost is minimal within the constraints imposed by a prespecified
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decision tree structure.

Figure 3: Decision tree for forklift frontlight and backlight circuit

5 Conclusions

Investigating our application domain, we figured out that the following challenges arise when
innovative diagnosis techniques are applied to industrial real world applications. First, innova-
tive diagnosis concepts have to be incorporated into existing diagnosis equipment. Replacing
existing diagnosis systems is not acceptable. Second, expert design knowledge and diagnosis
know-how as well as existing product data and diagnosis strategies have to be integrated into
the process of diagnosis system generation. Developing MAD, we paid massive tribute to these
challenges. In particular, MAD’s decision trees are integrated into existing STILL diagnosis
systems. As another point, libraries and archives allow extensive reuse of existing resources
such as design data, device models and fault trees. Furthermore, MAD provides multiple possi-
bilities for design engineers and diagnosis experts to guide automated decision tree generation.

In order to apply model-based decision tree generation to industrial scenarios, adequate model-
ing and accurate behavior prediction is essential. Thus, we developed a new qualitative model-
ing approach that allows precise behavior predictions for the following reasons. First of all,
since qualitative parameter representations describe actual values and deviations from reference
values, faults and symptoms can adequately be characterized. Furthermore, MAD’s internal
standard components represent important behavior types of the electrical domain whereby com-
ponents can be modeled accurately. As another point, exploitation of network structures and
certain features to avoid spurious solutions (see Section 3) assure accurate behavior predictions.

In cooperation with the STILL GmbH Hamburg, we have evaluated the MAD system in the ap-
plication scenario and found that using the modeling techniques of MAD with some extensions
regarding the component model builder which allows modeling complex components such as
electronic control units, more than 90% of the faults of the current hand-crafted diagnosis sys-
tem can be handled successfully. The prototypical implementation allows model-based behav-
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ior prediction and automatic generation as well as manual modification of decision trees.
Furthermore, we successfully integrated these decision trees into existing STILL diagnosis sys-
tems.

There is a great industrial need for computer-based decision tree generation because diagnosis
equipment based on hand-crafted decision trees is wide-spread in practice. Since the MAD sys-
tem grounds decision tree generation on a model, a systematic way for diagnosis system gener-
ation is provided and the following benefits arise. First, cost of diagnosis system generation,
modification, and maintenance is reduced. Second, quality management is facilitated. Third, av-
erage decision-tree-based fault identification cost is reduced. Thus, the MAD system is a gener-
ic approach to bridge the gap between (some) basic AI research concepts and industrial
applications. In particular, our new approach towards qualitative reasoning about faults in elec-
trical circuits has reached a level of achievement so that it can be utilized to generate diagnosis
systems employed in industry.
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