
Meeting Re-use Requirements of Real-life
Diagnosis Applications

Thomas Guckenbiehl1, Heiko Milde2, Bernd Neumann2, and Peter Struss3

1 Fraunhofer-Institut IITB, Fraunhoferstr. 1, 76131 Karlsruhe, Germany
guc@iitb.fhg.de

2 Laboratory for Artificial Intelligence, University of Hamburg,
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

milde@kogs.informatik.uni-hamburg.de
neumann@informatik.uni-hamburg.de

3 Technische Universität München, Department of Computer Science,
Orleansstr. 34, 81667 Munich, Germany

struss@in.tum.de

Abstract. This report addresses re-use issues in computer-based diagnosis. It is
shown that in order to obtain re-usable components it is useful to categorize the
knowledge and software for a diagnosis system along two dimensions, generality
and genericity. Several new contributions to diagnosis technology are presented
which illustrate different re-use categories and show the benefits of improved re-
usability. The contributions pertain to different tasks related to the diagnosis of
real-life systems of diverse domains: FMEA, workshop diagnosis, generating di-
agnosis manuals, generating fault trees and operator assistance in post mortem di-
agnosis. The work has been performed by three research groups involved in the
joint research project INDIA (Intelligent Diagnosis in Industrial Application).

1 Introduction
Efficient development of diagnosis equipment, use of available resources, and re-us-
ability of software components are the main advantages which industry expects from
innovative diagnosis technology. This has been the experience of the authors in several
diagnosis projects with industrial partners, in particular in the joint research project IN-
DIA (Intelligent Diagnosis in Industrial Applications). In this project, three teams, each
consisting of a research institute, a software supplier, and an industrial production com-
pany, have joined to apply model-based diagnosis technology to real-life diagnosis
problems and pave the way for successful applications elsewhere. The particular diag-
nosis problems provided by the industrial partners represented an interesting subset of
industrial diagnosis applications. One application area is on-line diagnosis of automo-
tive equipment, another one is off-line diagnosis support for transport vehicles, the third
one deals with operator assistance in post mortem diagnosis of machinery.

It is well-known that model-based methods promise applications with attractive
problem-solving capabilities and significant economical advantages. Reviewing the at-
tractive features of model-based diagnosis, the main benefits are connected with the



compositionality and transparency of the model, from which diagnosis knowledge can
be generated. Compositionality bears the potential for re-using components, building
component libraries and inheritance hierarchies, alleviating version control and easing
modifications. The transparency of component-based behavior descriptions may add
further benefits, including complexity management, exploitation of information from
the design phase, and a large degree of compatibility with other life-cycle product data
including documentation. Hence, important benefits can be gained from model-based
diagnosis technology.

All this can be stated without reference to a particular diagnosis procedure. In fact,
one of the insights which this report wants to convey is about possible (re-)uses of mod-
el-based techniques beyond the diagnosis procedures which are traditionally associated
with model-based diagnosis.

We believe that real-life engineering applications and re-use of model-based tech-
niques may become possible at a large scale provided the characteristics of today's di-
agnosis practise are taken into consideration:
• First of all, many producers of technical systems provide only limited diagnosis

support of their products to begin with. There are only few large market segments
where producers develop sophisticated diagnosis support (e.g. the automotive and
aircraft industry). This is changing, however, as the cost of maintenance personnel
becomes more important and improved service is required to remain competitive.
But in many cases, the initial demand for diagnosis support will be quite modest.

• A second point to observe is the industrial tradition of employing decision trees or
fault trees. These techniques have been developed from a maintenance rather than
from a design perspective. Since traditionally, diagnosis matters are a concern
mainly to the service division of a company, not to the design division. However, as
technical systems become larger and more complicated, the design of decision
trees becomes more demanding and problems arise. Furthermore, frequent product
changes cause excessive costs for the maintenance of such diagnosis equipment.
Hence there is growing awareness of the need for re-usability of diagnostic infor-
mation.

• A third problem to cope with is the natural desire of industry to perform changes in
small steps. The introduction of model-based reasoning for complete automation of
diagnosis is often perceived as too different from the traditional ways of doing
diagnosis. Existing know-how would become worthless and new know-how would
have to be acquired. As noted above, the organizational structure would be
affected, with diagnosis tasks shifting from the service to the design division.

This led us to focus our diagnosis research on ways to exploit the advantages of model-
based diagnosis techniques compatible (to some degree) with existing industrial tradi-
tions and requirements.

In Section 2 we identify several different kinds of re-use and propose a classification
scheme which can be generally applied to re-use phenomena in complex industrial en-
vironments. Section 3 presents new diagnosis methods for three application domains,
illustrating different ways to improve re-usability. It is shown that computer-based be-
havior models can be used for various real-life diagnosis tasks and thus play a key part
for improving re-usability of diagnosis components.



2 A Categorization for Re-use of Knowledge and Software

2.1 Different Tasks - Shared Knowledge and Skills

During the life cycle of a product, a broad range of different tasks are performed, from
conceptual design via production planning to maintenance. This includes various forms
of fault analysis and diagnosis, such as failure-modes-and-effects analysis (FMEA), de-
sign for diagnosability, test generation and testing, creation of on-board diagnostics,
production of diagnosis guidelines, workshop diagnosis, repair and reconfiguration.
Despite their different goals and conditions, many of these tasks are based on similar
knowledge, information and skills which are (or ought to be) exchanged between the
people and departments performing these tasks. Identifying and analyzing these shared
elements is a starting point for designing computational tools in a manner that exploits
re-use of these elements in an optimal way. In a knowledge-based approach, such
elements are both collections of represented knowledge fragments and software com-
ponents.

Obviously, information and knowledge about the subject, the technical system it-
self, is central to all tasks, and model-based systems reflect this explicitly. It comprises
the device structure (the blue print) and knowledge about the behavior of its compo-
nents, both under normal operation and in the presence of some malfunction. Further-
more, there is knowledge about the function, i.e. the purpose of a system or a particular
role to be fulfilled by a component or subsystem. For planning and performing tests and
repairs, information about the assembly of parts, accessibility of probing points, equip-
ment required and the cost associated with the actions are important.

A fundamental reasoning skill required to exploit this knowledge (and, hence, a can-
didate for software procedures) is the capability to infer global system behavior from
the structure of the device and the behavior of its components. The various diagnostic
tasks require procedures for relating observations (“symptoms”) to hypotheses of
faults, whilst testing is based on determining actions that are likely to lead to observable
distinctions between different behaviors.

Already this incomplete list of elements of knowledge and software gives some
hints on their potential re-use, but it is still too coarse-grained. Applying a classification
scheme which is part of a methodology for developing models and model-based sys-
tems (see [7]), we take a closer look at this list.

2.2 Classification

The first distinction is made according to the generality of the respective entities of
knowledge, information, or methods:
• physical principles, which are fundamental and valid for all systems (devices) in a

particular domain and regardless of the special task (sometimes called domain the-
ory) e.g. Ohm's Law,

• device-specific (or device-type-specific) entities, i.e. knowledge and information
characterizing a particular system, for instance the value of the parameter resis-
tance of a part of the device,

• task-specific entities: knowledge, information, and algorithms for solving a certain
type of problem, for example an algorithm for computing a decision tree based on a



set of behavior models and possible measurement points.
Obviously, reflecting this distinction in the design and implementation of systems helps
to re-use the physical principles for several devices and in different tasks. Of course,
exploiting device information in different tasks and applying a problem solver to vari-
ous devices is also a desire. This requires a systematic separation of “How” and “What”
(the problem solver and its subject, that is), a principle which is central to knowledge-
based systems and to model-based systems, in particular.

Our experience shows that a structuring of knowledge and information and design
of software components cannot be optimal w.r.t. re-use unless at least one more, orthog-
onal, distinction is made. We need to separate
• generic knowledge and methods from
• a representation and treatment of pragmatic elements.
In our context, the former are related to representation of and reasoning about the ab-
stract behavior of a system according to the “laws” of physics, while the latter reflect
the particular physical implementation of a system and the preconditions imposed on a
special task by the real environment. To illustrate this in the context of our work, the
circuits in a car subsystem in two vehicles may have the same structure in the sense of
the blueprint and include components of the same type, nevertheless differ fundamen-
tally in how they are laid out and installed in the vehicles. This means, their behavior
models are the same and will, for instance, lead to the same diagnostic candidates. How-
ever, the respective test sequences to be generated have to be different, because the ac-
cessibility of probing points varies significantly. While this is determined by the device,
the actual costs of a test sequence may, furthermore, depend on the pragmatic context
the task has to be performed in, for instance the equipment available in a certain type of
workshop.

With respect to the scope of our work in model-based systems, we obtain the clas-
sification displayed in Table 1. It is the simplest one, in fact it is somewhat oversimpli-
fied, as already indicated by overlap between device- and task-specific pragmatic
elements: the actual actions that have to be performed to carry out a test may be deter-
mined by both the physical device and the contextual constraints on a task. More cave-
ats are discussed below. Nevertheless, an analysis along these lines already provides
useful criteria for the design of knowledge representation schemes, data base structures,
and modularization of software under the aspect of re-use.

2.3 Discussion

Although the distinctions made in the above analysis are fairly obvious, they are not
necessarily present in current practice of product documentation, actual work process-
es, and traditional software systems. In fact, the scheme provides a way for analyzing
the inherent limitations of different approaches to software tools for the kind of tasks
considered here. Many tools for engineering tasks do not provide a clear distinction
along the horizontal axis at all turning them into unique solutions, and even if they are
model-based, they do not provide a method for composing the device model by re-using
physical principles. Fault-tree-based diagnosis offers a general inference mechanism
for processing the trees, but the trees inseparably merge component knowledge, device
structure, and task knowledge including the pragmatic aspects. This is why this technol-



ogy is obsolete, unless a way is provided to generate the trees from first principles as
described in Section 3. But limitations become evident also for several AI techniques.
Case-based systems, for instance, do not represent the principled layer and do not sepa-
rate device-specific from task-specific knowledge, which also holds for neural-net-
work-based solutions.

We would like to emphasize that the discussion clearly shows that the problem of re-
use cannot be solved by means of general software engineering techniques, but requires
an analysis of the problem domain at the knowledge level and then, of course, appro-
priate software architectures and knowledge representation facilities. This is why
knowledge-based systems, Artificial Intelligence, and, in our application domain, mod-
el-based reasoning techniques promise significant progress and superiority to tradition-
al approaches.

As a side remark should be stated that much of what we discussed does not only ap-
ply to re-use of knowledge through computer systems, but also to re-use of knowledge
by humans. If knowledge is not structured and indexed appropriately, for example by
mixing device and task knowledge, it is likely to be useless to a human expert who is
working in a different context. This is why the solutions advocated here are also a con-
tribution to the area of knowledge management which receives more and more atten-
tion.

Despite the fact that we will not easily find the necessary distinctions present in cur-
rent practice, the analysis is not an academic one. Rather, it has a significant, if not de-
cisive, impact on the competence and flexibility of software systems and on the cost of
producing and maintaining them. Taking the classification into consideration when de-
signing knowledge bases and software solutions will already have a tremendous effect.
In our case studies, not only sharing of the component library and the device model

Table 1. Classifying knowledge and software elements

generic pragmatics

physical principles behavior model fragments
(component library)

devices structure
parameters
behavior (intended and faulty)
state

function
criticality
tolerance
assembly / replaceable units
measurement points

actions
• measurements

tasks model-based inference mechanisms
• model composition
• behavior prediction

• disassembly
equipment
cost

• model-based diagnosis
• model-based test generation

inference mechanism
reflecting pragmatics
• cost-oriented test proposal

/ test plan generation



across the three tasks could be demonstrated, also software components, such as model
composition and behavior prediction, are re-used for the prototypes.

However, we have to mention that the schema presented above needs extensions, re-
finements, and even further research. In particular, although we may be able to identify
the general principles and generate a device model from them, the result may not be ap-
propriate in a particular context:
• The task may influence the granularity of the behavior model. While a qualitative

model may do for the early phase of design and also for diagnosis, the final design
needs a numerical model.

• Pragmatic aspects, for instance the replaceable units, can have an impact on the ap-
propriate granularity of the structural and behavioral model. Another example is the
interaction between the function (purpose) of a device and its behavior model: com-
ponent models, say of pipes and valves, have to include transportation of oxygen,
carbon oxide, etc. in the intake and exhaust in order to analyze problems with emis-
sions in vehicles, whereas for other pneumatic or hydraulic subsystems (for in-
stance, those controlling valves), only pressure matters.

As an answer to such issues, the transformation of generic, compositional models under
task-dependent and pragmatic criteria is part of our work (see e.g. [1]).

3 Towards Re-use in Practical Applications
In this section we describe work in three application areas which illustrates re-use of
diagnostic components. Note that this work has been driven by real industrial require-
ments and not by academical interests to demonstrate re-use. Hence also other aspects
besides re-use will be touched.

3.1 Three Automotive Applications

In collaboration with Robert Bosch GmbH as a major supplier of mechatronic car sub-
systems, the Model-based Systems and Qualitative Modeling Group (MQM) at the
Technical University of Munich works on three prototypes that support different tasks
related to fault analysis during the life cycle of a product:

Failure-Mode-and-Effects Analysis (FMEA). This task is performed during the de-
sign phase of a device. Its goal is to analyze the effects of component failures in a sys-
tem implemented according to the respective design. The focus is on assessment of the
criticality of such effects, i.e. how severe or dangerous the resulting disturbance of the
functionality is in objective or subjective terms (e.g. inconvenience for the driver, envi-
ronmental impact, risk of hazards). In addition, the probability of the fault and its de-
tectability is considered. Based on this analysis, revisions of the design may be
suggested. Because of the safety and environmental aspects, it has to be as “complete”
as possible, not only w.r.t. the faults considered, but also in the sense that all possible
effects under all relevant circumstances (driving conditions of a vehicle, states of inter-
acting subsystems, etc.) have to be detected.

Workshop Diagnosis. The diagnostic task in the repair workshop starts from a set of
initial symptoms which are either customer complaints or trouble codes generated and
stored on-board by one of the Electronic Control Units (ECU) responsible for various



subsystems of the vehicle. Except for the obvious cases, some investigations, tests, and
measurements have to be carried out in order to localize and remove the fault, usually
by replacement of components.

Generation of Diagnosis Manuals. The mechanic in the repair workshop is educated
or guided by diagnosis manuals produced and distributed by the corporate service de-
partment (on paper, CD-ROM, or via a network). Here, engineers compile various kinds
of information (tables, figures, text) which is required or useful for carrying out the di-
agnosis. Such documents have to be produced for each variant of the various sub-
systems and specific to a particular make, type, and special equipment of a vehicle, a
broad set of issues for a supplier. The core of each document is a set of test plans that
guide fault localization starting from classified customer complaints or trouble codes of
the ECU.

In practice, these tasks are usually not extremely difficult to perform by an expert. How-
ever, they can be time-consuming since they have to be carried out for each specific in-
stance of a general device type which includes collection of all the information specific
to this instance. This situation of routine work applied to a large set of variants justifies
computer support to be developed. And because knowledge about physical devices is
the key to solving the tasks, model-based systems offer a perspective.

With the background discussed in Section 2, a major goal in our work was to dem-
onstrate the possibility of re-use of knowledge and software modules and, particularly,
of grounding the tools on the same model libraries. As depicted in Figure 1, the software
basis of the three tools can share several software components (exploiting the modeling
and diagnosis environment RAZ’R [6]):

Fig. 1. Tools for workshop diagnosis, FMEA and diagnosis manual generation

Diagnosis

Strategist

Test
Generator

Model
Composer

Diagnosis
Generator

Predictor

State
Description

Device
Model

Model
Library

Device
Structure

Cost

FMEA

Tool

Diagnostic
Manual

Generator



• The FMEA-Tool is based on model composition and behavior prediction from
which the task specific part has to extract the information that is critical to the func-
tion (see [8]).

• Workshop diagnosis additionally needs the generation of diagnostic candidates and
could exploit a test generation (or measurement proposal) module. The latter is not
included in our prototype which is intended to only demonstrate the possibility of
interactive diagnosis based on customer complaints and trouble codes (see [9]).

• The tool for the generation of diagnosis manuals adds an explicit representation of
car subsystems and automatic test generation to the classical functionality of an au-
thoring system.

3.2 Model-based Fault Tree Generation

Computer-based systems for off-line diagnosis constitute the main diagnostic equip-
ment for more than 100.000 forklifts made by the german company STILL GmbH. The
diagnostic knowledge provided by these systems is contained in fault trees consisting
of fault sets as nodes and tests along the edges. To support the diagnosis task of service
engineers, the system guides through the fault tree by asking for tests until the possible
faults have been narrowed down to a single one.

Due to the complexity of the electrical circuits employed in forklifts, fault trees may
consist of more than 5000 nodes. When forklift model ranges are modified or new mod-
el ranges are released, fault trees are manually generated or adapted by service engi-
neers who apply detailed expert knowledge concerning faults and their effects.
Obviously, this practice is costly and quality management is difficult. Hence, there is a
need for computer methods to systematically support modifications and re-use of com-
ponents of diagnosis systems.

Model-based fault-tree generation has been developed to improve this situation. The
idea is to generate diagnostic knowledge by model-based computer simulation and then
use this knowledge to automatically generate the fault-tree structure for the diagnosis
system. Figure 2 shows the main steps.

Fig. 2. Basic concepts of model-based fault-tree generation

The first step is to model a device using design data and expert knowledge concerning
intended device behavior, expected faults, available measurements etc. Modeling is
supported by a component library and a device model archive. As a second step, correct
and faulty behavior is computed based on this model, resulting in a potentially large ta-
ble of behavior predictions. The third step is to build a fault tree by grouping faults into

cost model

device model

behavior predictions

device model archive

component library

fault trees

design data

design know-how

service know-howfault-tree archive



fault sets and selecting tests. This step is supported by a fault-tree archive and a cost
model for the tests.

Behavior prediction and fault-tree formation involve several innovative procedures
which can only be briefly sketched in the following. The procedures have been imple-
mented in the prototypical system MAD (Modeling, Analyzing and Diagnosing).

For behavior prediction - which is restricted to steady-state behavior - aggregates
are modeled by idealized voltage sources, consumers, conductors and barriers, or their
equivalents for domains other than the electrical. Also integrated circuits and software-
in-the-loop may be included based on steady-state models. A qualitative calculus is em-
ployed - similar in scope to the CIRQ system of [3] - where currents and voltages are
described by qualitative values and deviations from reference values. To improve the
accuracy of qualitative prediction, a propagation technique has been developed which
prevents spurious solutions.

Fault trees may be generated automatically from fault-symptom tables and a cost
model, using the A* algorithm to optimize average diagnosis cost. In order to permit re-
use and manual adaptation, MAD offers editing operations, such as moving a certain
fault from one fault set to another and recomputing the corresponding tests. Due to
model-based prediction, fault trees are correct and complete with respect to the under-
lying device model and the faults (or fault combinations) considered in the fault-symp-
tom table.

We have evaluated model-based fault-tree generation in the STILL application
scenario and found that using the modeling techniques of MAD, more than 90% of the
faults of the current handcrafted diagnosis system can be handled successfully.

3.3 Searching for Failing Steps of a Technical Process

The approaches to model-based diagnosis discussed in this paper, so far, are adopting
the view of “searching for faults of components”. However, for many technical systems
an alternative approach seems preferable, which searches for failures in steps or phases
of a technical process rather than components, at least in the initial phases of diagnosis.
The work of Fraunhofer IITB in INDIA has demonstrated that the standard algorithms
for consistency based diagnosis may be used for this search. The approach relies on
models, which structure a process into a directed graph of steps or phases as well as on
models of successful completion and failure of such steps.

Our approach is preferable if domain experts describe the overall behavior of a tech-
nical system as interconnected steps and use such mental models in focussing diagnosis
(“Which step failed?”). The duration of a step in a certain system behavior is not nec-
essarily fixed but may depend on certain events, like variables reaching certain values,
time-outs or operator commands. Such systems are particularly common in the process
and manufacturing industries.

Re-use of temporally structured models is crucial in process industries, since the es-
sential know-how of many companies is condensed into a library of procedures. New
procedures are usually developed by modifying successful procedures from the library.
Re-use of step models in process technology is supported by a strong tendency to de-
scribe and classify steps on an abstract level (cf. [2]).

Our approach employs standard consistency-based diagnosis by justifying every in-



ference from a structured model with correctness of the structure, every inference from
a model of a successful step with success of the step and every inference from a model
of a failed step with the proposition that the step failed in the corresponding way. A di-
agnosis then states that one or more steps have failed. Such diagnoses may be refined
by analyzing structured models for the suspected steps. Standard correctness and com-
pleteness results of consistency-based diagnosis are still valid for temporally structured
models, and the quality of diagnosis still depends on the precision of the models.

Our guiding example in INDIA is the chemical distributor (CHD) from THEN Gm-
bH, a system to distribute liquids in a dye house. Domain experts describe a typical task
processed by the CHD as measuring out certain amounts of certain chemicals, trans-
porting the mixture to the requesting dying machine and finally rinsing the pipes in-
volved with water. These steps can be used to construct a temporally structured model
of the overall behavior of the CHD (Figure 3).

Fig. 3. Composing a train of chemicals and sending it to a certain dyeing machine

In developing models for our approach one can employ the same techniques for infor-
mation re-use which were described in Section 2 with respect to component models. For
instance, analysis of the control flow diagram of the control program of the CHD shows
that measuring out some chemical or the separating water, transport of the mixture and
rinsing may be viewed as instances of a general step type depicted in Figure 4, and
hence the same set of models may be used to describe these steps.

Fig. 4. Transporting amount a with pump pu along path pa

4. Conclusions
We have addressed re-usability in connection with several diagnosis tasks in an indus-
trial environment. From our experience, re-usability is one of the prominent features
model-based techniques have to offer in this domain.We have shown that in order to

Measuring:

Chemical 1

Chemical 2

Separating Water

Chemical 3

Separating Water

Train Transport: Rinsing:

OpenPath
(pa)

StartPump
(pu)

Measure
(a)

ClosePath
(pa)

StopPump
(pu)



improve re-usability it is useful to categorize the knowledge and software for a diagno-
sis system along two dimensions, generality and genericity.

This has been illustrated by presenting innovative diagnosis approaches for different
tasks in diverse domains. In the automotive domain, several components could be iden-
tified which are re-usable across different tasks. The work on model-based fault-tree
generation demonstrates improved re-usability by separating device-specific from task-
related knowledge and generic from pragmatic aspects. It is interesting that this ap-
proach combines advantages of model-based diagnosis systems with the familiarity of
traditional fault-tree systems.

Finally, we have demonstrated that the re-usable building blocks for modeling the
behavior of devices need not represent components. Consistency-based diagnosis tech-
niques remain applicable if a technical process is described as a series of steps con-
strained by certain propositions for correct or faulty behavior.

Acknowledgments
We would like to thank our colleagues at IITB, LKI and TUM as well as our partners
in INDIA for their valuable contributions. This work has been supported by the
Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF)
under the grant 01 IN 509 D 0, INDIA.

References
1. Heller, U., Struss, P.: Transformation of Qualitative Dynamic Models - Application in

Hydro-Ecology, in: 10th International Workshop on Qualitative Reasoning (QR-96), Fallen
Leaf Lake, Ca (AAAI Press), 1996.

2. Hemming, W.: Verfahrenstechnik. Würzburg. 7. Auflage 1993. (in german)
3. Lee, M. H., Ormsby, A. R. T.: Qualitative Modeling of the Effects of Electrical Circuit

Faults, Artificial Intelligence in Engineering, vol. 8, pp. 293-300, 1993.
4. Mauss, J.: Analyse kompositionaler Modelle durch Serien-Parallel-Stern Aggregation,

DISKI 183, Dissertationen zur Künstlichen Intelligenz, 1998. (in german)
5. Milde, H., Hotz, L., Möller, R., Neumann, B.: Resistive Networks Revisited: Exploitation of

Network Structures and Qualitative Reasoning about Deviations is the Key, in: Proc. DX-97,
8th International Workshop on Principles of Diagnosis, 1997.

6. http://www.occm.de/
7. Struss, P.: Contributions to a Methodology of Model-based Systems for Diagnostic Tasks. In

preparation, 1999.
8. Struss, P., Malik, A., Sachenbacher, M.: Qualitative Modeling is the Key to Automated

Diagnosis. 13th World Congress of IFAC, San Francisco, CA, USA, Pergamon, 1996.
9. Struss, P., Sachenbacher, M., Dummert, F.: Diagnosing a Dynamic System with (almost) no

Observations. Workshop Notes of the 11th International Workshop on Qualitative Reason-
ing, (QR-97) Cortona, Italy, June 3-6, pp. 193-201, 1997.


