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Extended Abstract

Providing predictions about the temporal development of a scene must be considered a
central task both in natural and computer vision. By correctly guessing what will be seen
at the next moment, the current situation can be better understood, ressources can be
saved, proper actions can be taken earlier etc. For a vision system, prediction may
provide constraints which can simplify the overall task considerably.

This contribution deals with predictions based on explicit knowledge about typical
occurrences or events such as throwing a ball, overtaking a car, eating a boiled egg etc.
Different from prediction formalisms at the signal level (e.g. Kalman filtering), knowledge-
based prediction essentially works by comparing available data with possible models
given in some knowledge representation language. If a model matches the data, it may
be used to predict the rest of the data.

Various representations have been proposed and investigated for event models,
including logic-based expressions, frame-based data structures and Bayes Nets. In
view of the inferencing power which can be gained from logic-based representations,
[Neumann and Schröder 96] argue in favor of description logics but show that important
mechanisms for hypothesis generation are still lacking. In this contribution, an alternative
approach based on a constraint satisfaction formalism is presented.

Constraints have been shown to be a generally useful formalism for knowledge
representation including computer vision applications [Mackworth 96]. In our approach,
presented in detail in [Kockskämper 97], constraints are used to model the temporal
structure of events. Different from the system of temporal relations introduced in [Allen
83], our basic temporal relations refer to individual time marks at the beginning and end of
intervals. Unary relations restrict time marks to an interval, binary relations are constructed
from the primitive relation t1 + c ≤ t2, where c is an offset. By restricting ourselves to
convex relations [Nökel 91] (where the set of intervals satisfying the relation is
continuous), we obtain a system of constraints which can be checked for consistency in
linear time.

The temporal constraint satisfaction mechanism is at the core of a system for incremental
event recognition which is used to provide predictions for dynamic scene analysis. The
relevant constraints are contained in event models which capture the knowledge about
coherent occurences in a scene. An event model is a generic description of an aggregate
of primitive or composite events with time marks for the beginning and end of each
event and temporal constraints between the time marks. Hence an event model is the
temporal analog to traditional spatial models in vision which consist of parts and a spatial
structure.

A primitive event is a predicate over some time interval which expresses some
constancy which can be computed from the scene data. For example,

(parallel vehicle-trajectory street-axis par-B par-E)

would be a primitive event, beginning with the time point par-B and ending with the
time point par-E, where the trajectory of a vehicle is parallel to a street axis. The idea is
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that primitive events are computed bottom-up for a low-level description of a dynamic
scene. Early work on motion description provides an interesting background for the
choice of low-level primitives [Badler 75, Tsotsos et al. 80, Neumann 89]. In our view it is
important to note (i) that the set of primitives can be limited to qualitative measurements
of simple time-varying scene properties like distances, angles and areas, and (ii) that
primitive events may be chosen pragmatically depending on the measurements which
are easily available.

Consider an example scenario taken from [Kockskämper 96] where a driverless
transport vehicle (dtv) repeatedly transports loads to a certain location. The composite
event model transport-load (see box) which in turn is based on several other
composite and primitive event models (enter-room, unload, exit-room etc.) can
be used to describe this behaviour and link it to dynamic scene properties.

Predicate: transport-load
:is-a eventmodel
:local-name tl

Arguments: (?room ?pos (?dtv :is-a stacker)
(?station :part-of ?room))

Time marks: (tl-B tl-E)
Component events: (er :is-a (enter-room ?room ?dtv er.B er.E))

(fs :is-a (free-station ?station fs.B fs.E))
(ul :is-a
(unload ?dtv ?station ?pos fs.B fs.E-B))
ex :is-a (exit-room ?room ?dtv ex-B ex-E)))

Temporal relations: ((tl.B + 10 ≤ tl.E)
(tl.E - 12 ≤ tl.B)
(er (before) ul)
(ul (before) ex)
(ul (starts-within) fs)
(tl.B = er.B)
(tl.E 0 ex.B))

The temporal relations include qualitative relations like before and starts-within
which can be expressed by primitive inequalities, e.g.

starts-within <=> I1.B ≥ I2.B+Δt, I1.E+Δt ≤ I2.E

Δt is the unit of the time point algebra used in this approach [Vila 94].

Event recognition is the process of checking whether the primitive events computed for a
dynamic scene satisfy an event model. An event recognition algorithm which recognizes
events post-mortem, i.e. after their termination, has been presented in [Neumann 89].
However, in order to allow prediction, event recognition has to be performed
incrementally. An incremental recognition and prediction procedure also developed in my
group [Kockskämper et al. 94] will now be described.

Event prediction consists of two tasks which must be carried out for each time increment:

• Test whether a potential event begins and add such event to the list of 
current events.

• Test whether a current event can be continued. Remove any event which 
cannot be continued or is completed.
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The list of current events is the basis for prediction. Each event on the list is only partially
instantiated due to component events which have not yet happened. The prediction
which can be derived from the partially instantiated event models specifies expected
events within the constraints resulting from the instantiated parts and the event model.

A concise representation of the temporal constraints of a predicted event can be given in
terms of the time net which is used for constraint propagation in the event prediction
procedure. Below is the time net for an unload event before instantiation.
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Time net before instantiation

Each node corresponds to a time mark in the event model. Unary constraints of a time
mark are entered below and above a node (initially typically -∞ and ∞). Binary constraints
of the form t1 + c ≤ t2 are represented by edges between two time marks along with a
number marking the offset c in the inequality. Δt is the temporal increment between
observations and is used as an offset when strict inequality must be expressed.

As soon as an event gets instantiated, say, by observing an enter-room beginning at
some time 37 and ending at time 38 (assuming Δt=1), the unary constraints [-∞ ∞] of er.B
and er.E are reduced to the intervals [37 37] and [38 38], respectively, and the new
values are propagated through the net., tightening other unary constraints.

At this point, the time net represents the predicted event in terms of the temporal
constraints which are valid for all components of the event. Note that the unary constraints
may also be used to represent uncertain observations, e.g. the occluded beginning or
end of an event. Uncertainty boundaries may be propagated just as certain time points.
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Obviously, the more an event model is instantiated, the more one expects its successful
completion. Conversely, when little to no evidence is available for an event, one would
not predict it although it may be possible. In order to differentiate between different
degrees of certainty, additional information about the probabilistic structure of events
must be introduced. This is not part of the model presented here. Instead, all events on
the list of current events according to the event prediction procedure sketched out above
are considered for prediction. Hence each predicted event has at least one instantiated
part. Another simple alternative is to mark the component event whose instantiation
would allow a sufficiently certain prediction of the whole event.

The complexity of constraint propagation is O(n), where n is the number of nodes of a
time net, for each propagation. This favourable property can be achieved by eliminating
pathological circles in a preprocessing step executed once for all event models. Given a
large number of event models which must be tracked simultaneously and a rich scene
description in terms of primitive events, complexity considerations may become very
important, hence the use of constraint systems with larger complexity may become
prohibitive.

We have used our incremental event prediction system in a simulated robot
environment for path finding and in monitoring applications.
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