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Abstract

 

In this paper, an approach to specify interactive systems by modeling user actions and domain
knowledge is presented. It is shown how Description Logics can be used to formally deduce
action concepts at system development time when only incomplete conceptual descriptions of
manipulated domain objects are known. We will discuss how types of parameters and values
of application functions will be constrained by concepts for user actions which are either
automatically derived or interactively selected by the UI designer. 

 

1 INTRODUCTION

 

For a large class of applications, direct-manipulative interfaces with custom visualizations are
required, i.e. the interfaces cannot easily be built with standard elements usually supported by
interface builders. Though some UIMS allow static domain objects to be interactively drawn
using a picture editor, this approach is not feasible when domain objects and their geometric
representations are dynamically computed at runtime. To reduce system development time,
applications of this class should be developed by high-level specification techniques instead of
writing low-level code for managing the display of geometric objects and for handling mouse
events (see Foley and Sukaviriya (1994) and Szekely et al. (1993)).

In this paper, an approach to specify interactive systems by formally modeling user actions
and domain knowledge will be presented. It is shown how Description Logics can be used to
deduce action concepts at system development time when only incomplete conceptual
descriptions of manipulated domain objects are known. We consider an example application
(called 

 

XKL

 

) which is used to interactively configure the interior of an aircraft. In Figure 1 the
insertion of a new object into the layout of the aircraft interior is sketched.

The main idea of the interface shown in Figure 1 is that the user selects a prototype object
from a set of missing cabin objects. Once the object to be included into the cabin layout is
known, possible placement areas are automatically computed according to several kinds of
restrictions (weight restrictions, prefabrication restrictions, legal restrictions for emergency
exits, etc.). The set of possible placement areas is presented on the screen and the 

 

XKL

 

 user
localizes the selected prototype object within one of the placement areas.
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Figure 1

 

Creation of a new cabin object in 

 

XKL

 

. The selection of a cabin object from a
palette is followed by a localization action. The surface realization of this action sequence is
done via drag and drop. After selecting an object from the palette, the possible placement
areas for this object are computed and displayed.

Other user actions like the arrangement or movement of cabin objects must be supported as
well. For this class of layout problems, a generic set of custom gadgets could be supplied as an
extension to a UIMS library. For instance, a special gadget is required for supporting a move-
ment within certain boundaries. However, as the library for the application class gets larger, it
will become less and less obvious whether a certain interaction technique required to support
user tasks in a specific application already exists (Hartson and Mayo 1995). Furthermore, in
order to support the perception processes of the user, additional graphical objects must be pre-
sented (e.g. the aircraft body serving as a reference frame). These objects should be automati-
cally derived from domain models at system 

 

development 

 

time. In addition, the presentation
of these additional geometric objects must be adapted to the interaction gadgets for user
actions. Compare this to intelligent multimedia presentation systems but note that these sys-
tems operate at runtime (cf. Wahlster et al. (1993), Arens et al. (1993)). In the spirit of other
design environments (see also Johnson et al. (1995)), the goal of the framework presented in
this paper (called HAMVIS, HAMburg VIsualization System) is to reduce runtime costs by
exploiting models for user actions and domain objects as well as specifications of application
functions (type signatures) to generate code for a UIMS.

Recent research on Human-Computer Interaction has shown the problems of prototyping
approaches for system development (Neches et al. 1993). On the one hand, domain knowledge
required for the implementation of application functions is influenced by interface design con-
straints (e.g. for a movement action, it must be possible to compute the possible positions in
beforehand). On the other hand, domain knowledge also influences the selection of appropri-
ate interaction techniques. This paper describes a new approach to formally model these influ-
ences using the derivation processes of Description Logics. In contrast to other approaches
which also model user actions with task models for interface design (see e.g. Hartson et al.
1993), the approach presented in this paper is used (i) to structure the interface and (ii) to auto-
matically derive the contents of graphical interfaces based on

 

 geometric

 

 information about
domain objects rather than standard interaction gadgets (see e.g. Puerta et al. 1994) or objects
known from drawing programs (see e.g. Szekely et al. 1993).



 

2 THE HAMVIS SYSTEM DEVELOPMENT SCENARIO

 

The idea of HAMVIS is to derive the contents of visualizations from communication knowl-
edge and to constrain the development of models for domain knowledge by interface and pre-
sentation requirements. The actual presentation of domain objects is done at runtime, but the
way the objects are presented and the whole dialog structure, i.e. the user actions supported
within a specific window to be shown at runtime, can be defined at development time.

In order to derive domain objects required to support a direct-manipulative interaction
style, user actions are not modeled at the UIMS level of gestures applicable to graphical
objects (press mouse button, move mouse, release mouse button) but at the level of manipula-
tions of domain objects. Because domain objects playing part in an interaction at runtime are
usually not completely known at development time, HAMVIS must deal with conceptual
information about domain objects which are actually computed at runtime by “application
functions.” In this paper, the term “application function” is used as a synonym for a procedure
(defined with input parameters and values) that must not require user interaction. Types of
parameters and values have to be specified at system development time but, from the view-
point of HAMVIS, the body of an application function is treated as a black-box. Application
Functions can be implemented using a programming language or by knowledge-based infer-
ence services. In the 

 

XKL

 

 example discussed in this paper, a knowledge-based configuration
system could be used (see Kopisch and Günter 1992). An application function will compute
the placement areas required for the interface in Figure 1. The input to this function is a cabin
object selected by a user action prior to the evaluation of the application function at runtime.
Thus, a user action (selection) provides the input for an application function which, in turn,
produces values required for another user action (localization).

The basic knowledge base of HAMVIS (HAMVIS Upper Model) provides a generic model
for user actions encountered in an application class. The combination of user actions and
application functions is part of the domain knowledge to be acquired for a specific application.
Figure 2 shows a system development scenario for 

 

XKL

 

. In this paper, only the gray parts are
discussed.

 

 

 

Figure 2

 

Complete HAMVIS system development scenario.
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Domain knowledge is modeled by the System Development Team. Using concepts of the
HAMVIS Upper Model, the System Development Team defines a Basic Domain Model (in
the case of 

 

XKL

 

 with concepts like “Aircraft”, “Cabin”, “Cabin object”, “Galley” etc.). After-
wards, the structure of the application is defined in terms of actions. The System Development
Team describes the combination of application functions and user actions in an Action
Decomposition Model. User actions that can be performed at runtime are described at system
development time using concepts from the HAMVIS Upper Model.

HAMVIS supports a division of labor between user interface development and implemen-
tation of application functions. Once the modeling of user actions is finished, types of parame-
ters and values of application functions are defined. They can be implemented separately
while the interface designer uses other services of HAMVIS and its interactive interfaces to
structure the final application interface for 

 

XKL

 

. Note that in the scenario there are several
kinds of users: The aircraft salesperson is the end-user of the 

 

XKL

 

 application (at runtime)
while the developer of the interface components of 

 

XKL

 

 is the HAMVIS user (at system
development time).

The HAMVIS user models additional knowledge about the application (dialog structure,
presentation structure) in such a way that action specifications can be mapped onto services of
a UIMS. The UIMS is responsible for managing the interaction cycle: drawing and erasing
objects on the screen, handling of gestures etc. The interface presented in Figure 1 has been
created by the HAMVIS prototype. Due to space limitations, the additional models defined by
the HAMVIS user and the associated inferences of HAMVIS are not presented in this paper
(see Möller 1996). We will focus on the Action Decomposition Model which defines the basis
for the mapping process.

 

2.1 Knowledge about actions in a class of applications: HAMVIS Upper Model

 

In order to provide conceptual knowledge about user actions, HAMVIS defines a basic model
to structure conceptual information required for applications of a certain class. Domain
objects and generic actions defined on these objects are modeled using a Description Logic
(DL) representation formalism because, during development time, formal derivations with
incomplete conceptual information must be supported. The paper assumes basis knowledge
about DL (see e.g. Woods and Schmolze (1992) for an introduction). The knowledge bases
presented in this paper are based on a concrete DL implementation: the CLASSIC system
(Resnick et al. 1993). The basic knowledge base is called HAMVIS Upper Model. In the spirit
of the Penman Upper Model (Bateman et al. 1990), this knowledge base structures basic con-
cepts for an application class in a way that is suited to communication purposes. However, in
this paper, we limit the presented section of the HAMVIS Upper Model to the part that is
required for understanding action concepts used in the 

 

XKL

 

 application. Shortened excerpts of
logical formulae from knowledge bases are presented using the KRSS-Syntax for CLASSIC
(Patel-Schneider and Swartout 1993) with small extensions that are explained when required.

 

Spatial objects and their decomposition

 

For applications like 

 

XKL

 

, knowledge about spatial objects and their decomposition is mod-
eled as shown in Figure 3. Spatial objects are defined with a three-dimensional geometric rep-
resentation (canonical form representation) and one or more projective forms. The
decomposition of objects into parts is modeled with a role hierarchy. Currently, the mero-
nymic Component/Object relation and a spatial inclusion relation are supported (cf. Winston



 

et al. 1987). For special spatial objects like rigid objects (physical objects) and spatial regions,
the part-of relations are restricted (see Figure 3).
Domain concepts must be subconcepts of the predefined concepts as will be discussed below.
The definitions of Figure 3 are required for defining conceptual knowledge about actions.
Before we discuss detailed action concepts, we first have to deal with action decomposition.

 

Figure 3

 

Fragment of the HAMVIS Upper Model used to represent spatial objects.

 

Conceptual knowledge about action decomposition

 

User actions and application functions provide the basis for modeling an application. Applica-
tion functions are evaluated at runtime and compute the objects that can be manipulated by
user actions. In HAMVIS, elementary user actions do not have side effects on application
objects but return new objects (e.g. a new position as shown in Figure 1) which are stored by
subsequent application functions. The composition of user actions and their associated appli-
cation functions can be interpreted as a higher-level user action (composite action), i.e. at this
level, application functions are considered transparent.

An application can be composed of several activities, each of which is required for solving
a different subproblem of the whole application. At runtime, a subproblem can be solved by
selecting among several alternative composite actions until a certain goal is satisfied. For
instance, the 

 

XKL

 

 user can either create a cabin object, move a cabin object, or delete a previ-
ously created cabin object etc. An activity models a very high-level user action with alterna-
tive subactions available in an interaction loop. Figure 4 shows the concept definitions used to
model these different levels of actions in terms of Description Logic.

(define-primitive-concept um-object) ; um-object ≈ upper-model-object

(define-primitive-role has-decomposition nil)
(define-primitive-role has-constituents has-decomposition)
(define-primitive-role spatially-encloses has-decomposition)
(define-primitive-role has-canonical-geometric-form-representation nil)
(define-primitive-role has-projective-form nil)

(define-primitive-concept spatial-position-constraint ...)

(define-disjoint-primitive-concept spatial-object (object-kinds)
    (and um-object
         (at-least 1 has-canonical-geometric-form-representation)
         (at-most 1 has-canonical-geometric-form-representation)
         (all has-projective-form projective-form)
         (at-least 1 has-projective-form)
         ...))

(define-disjoint-primitive-concept physical-object (kinds-of-spatial-objects)
  (and spatial-object
       (all spatially-encloses spatial-object)
       (all has-constituents spatial-object)))

(define-disjoint-primitive-concept spatial-region (kinds-of-spatial-objects)
  (and spatial-object
       (all spatially-encloses spatial-object)
       (all has-constituents spatial-object)))



 

Figure 4

 

Action types and their definitions.

The idea behind the four layers can be understood by considering the rough mapping onto
UIMS services. Each activity requires its own interaction window, possibly with several panes
(see Figure 1). Thus, at runtime, an activity is realized by a window of the UIMS host system
and an interaction loop. Composite actions are mapped onto commands that are preferrably
realized using custom gadgets or standardized interaction techniques like drag and drop. User
actions define the visual “material” to be presented at runtime in various panes. In addition,
the type of interaction pane required for a user action is also restricted by specific action con-
cepts as will be discussed in the next section.

 

Figure 5

 

Modeling knowledge about selection actions using case roles.

(define-primitive-role has-substep has-decomposition)

(define-disjoint-primitive-concept atomic-action (action-hierarchy-level)
  (atmost 0 has-substep))

(define-disjoint-primitive-concept composite-action (action-hierarchy-level)
    (and (atleast 1 has-substep)
         (all has-substep atomic-action)))

(define-disjoint-primitive-concept activity (action-hierarchy-level)
  (and (atleast 1 has-substep)
       (all has-substep composite-action)))

(define-disjoint-primitive-concept application (action-hierarchy-level)
  (and (atleast 1 has-substep)
       (all has-substep activity)))

(define-disjoint-primitive-concept user-action (action-agent)
  atomic-action)

(define-disjoint-primitive-concept application-function (action-agent)
  atomic-action)

(define-primitive-role choice-set nil)
(define-primitive-role choice choice-set)

(define-primitive-action-concept selection
    (and user-action
         (at-least 1 choice-set) (all choice-set um-object)
         (at-least 1 choice) (all choice um-object))
  (:input choice-set)
  (:output choice)))

(define-action-concept single-object-selection
    (and selection (at-most 1 choice)))

(define-action-concept selection-from-small-palette
    (and single-object-selection (at-most 10 choice-set))
  (:parameters-to-present choice-set)
  (:pane-types (choice-set singe-choice-palette-pane)))



 

Conceptual models for elementary user actions

 

Reasoning about actions is required at development time where only conceptual information
about objects (to be manipulated at runtime) is available. We model actions using case roles by
assuming that instances of actions will be related to instances of domain concepts. Figure 5
shows some of the declarations of the HAMVIS knowledge base for selection actions.The
declaration 

 

define[-primitive]-action-concept

 

 is similar to 

 

define[-primitive]-

concept

 

 from KRSS except that additional options required for modeling actions are sup-
ported. Considering the case role structure of an action it should be clear that some of the case
roles must be filled before an action can actually be performed (the option 

 

:input

 

 specifies
these case roles). Carrying out an action will set newly created objects into relation to the
action instance using other case roles (option 

 

:output

 

). The basic selection concept is primi-
tive. However, more specific selection actions are modeled using defined concepts with neces-
sary and sufficient conditions (see Figure 5). The same techniques are used to define
localization actions (Figure 6).

 

Figure 6

 

Modeling knowledge about localization actions using case roles.

(define-primitive-role has-manipulated-object nil)

(define-concept spatial-action
    (and user-action (all has-manipulated-object spatial-object)))

(define-primitive-role has-localized-entity has-manipulated-object)
(define-primitive-role has-reference-object nil)
(define-primitive-role has-previous-position-constraint nil)
(define-primitive-role has-new-position-constraint nil)

(define-primitive-action-concept localization
    (and user-action
         (at-least 1 has-localized-entity) (all has-localized-entity um-object)
         (at-least 1 has-reference-object) (all has-reference-object um-object)
         (at-least 1 has-new-position-constraint)
         (all has-new-position-constraint position-constraint))
   (:input has-localized-entity has-reference-object)
   (:output has-new-position-constraint))

(define-action-concept spatial-localization
    (and localization
         (all has-localized-entity spatial-object)
         (all has-reference-object spatial-object)))
(define-rule r1 spatial-localization
   (and (at-least 1 has-previous-position-constraint)
        (all has-previous-position-constraint spatial-position-constraint)
        (all has-new-position-constraint spatial-position-constraint))))

(define-action-concept spatial-localization-in-xy-bounding-rectangle
    (and spatial-localization
         (at-most 1 has-localized-entity) (all has-le-ro-relation in)
         (all has-previous-position-constraint xy-bounding-rect-pos-constraint))
  (:parameters-to-present has-reference-object))
(define-rule r2 spatial-localization-in-xy-bounding-rectangle
  (and (all has-new-position-constraint xy-bounding-rect-pos-constraint)
       (all has-reference-object non-overlapped-spatial-object)))



 

Very specific actions are constrained in such a way that interface elements to support the
action can be generated (see the definition of 

 

selection-from-small-palette

 

 in Figure 5).
Case roles that contain objects that have to be presented at the interface are declared with

 

:parameters-to-present

 

. The pane type for the interaction object is given for each of these
case roles with 

 

:pane-types

 

. Rules are used to define additional constraints on actions. Note
that a rule does not model a logical implication because of the unidirectional way of inference.

 

2.2 Modeling domain knowledge using the HAMVIS Upper Model

 

The input case roles of the action concepts defined above impose constraints on the objects
that are manipulated or operated upon. Thus, if application objects are to be manipulated by
these actions, they must inherit from the concepts defined in the HAMVIS Upper Model. In
Figure 7 a small subset of the declarations found in the 

 

XKL

 

 knowledge base is shown.

 

Figure 7

 

Excerpt from the basic domain knowledge base for 

 

XKL

 

.

These concepts are defined by the 

 

XKL

 

 System Development Team. Though generic knowl-
edge about action concepts is defined in the HAMVIS Upper Model, the system development
team must define the structure of the application by modeling the action decomposition. This
will be discussed in the next chapter.

 

3 INFERENCE SERVICES FOR ACTION MODELING

 

HAMVIS supports a four-level model to structure interactive applications from the viewpoint
of user actions (see also the approach of Philips et al. 1988). Actions at lower levels define the
decomposition of higher-level actions. Since direct-manipulative interaction styles are sup-
ported, application functions found at the lowest level are transparent at the level above.

At system development time, the current application being modeled with HAMVIS can be
treated as an instance of the concept 

 

application

 

 of the HAMVIS Upper Model (see
Figure 4). The activities of the application are also modeled with instances (of the concept

 

activity

 

). These instances can be considered as development time prototypes used to gather
information about action possibilities at runtime. An activity supports a set of alternative

(define-primitive-concept cabin-object spatial-object)

(define-primitive-role has-trolleys nil)
(define-primitive-concept trolley spatial-object)

(define-primitive-concept galley
  (and cabin-object physical-object (all has-trolleys trolley)))

(define-primitive-concept lavatory
  (and cabin-object physical-object))

(define-primitive-concept seat
  (and cabin-object physical-object))

(define-primitive-concept placement-area spatial-region)

(define-primitive-concept aisle (and cabin-object spatial-region))



 

actions. However, the actual action sequence (e.g., create a galley g1, create a lavatory l1,
move galley g1, create a galley g2, move lavatory l1, delete galley g1, etc.) performed by the
user at runtime is not known at development time. Saying “an activity has composite actions
a,b,c as alternatives” means “the runtime action sequence is described by the regular expres-
sion (a | b | c)*.” Again, information about composite actions must be gathered at development
time. For each composite action (e.g. “create cabin object,” “delete cabin object,” “move
cabin object”) this can also be done using a prototype instance whose concept describes the
corresponding runtime actions. For composite actions, the substeps are application functions
or user actions (see again the definitions in Figure 4). The substeps of the composite action

 

create-cabin-object

 

 discussed in Figure 1 are “compute a set of missing prototype cabin
objects”, “select a cabin object from this object”, “compute possible placement areas from the
selected object”, “localize the cabin object with one of the possible placement areas”, “store
the new position constraint”. Conceptual information about each of these actions can be
described using a prototype action of type 

 

application-function

 

 or 

 

user-action

 

. For the
decomposition of a composite action we need additional information to represent the order of
the five substeps mentioned above. The 

 

XKL

 

 application in general can be described by the
tree in Figure 8.

 

Figure 8

 

Decomposition of the 

 

XKL

 

 application (application functions and user actions are
represented with white and black circles, respectively).

Actions of different modeling layers are represented by ABox instances indicated as circles
(concepts of instances are represented by the names to the left). For user actions, more specific
subconcepts are defined in the HAMVIS Upper Model. Thus, user actions must be modeled in
a more detailed way. This information is required to generate adequate graphical objects
required for actually carrying out an action at runtime.

In the next sections, we will see how conceptual information about parameters and values
of application functions can be used to constrain the action concepts that can be chosen by the
HAMVIS user (at development time!) for a detailed description of actions that can be per-
formed by the 

 

XKL

 

 user (at runtime!). On the other hand, if application functions compute
domain objects that are manipulated by a user action, the action concept constrains the con-
cepts (or types) of the objects which application functions can compute. In the following, we
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will see how Description Logic inference techniques can be used to model these interdepen-
dencies.

The action model for an application is a logical model stated in terms of ABox assertions.
However, this ABox model can be interactively defined by the HAMVIS user with the HAM-
VIS Action Decomposition Interface. The graphical interface makes the assertions (and retrac-
tions) of logical formulae transparent to the HAMVIS user.

 

3.1 Interactive action decomposition

 

The Action Decomposition Interface supports the process of modeling user actions using
graphical interaction techniques. The HAMVIS user defines the types of parameters and val-
ues of application functions (in terms of concepts from the basic domain model). If the values
of application functions are to be manipulated by user actions, the set of actions applicable to
these domain objects is restricted. The idea of HAMVIS is to let the HAMVIS user select the
general type of action (e.g., selection, movement, localization) and to automatically compute
the specific action concept that is suited to the objects to be manipulated. If the conceptual
information given at development time is specific enough for determining by what graphical
interaction technique an action can be realized at runtime, the model for a user action is com-
plete.

 

Figure 9

 

Decomposition of the 

 

XKL

 

 application.

In Figure 9, the decomposition of the 

 

XKL

 

 application into two activities (left upper table) is
shown. This decomposition has been defined by the HAMVIS user. For the selected activity

 

construct-cabin

 

, the decomposition in terms of composite actions is presented in the mid-
dle table. In this table, the composite action 

 

create-cabin-object

 

 is selected. The final
graphical interface for the composite actions has been presented in Figure 1. To define the
decomposition of the selected composite action, application functions can be dragged as
graphical objects (icon “C”) from the toolbox into the main pane. Parameters to these func-
tions can be defined by dragging the arrows (input-output arrow and output-only arrow) found
in the toolbox onto an application function. Parameters and values of application functions are



 

treated in a similar way as input and output case roles of user actions, i.e. function values are
called output parameters. The 

 

Action Description

 

 pane (middle pane to the right) serves as
a viewer and editor for conceptual information about application functions and user actions.
Let us assume, the HAMVIS user specifiies that the function 

 

compute-prototype-object

 

s
returns domain objects (via the role 

 

prototype-objects

 

) which are subsumed by the concept

 

cabin-object

 

 (see Figure 7). Role restrictions inherited by 

 

cabin-object

 

 are also presented
in this pane (minimum and maximum cardinalities in square brackets). Concept as well as role
restrictions can be edited by clicking onto the names or numbers.

In Figure 9 a user action (icon “U”) called 

 

select-cabin-object

 

 has also been dragged
into the main pane. The topmost table to the right (

 

Possible Concepts

 

) presents the select-
able possible specializations for the action. Let us assume, the HAMVIS user clicks at the
concept 

 

selection

 

. Selections impose constraints on the roles 

 

choice-set

 

 and 

 

choice

 

 (see
the concept definition in Figure 5). The role 

 

choice-set

 

 is used to describe the input parame-
ters and 

 

choice

 

 defines the output (or “effect”) of the user action. These parameters are auto-
matically shown in the graphical presentation (see Figure 10 which already shows the
complete decomposition of 

 

create-cabin-object

 

).

 

Figure 10

 

Connections between ports with propagation of conceptual information. The

 

Action Description

 

 pane shows conceptual information about the selected action (indicated
by a black bar).

The graphical representation of atomic actions, i.e. application functions and user actions,
shows little ports with small circles to the left (input roles) and to the right (output roles). All
input roles are also used as output roles. These ports can be interactively connected using the
mouse indicating e.g. that the objects computed by 

 

compute-prototype-objects

 

 (and avail-
able in these ports at runtime) are exactly those objects that can be selected by the user
(

 

choice-set

 

) once they are presented on the screen. The connection pipes are routed auto-
matically. 



 

Because the objects computed by the function play a certain role in the user action, the con-
cept information (

 

cabin-object

 

) given for 

 

prototype-objects

 

 must be propagated to the
case role 

 

choice-set

 

 of 

 

select-cabin-object

 

. This is shown in Figure 10 in the

 

Action Description

 

 pane. The pane shows the conceptual information that can be inferred
for the selected action by connecting it with the application function.

 

3.2 Derivation of conceptual information about user Actions: The internal view

 

The inference steps behind the Action Decomposition Interface are realized by the ABox rea-
soning mechanism of the CLASSIC system. In Figure 11 the Abox statements modeling the
knowledge about 

 

create-cabin-object

 

 are presented as a tree.

 

Figure 11

 

Representation of the 

 

XKL

 

 action model using ABox instances before role
restriction propagation.

 

 Um-object

 

 is the root of the HAMVIS Upper Model. The graphical
pipe between the roles 

 

prototype-objects

 

 and 

 

choice-set

 

 is indicated with an arrow.

The Abox declarations are automatically generated by the HAMVIS user interface as a conse-
quence of dragging an icon from the toolbox into the main pane. For instance, the insertion of

 

select-cabin-object

 

 results in the following statements:

 

(define-distinct-individual select-cabin-object)
(state (instance select-cabin-object user-action))
(state (related create-cabin-object select-cabin-object has-substep))

 

For each instance to be generated, the user is asked to enter a name which is used for identifi-
cation purposes only. The mouse click at the action concept 

 

selection

 

 presented in the table

 

Possible Concepts

 

 is expressed in ABox terms as:

 

(state (instance select-cabin-object selection))

 

For the action case roles, the concept restrictions shown in Figure 11 are either given by the
HAMVIS user (e.g. for the role 

 

prototype-objects

 

) or defined by the HAMVIS action
knowledge base (roles 

 

choice-set

 

 and 

 

choice

 

, see Figure 5). 
The action knowledge base in Figure 5 defines the role 

 

choice

 

 as a subrole of 

 

choice-set

 

.
Thus, for every selection, the fillers of 

 

choice

 

 are a subset of the fillers of 

 

choice-set

 

.
Besides concept propagation, ABox reasoning ensures the correct propagation of cardinality
information. Maximum restrictions on 

 

choice-set

 

 are propagated to 

 

choice

 

 and minimum
restrictions of 

 

choice

 

 are propagated to 

 

choice-set

 

.
Role restrictions of 

 

compute-prototype-objects

 

 for the role 

 

prototype-objects

 

 must
also be asserted as role restrictions of 

 

select-cabin-object

 

 for the role 

 

choice-set

 

 and
vice versa. The following ABox statements are automatically generated:

 

(state (instance select-cabin-object (all choice-set cabin-object)))

cabin-object um-object

choice-set
prototype-objects

compute-prototype-
select-cabin-object

create-cabin-object

objects

has-substep

um-object

choice
⊇



 

(state (instance compute-prototype-objects (and (all prototype-objects um-object) 
                                                (at-least 1 prototype-objects))))

 

We can see that by generating these assertions, conceptual information is propagated along the
pipes in both directions. Whenever an instance’s restrictions on a role change, the conceptual
information is propagated to the “partner role” at the other instance by computing correspond-
ing ABox assertions as indicated above. The order of the substeps of a composite action is par-
tially defined by the data-flow direction of the pipe  between two roles (see the arrow in
Figure 11).

The propagation mechanism has been implemented as an extension to the CLASSIC sys-
tem using its metalevel facilities. The role restriction propagation mechanism described above
ensures that the same restrictions are asserted to all roles (ports) connected with pipes. In the
following we will see how the propagation mechanism will be used to model inference sche-
mata for action modeling.

The complete description of the composite action 

 

create-cabin-object

 

 is also presented
in Figure 10. The selected object to be found in the role 

 

choice

 

 of 

 

select-cabin-object

 

 is
used as an input parameter to an application function 

 

compute-placement-areas

 

. The type
of the input parameter of this function is automatically constrained to be 

 

cabin-object

 

because of the pipe connection to the role 

 

choice

 

 of 

 

select-cabin-object

 

.
Let us assume, the HAMVIS user has defined 

 

placement-area

 

 as the type of the output
parameter 

 

possible-placement-areas

 

. The output parameters of 

 

compute-placement-

areas

 

 are connected to a user action 

 

localize-cabin-object

 

. Let us further assume, for this
user action the HAMVIS user has chosen the concept 

 

localization

 

 from the set of possible
concepts shown in the interface (see Figure 9). The role restriction propagation mechanism
described above propagates the conceptual information known about the output parameters of

 

compute-placement-areas

 

 to the respective roles of 

 

localize-cabin-object

 

 (see the pipe
connections in Figure 10). Thus, role fillers of 

 

has-localized-entity

 

 are known to be
instances of 

 

cabin-object

 

 and fillers of 

 

has-reference-object

 

 are 

 

placement-areas

 

.
Both concepts inherit from 

 

spatial-object

 

 (see the knowledge bases in Figure 7 and
Figure 3). This is enough information to automatically infer that 

 

localize-cabin-object

 

 is
not even a (simple) 

 

localization

 

 but even a 

 

spatial-localization

 

 (see the concept defi-
nition with necessary and sufficient conditions in Figure 6). The rule 

 

r1

 

 triggering on 

 

spa-

tial-localization

 

 imposes additional constraints on the other roles of 

 

localize-cabin-

object

 

 (see again Figure 6). The HAMVIS user can select between more specific subconcepts
of 

 

spatial-localization

 

 (e.g., 

 

spatial-localization-in-xy-bounding-rectangle

 

,
see Figure 6). The additional constraints are propagated to the final application function

 

store-new-position-constraint

 

. The 

 

localized-object

 

 will be a 

 

cabin-object

 

 and
the 

 

new-position-constraint

 

 will be at least a 

 

spatial-position-constraint

 

 because
of the rule 

 

r1

 

. If the HAMVIS user selected 

 

spatial-localization-in-xy-bounding-

rectangle

 

 as a more specific concept, 

 

new-position-constraint

 

 would be 

 

xy-bounding-

rect-pos-constraint

 

 (rule 

 

r2

 

, see the knowledge base in Figure 6). Due to rule 

 

r2

 

, the fill-
ers of 

 

has-reference-object

 

 must inherit from 

 

non-overlapped-spatial-object

 

. This
information will be propagated along the pipes. As a consequence, the initial application func-
tion 

 

compute-prototype-objects

 

 must also return instances that are subsumed by this con-
cept. Thus, action concepts determine the type signature of application functions.

At development time, the action decomposition model defines “what” has to be shown at
runtime (see the 

 

:parameters-to-present

 

 declarations in the action knowledge bases in



 

Figure 5 and Figure 6). The general structure of the application (required panes and their
classes, graphical perspectives, drawing attributes) can be defined in terms of actions such that
a mapping to UIMS services is possible.

 

4 Conclusion

 

The paper has shown how Description Logic reasoning can be used to model the interdepen-
dencies between parts of the interface design model (user actions) and the implementation
model (type signatures of application functions). More specific action concepts lead to interac-
tion components that are better suited to the domain objects to be manipulated (see Figure 1:
direct-manipulative interaction style rather than textual input of coordinates). More specific
user action concepts provide more information on how to design adequate visualizations to
support the user. 

Note that the goal of HAMVIS is not to manually construct design environments (Fischer
and Nakakoji 1991, Fischer et al 1994). The focus is on the automatic derivation of graphical
interface components (see the HAMVIS knowledge bases in Figure 2) from a specification of
user actions, domain objects and application functions. The example presented in Figure 1
which has been generated by the HAMVIS prototype indicates that this can be achieved. The
final composition of visualizations is implemented by other components of the HAMVIS
framework (see Figure 2 and Möller 1996).

In this paper, it has been shown how the role restriction propagation mechanism can be
used to formally deduce specialized action concepts at system development time when only
concepts of manipulated domain objects are known. Furthermore, types of parameters and
values of application functions to be implemented will be constrained when specific user
action concepts are interactively selected by the interface developer.
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