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Hans-Hellmut Nagel, Bernd Neumann

Fachbereich Informatik

Universitaet Hamburg
Schlueterstrasse 70
D-2000 Hamburg 13 / Germany

ABSTRACT

A concise derivation is given for a
compact nonlinear equation which specifies
possible 3D rotations of rigid objects,
compatible with measurements of five object
points in two views. The insight provided by
direct geometrical interpretation of this
equation = which contains ULLMAN's polar
equation as a special case - may be exploited

for attempts to categorize the set of possible
solutions.

1 INTRODUCTION

Efforts towards an improved interpretation
of image sequences from scenes with moving
objects recently concentrated on approaches to
derive a 3D description of rigid moving
objects and their space trajectory. In the
case of orthographic projection, the
mathematical problems have been solved through
the "structure-from-motion" theorem of ULLMAN
[8]. In the case of perspective projection,
various approaches have been used to derive
equations for the unknown 3D point coordinates
and motion parameters - see [1,2,4,5,6].
Usually minimization approaches are employed
in order to obtain solutions. In special
situations, some of the wunknowns can be
eliminated, yielding for example the "polar
equation"” in LB]. It can be shown that the
image measurements of at least five points in
at least two views are required in order to
determine the remaining unknowns - see the
references quoted above and [9]. For this
basic situation, NAGEL [3] derived a compact
equation for the unknown parameters specifying
the rotation of the rigid object relative to
the sensor between the first and second image
frame. This equation can be written down in
two lines rather than two pages required for a
full specification of ULLMAN's "polar
equation" which turns out to be a special case
of it.

One of us
derivation of
discussion uncovered an
interpretation for it and -

(B.N.) found a very concise
this equation and the ensueing
immediate geometrical
a fortiori - for
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ULLMAN's "polar equation". Based on these
insights into the problem, it appears
promising to investigate multiple
interpretations which might satisfy the
measurements in two views, especially

degenerate ones which might upset minimization
approaches.

I A COMPACT FORMULA FOR 3D RECONSTRUCTION

Let us assume that a certain number of
perspective views of a rigid object can be
obtained. Either object or observer or both

may be in motion, so that in general each view
will show a different aspect of the object.
We shall further assume that a certain number
of points rigidly fixed to the object can be
traced through each view. Both, 3D-structure
and motion of these points are wunknown and
unrestricted except of the rigidity
constraint. In the following a vector
equation will be derived relating the unknown
rotation parameters to the observed object
point coordinates.

The 3D-coordinates of the m-th object
point Am (m = 1 M) are given with respect
to an object coordinate system. For each
frame time n = 1 N a translation vector Tn
and a rotation matrix Dn relate the object
coordinate system to a camera coordinate
system whose origin coincides with the
projection center of the camera. The image
plane is parallel to the xz-plane of the
camera system, at a distance f on the positive
y-axis which represents the optical axis.
Am at

Let Cmn be the position vector of

time n in the camera system

Cmn = (Am + Tn) Dn

The projection of Cmn onto the image plane is
given by a three-component image vector
f Czmn/Cymn)

Bmn = (f Cxmn/Cymn

The x- and z-component of Bmn are known image

coordinates. Carrying along the y-component
Bymn = f permits a convenient vector notation
of both image and spatial data, as will become



evident soon. Similar to ROBERTS [7] we
introduce an unknown scale factor smn = Cymn/f
which lets us write
smn Bnn  (Am + Tn) Dn (1
m=1 M; n N)

Before combining several of these
equations for the elimination of unknowns, two
simplifications can be introduced. First, we
are free to choose the object coordinate
system to coincide with the camera system for
n= 1. For convenience we set Tl = 0 and
DI = 1 (denoting the identity matrix).

Secondly, note that if smn, Am, Tn and Dn
constitute a solution for Egs. 1, so do g.smn,
g.Am, q.Tn and Dn, where q is an arbitrary
factor. This, of course, is the well-known
fact that the size of an object cannot be
determined from any number of perspective
views unless at least one absolute distance is
known. While this prohibits exact 3D
reconstruction, shape and apparent motion of a
scaled variant can still be obtained. The
scaling may be chosen by setting one of the
factors smn to an arbitrary value, e.g. sll =
1.

For a sequence of N frames at least
3 + 2/(2N - 3) points must be observed if the
number of equations is to match or exceed the
number of unknowns, see NAGEL 81. The
following derivation will deal with two views
of five points. Since due to the initial
choice there is only one translation vector
and one rotation matrix remaining (namely T2
and D2, resp.), the index will be dropped, and
we have the following equations

sml Bml = Am (2)

sm2 Bm2 = (Am + T) D (3)
Substituting (2) into (3) we get

sm2 Bm2 = (sml Bml + T) D (4)
and for a particular point, say m = 1,

sl2 B12 = (sll BIl + T) D (5)
Subtracting (5) from (4) we get for m > 1

sm2 Bm2 - sl2 B12 = sml BmID - sll B11D (6)

To eliminate sm2 we take the vector product of
both sides with Bm2 and get

-sI2(B12 x Bm2) =

sml (BmID x Bm2) - sl (B11D x Bm2) (7)

Next, we eliminate sml by taking the scalar
product with D'Bml* (the apostroph denotes
transpose).

-s12(B12 x Bm2)D'Bml -sII(BIID x Bm2)D'Bml'

A product
volume of

(AxB)C* can be interpreted as the
the parallelepiped formed by the 3
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vectors A, B and C. Thus simultaneous
rotation does not affect the product value and
interchanging the order of the three vectors
may only introduce a sign change. This allows
us to write

sl2(Bml x Bm2D')DB12'

= sll(Bml x Bm2D')BII'

(8)

and in particular for m = 2

sl2(B21 x B22D')DB12' = slI(B21 x B22D")B11'

(9)

Combining (8) and (9) we get

(821 x B22D")B11' (Bml x Bm2D)DB12' =

(B21 x B22D')DB12' (Bml x Bm2D’)BII' (10)
For m = 3,4,5 this is a set of three equations
for the three free parameters of the rotation
matrix D. It contains the polar equation of
ULLMAN [8] as a special case (see [3]). This
rather compact equation will be the starting
point for some interesting insights.

1l GEOMETRICAL INTERPRETATION

Before entering a discussion concerning

properties and applicability of Eq. 10 it may
be helpful to gain some understanding of its
meaning. First, it can be seen that the

equation deals solely with vector directions.
The magnitudes cancel out since each vector
occurs in a product exactly once on each side.
This is quite sensible since the directions of
the projecting rays constitute the only
information which can be exploited.

Note also that each
is associated with
matrix, undoing the effect of rotation.
Whatever difference remains between the
directions of Bml and Bm2D' is caused by the
translation vector T which must be coplanar

image vector at time 2
the inverse rotation

with all such vector pairs. Two pairs give a
solution for the direction of T in terms of
the intersecting line of their planes for any
choice of D. The planes of three pairs,
however, will only intersect in a line if D is
chosen properly. It will be shown now that
this constraint is indeed expressed through
Eq. 10 by rederiving it with geometrical
arguments.

T must be coplanar with Bml and Bm2D' for

all points m. Hence each vector product

(Bml x Bm2D¥) m=1, 2,

(11)
defines a vector normal to a plane containing
T. The planes for m=l and m=2 intersect in a
line whose direction is given by

(BIl x B12D') x (B21 x B22D') (12)



be oriented in the

The plane defined by Bml
other object point must
compatible with this direction, i.e.
normal vector on T must be normal to
direction of T defined by the two
points. This can be expressed using
Cartesian product.

must
as T.

This line
direction
Bm2D' for any

same
and
be
its
the
other
the

C(BI1 x B12D") x (B21 x B22D')]
(Bml x Bm2D')’ = 0

in  brackets
B(CA)-A(CB).
In  summary,

The multiple vector product
can be rewritten using (AxB)xC =
Rearranging terms gives Eq. 10.

we have shown that this equation expresses a
constraint on D arising from the condition
that the translation vector must be coplanar

with each vector pair Bm and Bm2D'.

IV DISCUSSION

The nonlinear system of Egs. 10 for
m = 3,4,5 can be transformed into a set of
fourth order polynomials in three unknowns.
As one possible solution approach iterative
procedures may be employed. A linearized
version of' Eq. 10 has been proposed in [3] and
has been used successfully to solve for the
unknowns based on simulated image vectors.

Let us assume that a rotation matrix D
satisfying Eq. 10 has been found. How can one
obtain a 3D reconstruction? From the
preceding section we know that a solution
indicates: there exists a translation T
compatible with the observations and this
particular D. The translation vector can be
determined by first solving Eq. 9 for s12
(using an arbitrary choice of s11 and the
solution for D) and then solving Eq. 5 for T.
Eq. 4 will give sml  and sm2 for all other
points. The 3D coordinates, finally, follow
from Eq. 2.

Note that Eq. 9 leaves s12 and hence T

undefined if the triple product on both sides
is zero. This can happen in two cases, (1)
when the translation vector T is coplanar with

BIl and B21 and hence all vectors in Eq. 9 are
coplanar or (ii) when B21 and B22D' are
collinear. The first case can be remedied by
choosing another pair of points i and j such
that Bil, Bjl, and T are not coplanar. If all
Bml are coplanar with T, none of them can be
reconstructed from two views. The second case
implies that the translation vector is zero or
collinear with B21. Choosing another point
will reveal whether T is zero since it cannot
be simultaneously collinear with two image
vectors in different directions. For zero
translation (i.e. pure rotation about the
origin) none of the scaling factors smn can be
determined, hence no reconstruction iS
possible. If T is nonzero and collinear with
some Bml then only this point cannot be

663

reconstructed. Hence tor all but certain
exceptional situations a unique 3D
reconstruction can be obtained for any D
satisfying Eq. 10.
VvV CONCLUSION

The interpretation of image sequences
recorded from real-world scenes with moving
objects would be incomplete without a
description of the 3D configuration of points
on a rigid moving object and its space
trajectory. To solve such a problem requires
the image measurements from at least five
object points in at least two views.

Solutions could be used as start values for a
minimization approach in the case where more
than five points in more than two views are
available and have to be explained as a single
rigid object. Using appropriate choices for
the available degrees of freedom, a compact
equation for the unknowns remaining in this
basic situation has been derived in [3]. Our
current contribution has presented a much more
direct derivation and an immediate geometrical
interpretation of this equation, also some
results concerning degenerate situations.
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