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Zusammenfassung

In diesem Bericht stellen wir die wesentlichen Bestandteile eines konzeptuellen Rahmens für
Höhere Bilddeutung vor. Höhere Bilddeutung umfaßt definitionsgemäß alle Aufgaben der
Szeneninterpretation "oberhalb" von Objekterkennung, also z.B. das Erkennen von Objekt-
konfigurationen, Vorgängen und absichtsvollen Handlungen. Die Modelle, auf die sich solche
Interpretationen stützen, beschreiben im allgemeinen Aggregate aus bedeutungstragenden
Teilen, die in zeitlichen sowie räumlichen Beziehungen zueinander stehen. Als Repräsen-
tationsform werden Frames vorgeschlagen, ähnlich den Aggregatebeschreibungen aus der
Konfigurierungstechnologie. Der Interpretationsprozess basiert auf dem Paradigma des
Hypothetisieren-und-Testens und wird am Beispiel einer Tischdeckszene erläutert.
Hypothesenbildung erfolgt im wesentlichen durch Teil-Ganzes-Schließen. Zur Evaluierung
qualitativer zeitlicher Beschränkungen wird ein zeitliches Beschränkungsnetz vorgeschlagen.
Ein ähnlicher Ansatz wird für räumliche Beschränkungen skizziert, die in Form von
Gitterbereichen in objektbezogenen Referenzsystemen repräsentiert werden.
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Abstract

In this report we present essential elements of a conceptual framework for high-level vision
(HLV). The scope of HLV is defined as scene interpretation above the level of object
recognition. It is shown that models, on which such interpretations can be based, typically
describe aggregates composed of meaningful parts, related to each other by temporal and
spatial constraints. A frame-based representation is proposed which is based on techniques
imported from configuration methodology. The hypothesise-and-test interpretation process is
described for a table-laying example. It is shown that expectations are generated by part-
whole reasoning. A temporal constraint net is proposed for the incremental evaluation of
qualitative temporal constraints. A similar approach is sketched for spatial constraints which
are represented by grid locations in a reference frame attached to an object.

Scope of high-level vision (HLV)

In this section we review developments in Computer Vision which contribute to a wider
understanding of the vision task as compared to classical vision tasks such as recognizing or
tracking single objects. These developments have to be taken into consideration when
designing the conceptual framework for HLV in a cognitive agent as envisioned in the project
CogVis.

From human vision it is evident that what we see is interpreted in the light of diverse
knowledge and of experiences about the world. The scope of this knowledge - often termed
common-sense knowledge - can best be seen when we consider silent-movie watching as a
Computer Vision task, for example, watching and understanding a film with Buster Keaton. If
a vision system were to interpret the visual information of such a film in a depth comparable
to humans, the system would have to resort to knowledge about typical (and atypical)
behaviour of people, intentions and desires, events which may happen, everyday physics, the
necessities of daily life etc. This is knowledge far beyond the visual appearance of single
objects, and a vision system capable of silent-movie understanding clearly has to  solve tasks
beyond single-object recognition.

As early as 1955 Computer Vision has been proposed as a task integrated in a cognitive
context [Selfridge 55] and interacting with other cognitive processes. But Computer Vision
research was in its infancy then, and a much narrower view of the vision task had to be
pursued for several decades. The idea of integrating vision with other cognitive processes was
actively investigated for the first time in the eighties in projects dealing with natural-language
descriptions of imagery [vHahn et al. 80, Nagel 88, Neumann 89]. One of the important
insights of this work was that qualitative descriptions had to be derived from geometric scene
descriptions as an interface to language and symbolic reasoning.
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An important paradigm which takes a more comprehensive view of the vision task is active
vision [Bajcsy 88] (or purposive vision [Aloimonos 90]). In active vision the goal of vision is
determined by the specific task which an agent may want to carry out. Active vision has been
proposed as a departure from Marr´s view of vision as a general scene description task.
Notions such as focus of attention, top-down control and vision-as-process are tied to the
active-vision paradigm.

As Computer Vision was increasingly investigated in connection with actions in the real
world, e.g. traffic behaviour, it became evident that spatial and temporal reasoning also played
a part [Nagel 99, Neumann 99, Fernyhough et al. 98].  Spatial and temporal reasoning have
been investigated in AI independently of vision for a long time, and reasoning services have
been proposed, not all of which are useful for Computer Vision. More recently, description
logics, extended by so-called concrete domains, have been shown to offer interesting support
for vision tasks, especially for high-level tasks where complex spatial or temporal relations
play a part [Moeller et al. 99].

While space and time are clearly essential domains for visual reasoning, knowledge
representation and reasoning services must be considered as more common-sense knowledge
is made available for vision tasks. Taxonomical relations between conceptual object
descriptions, for example, can be exploited in recognition strategies, or automatic
classification services which may be invoked as part of a knowledge representation system.
Clearly, interfacing Computer Vision methodology with knowledge representation and
reasoning is an important asset for comprehensive vision systems.

In the last decade, probabilistic models and learning have gained increased attention in the
vision community. Visual behaviour can be predicted from a spatio-temporal context, models
can be determined from the statistics of a large number of observations [Fernyhough et al.
98]. So far, learning is usually considered as a separate task, not integrated into vision
systems. But as learning know-how from AI and Cognitive Sciences [Gärdenfors 00] is
amalgamated into Computer Vision, it becomes conceivable to integrate model-building and
experience-based vision into vision systems.

There are other AI topics besides knowledge representation and learning which have to be
considered for HLV. As the term "purposive vision" suggests, planning  and plan recognition
is one such topic. In AI, a plan is a partially ordered set of actions designed to transform an
initial world state into a goal state. From a vision point of view, knowledge about goals and
plans to reach such goals support expectations about the development of a scene and hence
provide useful top-down information for visual analysis.

As we investigate a conceptual framework for HLV in CogVis, we do not want to exclude any
aspect which may contribute to vision. Hence we choose to define HLV as the part of
Computer Vision which deals with scene interpretation "above" the level of object
recognition. We will speak of a high-level interpretation of a scene, if it provides a
meaningful description, typically in terms of qualitative abstractions, based on a larger spatial
and temporal context.

As an illustrative example consider a street scene showing garbage collection. There is a
garbage collection truck standing on the road and garbage bins standing on the curb. Men
bring garbage bins to the rear of the truck, the bins are lifted, then lowered again and brought
back to the curb. The men climb onto the truck and the truck moves on.
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Let us assume that the following natural-language description of the scene is given : "There
are men emptying garbage bins into a garbage-collection truck". This interpretation is typical
for HLV and exemplifies several of the characteristics addressed above:
- The interpretation describes the scene in qualitative terms, omitting details.
- The interpretation may include inferred facts, unobservable in the scene.
- The scene is composed of several occurrences which contribute to the overall interpretation.
- Partial occurrences are spatially and temporally related.

The CogVis team at CSL in Hamburg prefers controllable indoor scenes for experimentation
and has chosen a table-laying scene as a guiding example. Observed by stationary cameras, a
human agent places covers onto a table. One task of the vision system is to recognise place-
cover occurrences in an evolving scene based on a model containing generic knowledge about
placing covers. A second task is to generate a place-cover model and other interesting models
from repeated observation of reoccurring patterns in many scenes. This task addresses the
issue of a vision memory and learning.

Basic framework for high-level scene interpretation

Figure 1: Basic building blocks for high-level scene interpretation

The main representational units and processes for high-level scene interpretation are shown in
Figure 1. We will first describe the representational units.

A dynamic scene is a spatially and temporally coherent time-varying section of the real world.

scene models

memory templates

memory records

high-level
scene interpretations

geometrical scene description (GSD)

image sequences
of dynamic scenes
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With image sequences we mean image sequences taken from the scene using one or more
cameras. In our work, there will be 3 stationary cameras observing a dynamic scene.

Geometric scene description (GSD) is the term for a quantitative object-level scene
interpretation in terms of recognised objects and their (possibly time-varying) locations in the
scene. A GSD is assumed to be available as input for HLV.

A scene interpretation is a scene description in terms of instantiated scene models, e.g.
meaningful object configurations, occurrences, episodes and purposive actions. Scene
interpretations are typically multi-level, with higher-level interpretations based on
intermediate-level interpretations, and so on.

Both, GSD and interpretations, constitute the interpretation base. At a given time, the
interpretation base contains the current description of the scene. It may also contain
hypotheses which may not be upheld.

The block in the right half of Figure 1 is the model base. It contains recorded experiences and
generic descriptions derived from experiences.

Memory records are stored copies of past scene interpretations. They are the data from which
generic structures may be derived by learning processes.

Memory templates are generalised substructures of memory records, derived from reoccurring
patterns in memory records. They may be the result of discovery and learning processes
operating on a large number of memory records.

Scene models are conceptual entities for high-level scene interpretations. They may be
constructed by knowledge engineers or result from supervised learning processes.

The basic processes are indicated by the arrows in Figure 1. Interpretation is performed by a
hypothesise-and-test procedure. Hypothesis generation may be controlled by various factors:
high-level expectations based on current hypotheses about ongoing occurrences, actions and
goals, the current scene description in terms of the GSD, measures of saliency, likelihoods
based on past experiences etc. Hypotheses are tentative instantiations of scene models or
memory templates taken from the model base. Hypothesis test is a process aiming to verify
that all elements of a scene model are consistent with the scene and enjoy sufficient evidential
support.

The term expectation generation is used generally for a process which provides likelihoods for
missing evidence based on established evidence. Expectation generation in HLV is essentially
performed by hypothesis generation and part-whole-reasoning. Established evidence
(elements of the GSD and established interpretations) are found to be part of a larger structure
represented by a scene model. By hypothesising a scene model, one gives rise to expectations
about other parts of the structure.

Temporal predictions play a special part if the scene is interpreted incrementally in real-time
(or simulated real-time). This means that the scene is still unfolding while it is already being
interpreted based on the available data. In this case, as time progresses, new evidence may
confirm, contradict or extend predictions. Note that the process of checking current
hypotheses in the light of new information is essentially the same hypothesis verification
process which is part of the standard interpretation procedure.
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Besides scene models, part-whole reasoning (and as such, expectation generation) may also
exploit memory templates and memory records. Memory templates have a similar function as
models, but they are nameless patterns, generated from experiences. Memory records, of
course, are concrete past interpretations, parts of which may match the current situation and
thus provide expectations.

The dotted arrows in the memory base in Figure 1 stand for learning processes. Learning is
assumed to take place off-line, independently of the interpretation processes. The arrows
indicate that memory templates and models may be generated from memory records. Learning
processes will not be described in this report.

Choice of representational formalism

In this section we present the basic ingredients for representing scene models and
interpretations in a declarative fashion. For HLV, the choice of a representational formalism is
a choice of knowledge representation. Since knowledge representation is one of the oldest and
most advanced fields of AI, there are numerous techniques available, and the question of how
to represent knowledge for HLV is more a question of educated selection, guided by the
requirements of HLV, than of creative design.

The following formalisms appear to be relevant:

•  Frame representations are object-centered, expressive  and most commonly used in AI.

•  Relational structures provide graphical visualisations of relations and matching procedures.

•  Description logics are attractive because of well-founded reasoning services.

•  Constraints are useful for incremental evaluation of relations.

•  Bayes nets come into play as probabilistic models.

•  Neural networks provide associative structures and a cognitive learning paradigm.

We choose frame-based representations for HLV by reasons described below. But it is a
useful research strategy to view representational issues from multiple perspectives. In
particular, we will also take the description logic viewpoint and use the conceptual language
of the description logic system RACER [Haarslev 01] to paraphrase the frame-based models.
The idea is to invoke well-founded reasoning procedures for interpretation, prediction and
learning [Neumann and Schröder 96]. This will be the subject of a forthcoming paper.

Above anything else, HLV models require the representation of aggregates, that is, of
structures composed of parts with relations between the parts. Aggregates are common
structures in other modelling systems, in particular in configuration systems [Cunis et al. 87].
Aggregates give rise to a partonomy which is the hierarchical structure induced by part-of
relations.

Models will be more or less specific. For example, a model may describe an action where an
agent (a hand) transports an arbitrary object from one place to another. Another model may
describe a very specific transportation act where a saucer is transported onto a table. The latter
may be represented as the specialisation of the former, or, expressed the other way around, the
more general model subsumes the more special model. This relation between models
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generates another hierarchy, called subsumption hierarchy or taxonomy. Taxonomies are
common in object-based representation systems.

Model definitions usually involve restrictive relations, e.g. spatial and temporal relations. In
previous work on HLV interpretation [Neumann 89, Macworth 96, Neumann 97] and
monitoring [Kockskämper 95], it has been shown that it is useful to model relations as
constraints. Constraint systems support incremental evaluation and stepwise hypothesis
instantiation. This is another aspect which HLV has in common with configuration
methodology [Syska et al. 88] where constraints represent inter-object relationships.

We will  describe models (henceforth also called concepts) in terms of frames which contain
the following information:

- concept name

- taxonomical parent concepts

- parts

- constraints between parts

Parts play a special role as they constitute the components which make up an aggregate. They
are also subject to the constraints expressed in the constraints section of the frame.

The following example frame describes an occurrence of the type "place-cover".

name: place-cover
parents: :is-a agent-activity
parts: pc-pl :is-a plate

pc-sc :is-a saucer
pc-cp :is-a cup
pc-tt :is-a table-top
pc-tp1 :is-a transport with (tp-obj :is-a plate)
pc-tp2:is-a transport with (tp-obj :is-a saucer)
pc-tp3 :is-a transport with (tp-obj :is-a cup)
pc-cv :is-a cover

time marks: pc-tb, pc-te :is-a timepoint
constraints: pc-tp1.tp-ob = pc-cv.cv-pl = pc-pl

pc-tp2.tp-ob = pc-cv.cv-sc = pc-sc
pc-tp3.tp-ob = pc-cv.cv-cp = pc-cp
pc-cv.cv-tb ≥ pc-tp1.tp-te
pc-cv.cv-tb ≥ pc-tp2.tp-te
pc-cv.cv-tb ≥ pc-tp3.tp-te
pc-tp3.tp-te ≥ pc-tp2.tp-te
pc-tb ≤ pc-tp1.tb
pc-tb ≤ pc-tp2.tb
pc-tb ≤ pc-tp3.tb
pc-te ≥ pc-cv.cv-tb
pc-te ≥ pc-tb + 80∆t

Figure 2: Conceptual model for a place-cover occurrence

The place-cover model lists parts and constraints which must be fulfilled in a scene where a
cover is being placed on a table.
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The parts section lists local names and concept memberships of the essential visual
phenomena constituting the place-cover occurrence. In particular, there must be 4 object
instances of type plate, saucer, cup and table-top, 3 transport instances involving a plate, a
saucer and a cup, and an instance of a cover configuration (concept definition not shown).
Note that any entity associated with the occurrence place-cover may be listed as a part. Parts
are assumed to provide partial evidence and will be the entry points for part-whole reasoning.

Following the parts section, the place-cover frame names the time marks which describe the
beginning and ending of the occurrence. Time marks are subject to temporal constraints.

Finally, the constraints section establishes relations between the parts and between
constituents of the parts. First, there are constraints establishing the identity between entities.
Second, there are temporal constraints in terms of inequalities between time points which
mark the beginning (tb) or ending (te) of an occurrence. Temporal constraints will be
evaluated incrementally in a dedicated constraint net. The notion of an occurrence will be
introduced in detail in the next section.

Other models, e.g. the model for a cover configuration, will also contain spatial constraints. A
spatial constraint system is still in development.

Geometrical scene description and primitive occurrences

In this section we describe the interface between lower-level vision processes and HLV.

The input for HLV has already been introduced in Section 2 in terms of the geometrical scene
description (GSD). A GSD is defined as a quantitative object-level scene interpretation in
terms of recognised objects and their (possibly time-varying) locations in the scene. Ideally,
this means that all objects relevant for a high-level scene interpretation have been recognised
and tracked in a 3D scene coordinate system. In this case, HLV can in fact be restricted to
interpretations in terms of aggregates and qualitative abstractions, as motivated above. As all
vision researchers know, a perfect GSD cannot be expected in realistic applications. There
will be unrecognised objects, interrupted tracks due to occlusion or segmentation faults,
uncertain 3D information etc. It is therefore important that HLV processes

- do not rely on complete data, and

- provide top-down information in support of lower-level vision.

These requirements will be met by the hypothesise-and-test control regime of our conceptual
framework. Using part-whole-reasoning, contextual evidence will be exploited to fill in
missing evidence. We try to follow Kender´s candid definition that "vision is controlled
hallucination".

The first task of HLV is to map the quantitative data of a GSD into qualitative entities which
may play a part in higher-level models. This is done in three steps as shown in Figure 3.

In the first step, perceptual primitives are computed. This is a potentially rich set of
measurements which can be immediately determined from a GSD. Here, we restrict our
attention to object configurations and consider perceptual primitives which provide
measurements between reference features of objects.
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Reference features of objects are:

- locations (center of gravity, corners, point surface markings, etc.)

- lines (edges, axes of minimal inertia, line surface markings, etc.)

- orientations (inate, motion-based, viewer-based)

Perceptual primitives are:

- distance

- angle

- temporal derivatives thereof

In general, it may not be feasable to compute distances and angles beween all pairs of objects.
Saliency measures and focus of attention come into play when a selection has to be made. We
will bypass this problem in this report and assume that all perceptual primitives are available
which play a part in higher-level interpretations.

Figure 3: Providing primitives for high-level interpretations

In the second step, qualitative primitives are computed which are defined as predicates over
perceptual primitives. The predicates can be characterised as discovering "qualitative
constancies", e.g.

- constant values

- values within a certain range

- values smaller or larger than a threshold.

Spatial relations similar to natural language prepositions may be defined this way, e.g.

- degrees of nearness,

- directional sectors (e.g. front, rear, left, right),

- topological relations (e.g. within, overlap, outside),

- relative orientations (e.g. parallel, oblique, cross).

In dynamic scenes, temporal derivatives are particularly important, for example

- change of location (moving)

- change of orientation (turning)

Perceptual primitives

Geometric scene description (GSD)

Primitive occurrences and relationships

Qualitative primitives
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- increasing, decreasing distance

- increasing, decreasing angle.

Qualitative primitives in dynamic scenes provide the basis for primitive occurrences. A
primitive occurrence is defined as a conceptual entity where one or more objects give rise to a
qualitative primitive which is true over a time interval. Typical primitive occurrences are:

- object motion,

- straight segment of an object motion,

- approach segment an object motion relativ to a second object,

- turning object motion,

- upward or downward motion.

The general representational form of a primitive occurrence is similar to scene models
introduced earlier. For example, a straight-move occurrence is represented as shown in
Figure 4.

name: straight-move
parents: :is-a move
parts: sm-ob :is-a object
time marks: sm-tb, sm-te :is-a timepoint
constraints: sm-predicate

Figure 4: Conceptual model for a primitive straight-move occurrence

Note that for a concrete straight-move instance, sm-ob provides access to the quantitative
location data of the GSD.

If a predicate over a perceptual primitive is true throughout a scene, one usually does not talk
about an occurrence. We will use the term primitive relationship instead, well aware that there
is no inherent representational difference between a constancy which happens to change
within the duration of a scene and one which does not. Hence two stationary objects may be
in an on-relationship (e.g. plate on table-top) or may be involved in an on-occurrence (e.g.
plate on table-top from time 13 to 75).

Hypothesise-and-test cycle

In this section we describe hypothesis generation and testing, illustrated by an example.
Figure 5 shows a snapshot of the emerging interpretation of  a scene where an agent places a
cover consisting of plate, saucer and cup, onto a table-top. In the right part of the figure, part
of a model base is shown. The rest of the figure shows the interpretation base consisting of
GSD data and hypotheses, connected by part-of links specified in the corresponding models.

For the sake of clarity, other links, for example :is-a links of the taxonomy and :instance links
connecting instances and models, are not shown in the figure.

We will now sketch the interpretation process from the beginning of the scene up to the point
shown in the figure.
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We assume that the scene begins with a hand of an agent (agent1) moving together with a
plate (plate1), while the other objects - saucer1, cup1 and table-top1 - are at rest. From the
GSD, the primitive move occurrences move1 and move2 will be computed and updated as the
scene evolves.

Figure 5: Emerging interpretation of a place-cover scene

Interpretation begins by selecting entries from the interpretation base which may be part of a
higher-level structure. The selection is influenced by a focus control and by likelihood
evaluations which will not be discussed in detail in this report. In our example, plate1, table-
top1, saucer1 and cup1 are found to be possible parts of a cover (a cover model specifies the
spatial relations between a plate, a table-top, a saucer and a cup). Hence a tentative cover1
hypothesis is created. Unfortunately, the spatial constraints specified by the cover model are
violated as the objects are not yet in place. Hence the hypothesis will be removed (not shown
in the figure).

A transport hypothesis is also found to be a likely candidate for a higher-level interpretation,
since the interpretation base contains a moving hand and a moving object. The hypothesis is
generated and can in fact be verified - for the time being - by evaluating the constraints of the
transport model. For example, hand and object are verified to stay close to each other
throughout the motion.

Note that the transport occurrence may not have terminated at this time. As long as motion1
and motion2 continue, the hypothesis may be falsified, if the continuing motion does not

table-top1plate1 saucer1 cup1agent1

transport1

table-top

plate

saucer

cup

agent

object

move

transport

move1

place-cover

place-cover1
cover

cover1

move2

model baseinterpretation base
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satisfy the constraints. On the other hand, evidence may be strong enough to permit useful
predictions about the continued motion of hand and plate.

The interpretation process continues generating higher-level hypotheses based on the current
interpretation. It is found that transporting a plate is part of the place-cover model, and a few
other parts specified by this model are also present in the interpretation base (a saucer, a cup
and a table-top). If this is considered strong evidence, a place-cover hypothesis will be
generated.

The attempt to verify the place-cover hypothesis makes evident that important parts of the
place-cover hypothesis - a saucer transport, a cup transport, and a cover - are still missing in
the interpretation base. Temporal constraints may help to decide whether the missing parts
may still be expected. In the place-cover model,we have a constraint placing the cup transport
behind the saucer transport, constraints placing the beginning of a cover behind the end of all
three transports, and a constraint limiting the overall duration of a place-cover occurrence.
These constraints may still be satisfied at this time.

Expectations about missing parts may trigger corresponding hypotheses even if no evidence is
present. Expectations may also influence lower-level processes, for example by providing a
focus on areas where motion is expected.

As the scene evolves, additional hypotheses will be generated and incomplete hypotheses -
such as the place-cover hypothesis - will be checked again. The temporal constraint net will
monitor whether temporal constraints can still be satisfied and will signal a violation if, for
example, the actual time exceeds the latest possible ending time according to the occurrence
model.

The basic hypothesis-and-test procedure can be summarised as follows:

Hypothesise
Select entries from the interpretation base.
Determine model M which is supported by entries.
Create hypothetical instance H of model M.

Verify
Verify parts of H

If part P of H is not in interpretation base then
Create hypothetical instance H´ of part P.
Verify H´

Verify constraints of H
If successful then add H to interpretation base.

This is, of course, only a rudimentary specification of the hypothesise-and-test cycle. It serves
to illustrate the mixed bottom-up and top-down processing steps and the role of the
constraints. It is evident that a sophisticated uncertainty management will be required to
control this process. Uncertainty management will be based on the statistics which will be
provided by the memory records of the vision memory.
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Temporal constraint net

Temporal relations are modeled using a convex time point algebra [Vila 94]. The basic format
of a (qualitative) temporal relation in this algebra is

t1 ≥ t2 + c12

where t1 and t2 are integer-valued time points and c12 is an integer-valued constant. Using
such inequalities, it is possible to model important (but not all) features of the temporal
structure of a scene model. In particular, one can express a convex subset of Allen´s interval
relationships [Allen 83], for example

starts-within <=> int1.tb ≥ int2.tb + ∆t,   int2.te ≥ int1.te + ∆t

with int1.te ≥ int1.tb + ∆t,  int21.te ≥ int2.tb

because of the interval property. Temporal relations of this kind can be concisely represented
in a constraint net and efficiently evaluated. This has been shown in earlier work on event
recognition [Neumann 89] and monitoring [Kockskämper et al. 94].

As an illustration, Figure 6 shows the constraint net for the temporal contraints of the place-
cover model.

Figure 6: Temporal constraint net for the place-cover model

The nodes are timepoints corresponding to the time marks which make up the temporal
structure of the model. The directed arcs represent inequalities, marked with an offset if the
offset is different from zero. Each node is interval-valued, where the interval denotes the
range of time points which is consistent with the constraints. Initially the intervals are open-
ended, i.e. [-∞ +∞]. When an occurrence is selected as part of the model, the nodes
corresponding to the time marks of that occurrence will receive concrete values. For example,
if a transport-plate occurrence beginning at time 35 is selected, pc-tp1.tp-tb will receive the
value [35 35]. New values are propagated through the constraint net, upper bounds along
arrow directions and lower bounds against arrow directions, with offsets added or subtracted,
respectively. The propagated values determine new interval boundaries if they constrain the

pc-cv.cv-tbpc-tp1.tp-tepc-tp1.tp-tb

pc-tp2.tp-tepc-tp2.tp-tb

pc-tp3.tp-tepc-tp3.tp-tb

pc-tb pc-te

pc-cv.cv-te
∆t

∆t

∆t

∆t

80 ∆t
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old values. If the lower bound of an interval turns out to be larger than the upper bound, the
constraints are inconsistent and cannot be satisfied with the selected instances.

It can be shown that each arc will only be traversed once, when a new value is propagated.
Hence the complexity of this operation is O(N2) where N is the number of nodes.

Spatial relations and 3D structure

In this section we sketch our approach for representing spatial relations. This will also shed
some light on the role of 3D information in our conceptual framework. Not all details are
worked out yet as this is ongoing work.

Spatial relations must play a similar role in modelling and interpretation as temporal relations:

•  They must be determined from quantitative data of the GSD.

•  They must qualitatively constrain spatial relationships between parts of aggregates.

•  They must allow incremental evaluation, as a model is instantiated step by step.

In addition, we want to determine typical spatial relations from visual experiences rather than
using only predefined relations. Hence it must be possible to express qualitative spatial
relations as a collection of concrete locations.

The basic idea is to represent a spatial relation as an assignment of possible locations in a
reference grid attached to an object. We have chosen to consider mainly 2D spatial relations,
but we allow the reference grid to be defined for any spatial orientation, depending on which
spatial constraints have to be expressed. In our table-laying scenario, most spatial relations
refer to a horizontal layout, hence the examples will involve reference grids parallel to the
horizontal plane.

Figure 7: Reference grid for spatial relation between table border and plate

Figure 7 illustrates the principle. The constrained location of a plate border relative to a table
border is defined as a set of grid cells (shaded) in a reference grid attached to the table border.

Figure 8 shows another example where grid cells are used to represent a sector oriented at an
angle to the reference frame of the plate. One can see that also standardised spatial relations
may be defined, for example corresponding to natural language terms such as in-front-of.
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Figure 8: Reference grid for locations in a sector

As noted above, the reference grid of a model is oriented in a way which is most suitable to
express the spatial relation in question. In order to verify whether one or more spatial relations
of a model are fulfilled in a concrete scene, the reference grids of the model have to be
mapped into a common reference frame which is typically an image plane to which GSD data
refer. Here, spatial relations express constraints on possible locations of concrete objects of
the current scene. Stepwise instantiation of a model will narrow down possible locations and
provide guiding top-down information for lower-level processes.

Implementation and experiments

An implementation of a system for high-level interpretation of table-laying scenes is
underway using the Common LISP Object System CLOS. Several modules described in this
report are available from earlier work but need to be adapted. A simulator program has been
implemented which generates experimental data of scenes with covers being placed on a
table.

Figure 9: Cover configuration taken from a scene generated by a simulator

The simulator program will eventually be replaced by a multiple stationary camera setup
("smart room") and a low-level vision system providing the GSD. The work is part of the EU
Project IST-2000-29375 CogVis.

•



17

References

[Allen 83]
Maintaining Knowledge About Temporal Intervals
J.F. Allen
in: Communications of the ACM 26 (11), 832-843, 1983

[Aloimonos 90]
Purposive and Qualitative Active Vision
J. Aloimonos
Proc. Image Understanding Workshop,  1990, 816-828

Badler 75
Temporal Scene Analysis: Conceptual Descriptions of Object Movements
N.I. Badler
Report TR 80, Dep. of Computer Science, University of Toronto, 1975

[Bajcsy 88]
Active Perception vs. Passive Perception
R. Bajcsy
Proc. of the IEEE, 76(8), 1988, 996-1005

[Cunis et al. 87]
Das PLAKON-Buch
R. Cunis, A. Guenter, H. Strecker (Eds.)
Informatik Fachberichte 266, Springer, 1987

[Fernyhough et al. 98]
Building Qualitative Event Models Automatically from Visual Input
J. Fernyhough, A.G. Cohn, D. Hogg
Proc. ICCV-98, IEEE Computer Society, 1998, 350-355

[Gärdenfors 00]
Conceptual Spaces - The Geometry of Thought
P. Gärdenfors
The MIT Press 2000

[Haarslev 01]
Description of the RACER System and its Applications
V. Haarslev
Proc. International Workshop on Description Logics (DL-2001), 2001

[Kockskämper et al. 94]
Extending Process Monitoring by Event Recognition
S. Kockskämper, B. Neumann, M. Schick
in: Proc. ISE-94, 455-460, 1994

[Kockskämper 95]
S. Kockskämper
Modeling and Prediction of Dynamic Behavior for Model-based Diagnosis
Proc. IEA/AIE-95, Melbourne, 1995, 285-304



18

[Mackworth 96]
Quick and Clean: Constraint-Based Vision for Situated Robots
A.K. Mackworth
in: Proc. ICIP-96, Vol. III, 1996, 189-792

[Moeller et al. 99]
Towards Computer Vision with Description Logics: Some Recent Progress.
R. Moeller, B. Neumann, M. Wessel
Proc. Speech and Image Understanding, IEEE Computer Society, 1999, 101-116

[Nagel 88]
From Image Sequences towards Conceptual Descriptions
H.-H. Nagel
Image and Vision Computing 6(2), 1988, 59-74

[Nagel 99]
From Video to Language - a Detour via Logic vs. Jumping to Conclusions
H.-H. Nagel
Proc. Speech and Image Understanding, IEEE Computer Society, 79-99

[Neumann 89]
Description of Time-Varying Scenes
B. Neumann
in: Semantic Structures, D. Waltz, Ed., Lawrence Erlbaum, 1989

[Neumann 97]
Providing Knowledge-Based Predictions for Dynamic Scene Analysis
B. Neumann
Proc. Workshop on Dynamic Scene Recognition from Sensor Data, Toulouse, Frankreich,
1997

[Neumann and Schröder 96]
How Useful is Formal Knowledge Representation for Image Interpretation?
B. Neumann, C. Schröder
in: Proc. Workshop on Conceptual Descriptions from Images, ECCV-96, 1996, 58 - 59

[Selfridge 55]
Pattern Recvognition and Modern Computers
O.G. Selfridge
Western Joint Computer Conf., 1955, 91-93

[Syska et al. 88]
Solving Construction Tasks with a Cooperating Constraint System
I. Syska, R. Cunis, A. Guenter, H. Peters, H. Bode
Proc. Expert Systems 88, Brighton, England, 1988

[Tsotsos et al. 80]
A Framework for Visual Motion Understanding
J.K. Tsotsos, J. Mylopoulos, H.D. Covvey, S.W. Zucker
IEEE PAMI-2, 1980, 563-573



19

[vHahn et al. 80]
The Anatomy of the Natural-Language Dialogue System HAM-RPM
W. v. Hahn, W. Hoeppner, A. Jameson, W. Wahlster
in: L. Bolc (Ed.): Natural Language Based Computer Systems, Muenchen, Hanser/McMillan
1980, 119-253

[Vila 94]
A Survey on Temporal Reasoning in Artificial Intelligence
L. Vila
AI Communications 7 (1), 4-28, 1994


