
An Ontology-based Multi-level Robot Architecture for Learning from Experiences
S. Rockel, B. Neumann, J. Zhang

University of Hamburg
{rockel, neumann, zhang}@informatik.uni-hamburg.de

K. S. R. Dubba, A. G. Cohn
University of Leeds

scksrd, a.g.cohn@leeds.ac.uk

Š. Konečný, M. Mansouri, F. Pecora, A. Saffiotti
Örebro University

{sky, mmi, fpa, asaffio}@aass.oru.se

M. Günther, S. Stock, J. Hertzberg
University of Osnabrück

{mguenthe, sestock, jhertzbe}@uos.de

A. M. Tomé, A. Pinho, L. Seabra Lopes
University of Aveiro
{ana, apa, lsl}@ua.pt

S. von Riegen, L. Hotz
HITeC e.V.

{svriegen, hotz}@informatik.uni-hamburg.de

Abstract

One way to improve the robustness and flexibility of
robot performance is to let the robot learn from its ex-
periences. In this paper, we describe the architecture
and knowledge-representation framework for a service
robot being developed in the EU project RACE, and
present examples illustrating how learning from experi-
ences will be achieved. As a unique innovative feature,
the framework combines memory records of low-level
robot activities with ontology-based high-level seman-
tic descriptions.

1 Introduction
In this paper, we give an overview of goals and current work
in the project RACE1 (Robustness by Autonomous Compe-
tence Enhancement). The main thrust of RACE is to develop
a framework and methods for learning from experiences.
The ability to conceptualize stored experiences and to adapt
plans and behaviour according to experiences is clearly a
desirable asset of intelligent robots. It can help robots to
expand their knowledge about a complex world, adapt to
changes, and cope with new situations.

To achieve this goal, experiences are recorded as semantic
spatio-temporal structures connecting high-level representa-
tions, including tasks and behaviours, via their constituents
at lower levels down to the sensory and actuator level. In
this way, experiences provide a detailed account of how the
robot has achieved past goals or how it has failed, and what
sensory events have accompanied the activities.

Work in RACE therefore combines research from several
communities: (1) an ontology-based multi-level knowledge-
representation framework has been devised connecting ac-
tuator and sensory experiences with higher-level semantic
structures, (2) reasoning facilities for both symbolic and
quantitative knowledge are in place to deal with hybrid and
diverse knowledge, (3) scene descriptions are enriched by
high-level semantic interpretations, (4) learning procedures

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1RACE is funded by the EC Seventh Framework Program
theme FP7-ICT-2011-7, grant agreement no. 287752.

are being devised exploiting all levels of recorded experi-
ences, and – last, but not least – (5) all this is integrated with
a state-of-the-art robot platform (a PR2).

The experimental domain used in RACE is a restaurant
environment where the robot serves guests. A typical task is
to fetch a mug from a counter, bring it to a guest and place
it on the table in the proper position. After several experi-
ences, the robot learns how to deal with guests at tables and
positions not encountered before.

In the next section, we present the architecture of the in-
tegrated robot system. The robot memory is a central com-
ponent for storing multi-level factual knowledge in a coher-
ent way, in particular experiences comprising instructions,
plans, activities, perceptions, and failures. We then describe
the OWL-based ontology structure which is extended by
SWRL rules that are connected to a constraint system for
temporal, spatial and resource reasoning. We also provide
details about the representation of concrete scenarios and ex-
periences.

In Section 3, we present several approaches for learning
from experiences which are being developed in ongoing re-
search. As one example, we show how repeated detailed in-
structions for serving a guest can be generalized to cover
new situations.

2 Architecture and Knowledge
Representation Framework

In this section, we present the main components of the mod-
ular RACE architecture and describe important features of
the knowledge representation and reasoning (KR&R) frame-
work. Most components exist as prototypes, the integration
is currently underway.

2.1 Architecture of the RACE Robot System
The central piece of the RACE architecture (Figure 1) is the
Blackboard, the contents of which are similar to what can
be found in an ABox in Description Logics. The Blackboard
keeps track of the evolution of both the internal state of the
robot and the events observed in the environment and is im-
plemented as an RDF database. The other modules for per-
ception, reasoning, planning and execution communicate by

Conceptualize
r

OWL
Ontology

High-level
Scene

Interpretation

DL Reasoner

Temporal
Reasoner

Spatial
Reasoner

Conceptualizer

HTN Planner

Blackboard

Experience
Extractor/An

notator

Plan Execution
Manager

Scheduler

ROBOT

Capabilities

Symbolic
Perception

Symbolic
Proprioception

ROS
actions

action
results

new
concepts

expe-
riences

plan,
goal

initial state,
goal

plan occurrences,
schedule

occur-
rences

OWL
concepts

OWL
concepts

continuous
data

occur-
rences

occur-
rences

expe-
riences

User
Interface

instructions

Figure 1: The RACE Architecture.

reading selected types of information from the Blackboard,
processing this information and writing back their output. In
our architecture, the Blackboard serves two roles: it main-
tains a consistent representation of occurrences (executed
actions, world state propositions, etc.), with begin and end
timestamps, from which the current state, as well as past
state information, can be derived; and it stores complete ex-
perience records (e.g., execution of a coffee serving task),
which can be conceptualized later. Details of the experience
representation format can be found in Section 2.4.

When a new planning goal is entered by the user, the
HTN Planner (Nau et al. 2001) queries the Blackboard to
build its initial planning state, then writes the generated plan
back into the Blackboard. The stored plan includes operator
pre- and postconditions as well as the hierarchy of expanded
HTN methods. The plan is picked up by the Execution Man-
ager, which starts dispatching the planned actions to the
robot platform. The Execution Manager also performs ac-
tions reactively when necessary. During execution, the man-
ager logs the executed actions, as well as success or failure
information, to the Blackboard.

The robot used in this project is a PR2, running
ROS (Quigley et al. 2009). ROS already provides many ca-
pabilities (e.g., for manipulation or navigation) in the form
of ROS actions; others will be added as needed. The plan-
ning domain specification is aligned to the capabilities of
the robot such that each planning operator corresponds to
one ROS capability and can be executed directly. Since ca-
pabilities run in a tight perception-action loop, some failure
cases can be handled locally; if an action fails permanently,
the Execution Manager is notified, which will in turn trigger
re-planning.

Not all plan failures can be detected locally by the ca-
pability itself. For instance, if a bottle is picked up, but slips
from the gripper en route to another table, the pick-up action
has already terminated successfully. However, the plan exe-
cution manager can infer that the bottle has slipped by using
proprioception (since the gripper fully closes). By checking
the current world state against the operator preconditions,
this kind of plan failure can be detected. More generally, the
detection of failures requires inference, by which the robot’s

own expectations are checked for consistency with respect
to the observed state of the world. In RACE, this is achieved
by invoking ontological and constraint-based reasoning ser-
vices (described, respectively, in Sections 2.2 and 2.3).

The robot provides continuous data about its own status
(such as joint angles) as well as data from its various sensors.
Then the symbolic perception/proprioception modules dis-
cretize this information into symbolic timestamped occur-
rences; example outputs of these modules indicate whether
the robot’s gripper is open, closed, or moving, or the quali-
tative spatial location of a piece of cutlery observed by the
robot’s RGB-D camera. While the outputs refer to discrete,
symbolic entities (such as servingArea1), these entities may
have quantitative properties (such as the spatial polygon that
servingArea1 represents).

The robot’s conceptual knowledge is stored in the OWL
ontology (Section 2.2). The ontology provides a common
representation format from which the domain knowledge of
all other reasoners is generated. For instance, the HTN plan-
ning domain is extracted from the conceptual knowledge
about robot activities. Similarly, the OWL ontology feeds
the spatial, temporal and ontological reasoners as well as
the high-level scene interpretation. These reasoners enrich
the basic experiences in the Blackboard with higher-level
semantic information and can also be queried directly by
other modules. For instance, if the robot’s task is to serve
coffees, temporal inference may tell it that the act of deliv-
ering coffees must be scheduled before the coffees become
cold. Similarly, metric spatial reasoning can endow the robot
with the ability to discern exactly where to place a dish when
serving (between the fork and the knife of a well-set table).

Background processes responsible for experience extrac-
tion and conceptualization support a long-term learning
loop. The history of occurrences in the Blackboard is con-
tinuously observed by the Experience Extractor to detect
and extract potentially relevant experiences, based on plan
structure, user feedback, pauses, similarity with stored ex-
periences, and conceptualizations and novelty.

Experiences are then used to improve future performance
by employing several learning methods. Taking the expe-
riences from the Blackboard as input, the Conceptualizer
(Section 3.2) modifies the ontology, resulting in more robust
and flexible future plans.

2.2 Structure of the Ontology
The robot’s conceptual knowledge about the world and the
restaurant domain is represented in OWL 2 DL, extended by
SWRL rules to express constraints. The ontology is struc-
tured into an Upper Model with generally useful concepts
(e.g., Occurrence, RobotActivity, PhysicalEntity) and a Do-
main Model with concepts specific for the restaurant do-
main. A large part of the domain concepts describes occur-
rences which may happen as robot or guest activities. As
an example, consider the robot activity of moving an object
from one place to another, described below in Manchester
OWL Syntax:
Class: MoveObjectFromTo

EquivalentTo:

RobotActivity

AND (hasObject EXACTLY 1 PhysicalEntity)

AND (hasFromOn EXACTLY 1 On)

AND (hasToOn EXACTLY 1 On)

AND (hasEmptyHand ATLEAST 1 EmptyHand)

AND (hasGetObjectFrom EXACTLY 1 GetObjectFrom)

AND (hasMoveObjectTo EXACTLY 1 MoveObjectTo)

In addition to the properties listed above, the concept in-
herits the properties hasAgent, hasStartTime, hasEndTime
from superclass concepts. Note that n-ary relations with
n > 2 are reified to be representable in OWL DL: Relation
types (e.g., On, At, Before) are defined as concepts with the
arguments as properties.

Apart from being embedded in the taxonomical hierarchy
of OWL, occurrence concepts can be constituents of compo-
sitional hierarchies. For example, MoveObjectFromTo has
GetObjectFrom and MoveObjectTo as parts, which are fur-
ther decomposed until primitive robot activities are reached.
Concepts consisting of several occurrences are called ag-
gregates. Compositional hierarchies defined in the ontology
are transformed into corresponding hierarchies of planning
methods and operators for the HTN planner.

OWL DL allows one to refer to quantitative data types
which are used here mainly for temporal and spatial infor-
mation. But OWL provides only rudimentary ways to ex-
press constraints on data types, e.g., on durations or loca-
tions. To incorporate constraints into concept definitions,
we employ the SWRL rule extension of OWL. The LHS of
a rule is used to introduce variable names for concept in-
stances, as shown below for part of the concept MoveOb-
jectFromTo (variables are prefixed by a “?”).

MoveObjectFromTo(?moveobjectfromto)

∧ hasStartTime(?moveobjectfromto,

?moveobjectfromto-starttime)

∧ hasFinishTime(?moveobjectfromto,

?moveobjectfromto-endtime)

∧ hasAgent(?moveobjectfromto, ?moveobjectfromto-agent)

∧ hasObject(?moveobjectfromto, ?moveobjectfromto-object)

...

The RHS (not shown) is used to express constraints on
these variables with constraint names referring to constraints
implemented in the constraint system.

2.3 Constraint Processing
Much of the conceptual knowledge of the robot (whether
learned or provided by first principles) is relational in na-
ture. It is often qualitative, e.g., knowing that desserts are
served after the main course, or that forks and knives should
be placed, respectively, on the left and right side of plates.
However, this knowledge is useful for the robot if it can
be instantiated in observed situations. This entails the need
for attaching metric information deriving from observations
to qualitative conceptual knowledge. For instance, the robot
may need to infer, based on qualitative relations describing
well-set tables, where to place a fork in the specific case of
a particular table on which a dish is present. This requires
identifying an admissible area for placing the fork in the ref-
erence frame of the table, given the specific placement of the
dish in the scene.

Given these requirements, many of the reasoning services
provided by the RACE KR&R framework are based on con-
straint processing techniques. Specifically, qualitative tem-
poral knowledge is represented as relations in Allen’s Inter-
val Algebra (Allen 1984). When applicable, these qualitative
representations are augmented with metric constraints (van
Beek 1990). This allows the robot to perform useful opera-
tions such as abductive reasoning to infer context using tem-
poral relations (Pecora et al. 2012), determining earliest and
latest bounds for carrying out a task, and performing tempo-
ral execution monitoring.

Reasoning about qualitative temporal relations is
achieved through path consistency checking and backtrack-
ing search in Allen’s qualitative temporal calculus. Metric
temporal constraint reasoning occurs through two solvers,
namely a Temporal Constraint Satisfaction Problem solver
and a Simple Temporal Problem solver (Dechter 2003).
Variables in these types of problems represent time points,
which allow the capture of information regarding events.
Pairs of time points combined with a constraint on their
temporal separation allow the representation of intervals,
which capture information about actions carried out by the
robot and states of the environment (e.g., the minimum
and maximum duration of a picking action, or the nominal
bounds on the duration of a meal).

Intervals and temporal constraints are also the basis for
reasoning about the use of reusable resources. These are re-
sources with a given limited capacity, which is decreased
when an activity using this resource is executed. The cu-
mulative use of a resource in any interval of time may not
exceed its capacity. The framework implements a schedul-
ing algorithm based on meta-CSP reasoning (Cesta, Oddi,
and Smith 2002) which resolves over-consumption of re-
sources by imposing temporal constraints which sequence
activities in time. The algorithm, which builds on the frame-
work’s simple temporal problem solver, enables the robot
to refine the temporal bounds of planned activities so as to
achieve resource-feasible plan execution. This is an impor-
tant capability for a waiter robot — for instance, the maxi-
mum weight that can be carried by the robot can be modeled
as a limited capacity resource.

Another important aspect of the robot’s knowledge is re-
lated to spatial relations. The RACE KR&R framework pro-
vides qualitative and metric spatial reasoning tools that can
be invoked, as for temporal reasoning, to refine the robot’s
knowledge, refine plan execution with quantitative informa-
tion, or interpret observations. These include the Region
Connection Calculus RCC-8 (Randell, Cui, and Cohn 1992),
the Directional Calculus (Goyal 2000), and CORE-9 (Cohn,
Renz, and Sridhar 2012) which for rectangular regions (such
as object bounding boxes) subsumes and improves the ex-
pressiveness of both the above calculi as well as the Rectan-
gle Algebra (RA), a spatial calculus which extends Allen’s
Interval Algebra to two dimensions (Balbiani, Condotta,
and Del Cerro 1999). Augmented spatial constraints in RA
which capture spatial relations in metric space are reasoned
with the combined use of two metric Allen’s Interval con-
straint reasoners. This allows the robot to leverage, similarly
to the temporal case, abductive reasoning for scene interpre-

tation (e.g., answering the question “is the table well set?”),
plan refinement (e.g., determining the area in which a dish
should be placed given the other objects on the table), and
plan execution monitoring (e.g., detecting that it is impossi-
ble to place the dish on the table because of clutter.)

2.4 Representing Basic Experiences
Experiences are the main source of information used for
learning how to achieve a more robust robot behaviour. They
arise from robot activities and can be directly exchanged be-
tween the modules through ROS messages as well as stored
for future use in the Blackboard using the YAML format.

The YAML experience format consists of a header and a
footer, both containing the name of the experience, the name
of the corresponding ontology and environment, and a start
time and finish time. The body is a list of occurrences struc-
tured similarly to ABox entries. Occurrences are not only
relevant for experiences, but are the central message format
for communication between the Blackboard and other mod-
ules, as shown in Figure 1. The Blackboard provides ser-
vices to insert new or changed occurrences. Thus, experi-
ences can be seen as a collection of occurrences that have
been relevant for the performance of robot behaviour.

The following example of an occurrence represents a
primitive action of moving the left arm to the side:
!ObjectDescriptor

Class_Instance: [MoveArmToSide, moveArmToSide1]

StartTime: [61.142, 61.142]

FinishTime: [66.306, 66.306]

Properties:

- [hasArm, RobotArm, leftArm]

- [hasResult, ActivityResult, succeeded]

The field Class_Instance contains the concept in the
ontology and the name of the individual. It is followed by
two intervals indicating the earliest and latest start and finish
times of the occurrence. By using time intervals, we can also
represent constrained or indefinite time points, as pointed
out in 2.3. Experiences generated in real-time can have mul-
tiple entries for the same occurrence. First, when an occur-
rence starts, it will be generated with an indefinite (or con-
strained) finish time, and when it is finished, another entry
will be generated, with a definite finish time and possibly ad-
ditional properties. In the example above, the action of mov-
ing the arm has been performed successfully, which is indi-
cated by the set finish time and the hasResult property.
Note that activity instances such as moveArmToSide1 can
be property fillers of higher-level aggregates.

Different kinds of information can be stored as occur-
rences inside an experience. First, we have the primitive
activities and states of the robot, e.g., motion of the robot
base or the position of the robot’s arm. Also perception re-
sults such as detected objects or guests are stored. Further-
more, experiences are enriched by higher-level descriptions
obtained from the HTN and a scene interpretation module.
In addition to real occurrences, the HTN plan itself as well
as information about success or failure of the execution is
included, reflecting the “mental state” of the robot. We will
store the complete plan hierarchy from the overall task down
to the operators with their pre- and postconditions. When the

plan is executed, success or failure information and time-
stamps for the start and finish time will be added to the sin-
gle actions, the higher level tasks and the plan itself. Finally,
the user will be able to provide instructions to the robot and
give feedback on the execution of a task.

3 Experience-Based Learning
We now describe some of the learning approaches which are
being explored and will be investigated using the RACE sys-
tem as experimental platform.

3.1 A Learning Scenario
We first present a simple scenario in the restaurant do-
main which will be used as a first-year demonstrator in
Project RACE, and illustrate representations and learning
approaches for dealing with this scenario.

Scenario A: A restaurant floor plan as shown in Figure 2
where the robot knows the position of mug1 on the counter,
the position of table1, the position of guest1 north of table1,
and the regions for manipulation, sitting and placing. The
robot is instructed to move to counter1, grasp mug1, move
to the manipulation region west of table1, and place mug1 at
the placement region north of table1. The robot is told that
this is a ServeGuest activity.

Figure 2: Initial floor plan for counter1, table1, robot Trixi
(R), mug1 (M) and guest1 (G) in Scenario A

Scenario B: The same as Scenario A, except guest2 is sit-
ting south of table1 and the robot is instructed to move to the
east of table1 and place mug1 at the south of table1. Again,
the robot is told that this is a ServeGuest activity.

Scenario C: Guest3 is sitting east of table1 and the robot
is simply instructed: Do a ServeGuest to guest3.

The idea is to let the robot discover a generalization of
the ServeGuest experiences in Scenarios A and B which will
subsume the task in Scenario C.

3.2 Learning about robot activities
This approach can be described as Constrained Generaliza-
tion. The idea is to generalize from experiences and to si-
multaneously constrain the generalization by commonalities
discovered in the experiences. For Scenarios A and B, the
unconstrained generalization would describe a ServeGuest
for any combination of SittingRegion, PlacingRegion and
ManipulationRegion. By discovering common properties or
relations in the experiences such as “WithinReach Placing-
Region SittingRegion”, the over-generalization can be con-
strained and will correspond to the desired learning results.
For this approach, a large repertory of potentially interest-
ing relations is required, a strategy for choosing common
relations is still a research issue. In general, several learn-
ing experiences may be required to distinguish, for example,

between irrelevant common guest properties (e.g., colour of
garment) and relevant location relations.

The knowledge representation framework of RACE is de-
signed to support Constrained Generalization. Two steps
are required: Conceptualization of individual experiences
and construction of a constrained least common subsumer
(CLCS).

In the conceptualization step, the occurrence instances of
an experience are transformed into concepts by abstracting
from quantitative time, for example:
!ObjectDescriptor

Class_Instance: [On, onA2]

StartTime: [600.020, 600.020]

FinishTime: [780.130, 780.130]

Properties:

- [hasPhysicalEntity, PhysicalEntity, mugA1]

- [hasRegion, Region, placingRegionNorthTable1]

⇒
Class: OnA2

SubclassOf: On

AND (hasPhysicalEntity EXACTLY 1 mugA1)

AND (hasRegion EXACTLY 1 placingRegionNorthTable1)

Note that concept names begin with upper-case, individu-
als and roles with lower-case letters. In addition, a new ag-
gregate concept is introduced (in our example ServeGuest)
with the top-level activities of the experience as properties
(MoveBase, GraspObject, MoveBase, PlaceObject).

The second step (CLCS construction) has two features: (i)
Disjunctions are not allowed, hence different individuals are
generalized to their closest common superclass:
guest1, guest2 ⇒ Guest

placingRegionNorthTable1, placingRegionSouthTable1

⇒ PlacingRegionTable1

(ii) Generalizations are constrained by additional proper-
ties or relations, to be discovered as commonalities of the
underlying experiences.

3.3 Learning about objects and scenes
In order to adapt to different environments and tasks, robots
need to categorise physical objects and acquire vocabulary
about them. Although the acquisition of visual object cate-
gories is a long-standing research problem, the project will
approach it from a long-term (or lifelong) perspective and
with emphasis on domain open-endedness, i.e. there is no
pre-defined set of categories. So, in the above learning sce-
nario, if the robot does not know what a mug looks like, it
may ask the user to point to one. Such situation provides
an opportunity to collect a training instance for learning.
The baseline is a purely memory-based learning approach,
in which known instances are stored in memory, and recog-
nition of new instances is based on analyzing similarities
with stored instances. An RGB-D camera will be the main
source of information for detecting, learning and classifying
objects. Objects themselves are represented through a com-
bination of shape models and bag-of-feature models. Finally,
acquired object category knowledge is fed into the hybrid
knowledge representation and reasoning framework.

In turn, object category knowledge forms the basis for
scene recognition. Many scenes have similar structure, or

at least elements with structural similarities (the structure
of a restaurant, the restaurant table layout, etc.). We will
investigate how such knowledge can be acquired in an un-
supervised way, through observation and exploration. We
will build on our existing work in this area whereby areas
of the scene are distinguished semantically via qualitative
trajectory analysis and by clustering based on the spatial re-
lationships between qualitatively different parts of the scene.
Scene knowledge can also be acquired through human-robot
interaction, where the human describes the composition of
concrete scenes in terms of objects and spatial relationships.
In the case of restaurant table layouts, the robot can realize
a certain table layout based on human instructions and then
conceptualize the outcome.

3.4 Learning about environment activities

Apart from robot activities, it is also possible to learn dif-
ferent aspects of the world such as the hierarchical spatial
layouts of buildings, rooms, tables and chairs and cutlery on
a table, object categories based on their functionality and af-
fordance etc. Note that there is also a temporal dimension in
some of the concepts that can be learned such as the changes
in the cutlery layout as a dinner progresses from starters to
desserts. These scenarios are modeled using different spa-
tial relations like RCC-8 etc. among objects as explained in
Section 2.3 and the relations are linked using Allen’s tem-
poral relations to capture the dynamic changes in the re-
lations. For example the RCC-8 relation between mugA1
and counter1 in Figure 2 is NTPP(mugA1, counter1) (i.e.
mugA1 is non-tangential proper part of counter1). The
computed spatio-temporal relational data is stored in the
Blackboard and will be used for learning.

Learning in this project will be done in supervised and
unsupervised settings. In the supervised setting, learning is
done by: learning by observing and learning by doing. In
both cases, instructions and feedback from a teacher are
necessary and will be provided through the User Interface
module as shown in Figure 1. In learning by observing,
the tasks are performed by the teacher, and the robot pas-
sively observes the tasks. The teacher gives supervision an-
notations in the form of concept names: ServeGuest,
MakeCoffee etc. Learning in this case uses spatio-
temporal generalization techniques, Inductive Logic Pro-
gramming and relational graph-based methods (Dubba,
Cohn, and Hogg 2010; Sridhar, Cohn, and Hogg 2010).
In learning by doing, the robot is given detailed instruc-
tions (list of goals) to perform a high-level task and then
the teacher names what high-level task the robot performed.
The instructions also constitute feedback on whether the task
was performed correctly or not: they give the robot oppor-
tunity to learn and adapt by reasoning why the task went
wrong by comparing experiences derived from contents of
the Blackboard during the wrongly executed task with that
of a correctly executed task.

In unsupervised learning, the robot mines the Blackboard
extracting interesting patterns and anomalous sections for
future use such as categories of objects, repetitive occur-
rences and groups of tasks etc.

4 Related Work
Since several diverse research areas are related to this work
and due to space limitations, we can only address most rele-
vant previous works in this section.

The idea of autonomous learning from examples has
been around from the very beginning of AI (Hunt and
Hovland 1963), and symbolic methods using generaliza-
tion and discovery also date back several decades. How-
ever, the context of an embodied robot acting in space
and time poses many new challenges. One is to use a
formal ontology for knowledge representation for support
of reusability and shareability. Our approach is similar to
work in RoboEarth, where experiences are also represented
using OWL (http://www.roboearth.org/). A major goal in
RoboEarth is to obtain a sharable representation of the en-
vironment by combining the experiences of many robots,
while our focus is on using the experiences of a single robot
to improve its performance as a service robot. Another re-
lated project is XPERO (http://www.xpero.org/) where the
emphasis was on active robot experimentation to enable in-
ductive learning.

There have been several proposals for how to structure
ontology-based multi-level KR for robots (Suh et al. 2007;
Galindo et al. 2005). In our approach, knowledge is es-
sentially structured around compositional hierarchies where
high-level representations build on lower-level constituents,
as proposed in research on activity recognition (Neumann
and Moeller 2006; Fusier et al. 2007), but we also consider
special activity concepts (e.g., resources and goals) as pro-
posed, for example, in (Chen and Nugent 2009).

The connection between symbolic processing and quanti-
tative data has been under discussion in many works. Our ap-
proach uses the SWRL extension of OWL to connect to con-
straints, developed in (Bohlken 2009), and the constraint-
based reasoning framework laid out in (Günther et al. 2012).

5 Outlook
In its first year of activities, the RACE project has defined
an architecture and KR framework for integrating multi-
ple types of knowledge and multiple reasoners. We believe
that these will provide an ideal substrate to address the next
grand challenge of RACE: making robots autonomously
record, analyse and learn from their experiences.

References
Allen, J. 1984. Towards a general theory of action and time.
Artificial Intelligence 23(2):123–154.
Balbiani, P.; Condotta, J.-F.; and Del Cerro, L. F. 1999. A
new tractable subclass of the rectangle algebra. In Proc.
IJCAI, volume 1, 442–447.
Bohlken, W.; Neumann, B. 2009. Generation of rules from
ontologies for high-level scene interpretation. In Governa-
tori, G.; Hall, J.; and Paschke, A., eds., Rule Interchange and
Applications, Proc. Int. Symposium RuleML 2009, volume
5858 of LNCS, 93–107. Springer.
Cesta, A.; Oddi, A.; and Smith, S. F. 2002. A constraint-
based method for project scheduling with time windows.
Journal of Heuristics 8(1):109–136.

Chen, L., and Nugent, C. 2009. Ontology-based activity
recognition in intelligent pervasive environments. Int. J. Web
Inf. Syst. 5(4):410–430.
Cohn, A. G.; Renz, J.; and Sridhar, M. 2012. Thinking
inside the box: A comprehensive spatial representation for
video analysis. In Proc. of KR.
Dechter, R. 2003. Constraint Processing. Morgan Kauf-
mann.
Dubba, K.; Cohn, A.; and Hogg, D. 2010. Event model
learning from complex videos using ILP. In ECAI, 93–98.
Fusier, F.; Valentin, V.; Brémond, F.; Thonnat, M.; Borg, M.;
Thirde, D.; and Ferryman, J. 2007. Video understanding for
complex activity recognition. Mach. Vis. Appl. 18(3):167–
188.
Galindo, C.; Saffiotti, A.; Coradeschi, S.; Buschka, P.;
Fernández-Madrigal, J.; and González, J. 2005. Multi-
hierarchical semantic maps for mobile robotics. In Proc.
IROS, 3492–3497.
Goyal, R. 2000. Similarity assessment for cardinal direc-
tions between extended spatial objects. Ph.D. Dissertation,
The University of Maine. AAI9972143.
Günther, M.; Hertzberg, J.; Mansouri, M.; Pecora, F.; and
Saffiotti, A. 2012. Hybrid reasoning in perception: A case
study. In Proc. SYROCO. Dubrovnik: IFAC.
Hunt, E. B., and Hovland, C. I. 1963. Programming a model
of human concept formulation. In Feigenbaum, E., and Feld-
man, J., eds., Computers and Thought. MacGraw-Hill Book
Company. 310–325.
Nau, D.; Munoz-Avila, H.; Cao, Y.; Lotem, A.; and Mitchell,
S. 2001. Total-order planning with partially ordered sub-
tasks. In Proc. IJCAI, volume 17, 425–430.
Neumann, B., and Moeller, R. 2006. On scene interpretation
with description logics. In Nagel, H.-H., and Christensen,
H., eds., Cognitive Vision Systems, volume 3948 of LNCS.
Springer. 247–275.
Pecora, F.; Cirillo, M.; Dell’Osa, F.; Ullberg, J.; and Saffiotti,
A. 2012. A constraint-based approach for proactive, context-
aware human support. Ambient Intell. Smart Environ. 4(2).
Quigley, M.; Conley, K.; Gerkey, B. P.; Faust, J.; Foote,
T.; Leibs, J.; Wheeler, R.; and Ng, A. Y. 2009. ROS: an
open-source Robot Operating System. In ICRA Workshop
on Open Source Software.
Randell, D.; Cui, Z.; and Cohn, A. 1992. A spatial logic
based on regions and connection. In Proc. of KR.
Sridhar, M.; Cohn, A. G.; and Hogg, D. C. 2010. Unsuper-
vised learning of event classes from video. In Proc. AAAI,
1631–1638. AAAI Press.
Suh, I. H.; Lim, G. H.; Hwang, W.; Suh, H.; Choi, J.-H.;
and Park, Y.-T. 2007. Ontology-based multi-layered robot
knowledge framework (OMRKF) for robot intelligence. In
Proc. IROS, 429–436. IEEE.
van Beek, P. 1990. Exact and approximate reasoning about
qualitative temporal relations. Ph.D. Dissertation, Univer-
sity of Waterloo, Waterloo, Ont., Canada, Canada. UMI Or-
der No. GAXNN-61098.

