
A Robot Waiter Learning from Experiences

Bernd Neumann1, Lothar Hotz2, Pascal Rost2, and Jos Lehmann1

1 Department of Informatics,
University of Hamburg, Germany

{neumann,jlehmann}@informatik.uni-hamburg.de
2 Hamburger Informatik Technology Center, Department of Informatics,

University of Hamburg, Germany
{hotz,7rost}@informatik.uni-hamburg.de

Abstract. In this contribution, we consider learning tasks of a robot
simulating a waiter in a restaurant. The robot records experiences and
creates or adapts concepts represented in the web ontology language
OWL 2, extended by quantitative spatial and temporal information. As
a typical task, the robot is instructed to perform a specific activity in a
few concrete scenarios and then expected to autonomously apply the con-
ceptualized experiences to a new scenario. Constructing concepts from
examples in a formal knowledge representation framework is well under-
stood in principle, but several aspects important for realistic applications
in robotics have remained unattended and are addressed in this paper.
First, we consider conceptual representations of activity concepts com-
bined with relevant factual knowledge about the environment. Second,
the instructions can be coarse, confined to essential steps of a task, hence
the robot has to autonomously determine the relevant context. Third, we
propose a ”Good Common Subsumer” as opposed to the formal ”Least
Common Subsumer” for the conceptualization of examples in order to
obtain cognitively plausible results. Experiments are based on work in
Project RACE3 where a PR2 robot is employed for recording experiences,
learning and applying the learnt concepts.

Keywords: Machine Learning, ontology, robot activities

1 Introduction

Learning capabilities are essential prerequisits for robots to become useful in
complex real-world domains. In this paper, we investigate learning of high-level
activity concepts represented in the formal knowledge-representation framework
OWL 2. Learning will be based on experiences recorded by the robot and, at
times, instructions by a human instructor. Examples are taken from the restau-
rant domain with a robot performing as a waiter. Activities such as serving a
guest are typically composed of several levels of subactivities, down to elemen-
tary robot capabilities such as moving or grasping.

3 This work is supported by the RACE project, grant agreement no. 287752, funded
by the EC Seventh Framework Program theme FP7-ICT-2011-7.

2 Learning Robot Activities from Experiences

To convey a first understanding of the learning tasks investigated in this
paper, consider the three scenarios sketched in Figure 1. In Scenarios A and
B, the robot - here called ”trixi” - receives detailed instructions how to serve a
coffee to a guest and learns that these activities constitute a ”ServeACoffee”:

Instructions for Scenario A: ”Move to counter1, grasp mug1-A, move to south
of table1, place mug1-A at placement area west - this is a ServeACoffee.”

Instructions for Scenario B: ”Move to counter1, grasp mug1-B, move to north
of table1, place mug1-B at placement area east - this is also a ServeACoffee.”

In Scenario C, it is assumed that the robot has learnt a concept from the two
examples and will serve the coffee to the placement area south right of guest1-C.

Instructions for Scenario C: ”Do a ServeACoffee to guest1-C at table2.”

Fig. 1: Scenarios

In all scenarios, we assume that the robot knows the location of the guest and
of the placement areas on the table. However, it does not know which placement
area to approach for guest1-C. Part of the learning task is therefore to general-
ize the recorded experiences of Scenarios A and B and create a concept which
can be applied to similar but not identical situations. In general, we consider
learning scenarios where a service robot, equipped with a repertoire of basic
robot operations, is incrementally instructed by examples and expected to au-
tonomously apply its enhanced competence to new situations, possibly requiring
further generalizations.

Learning structured conceptual representations from examples is not a new
topic. Winston’s seminal work on learning block structures such as bridges is a
well-known starting point [18]. One can distinguish three major lines of research
which have contributed to today’s understanding of the field: (i) the development
of well-understood and standardized knowledge representation formalisms (see in
the following), (ii) research into Cognitive Robotics, connecting symbolic high-
level representations with quantitative low-level operations (see [13, 7, 3] and
[15]), and (iii) advances in learning and reasoning models in Cognitive Sciences
(see [9, 17, 10] and [15]).

Our choice of a knowledge representation framework is motivated by previ-
ous work on high-level representations of events and activities [3] and the re-
cent development of the standardized knowledge representation language OWL
2 supporting such representations. Furthermore, extensions of OWL 2 in terms of
quantitative representations for spatial and temporal information [7] have made
it possible to represent robot activities coherently from high-level symbolic ac-

A Robot Waiter Learning from Experiences 3

tivity concepts down to low-level quantitative commands and sensor input. As a
drawback, standard OWL representations cannot yet represent the sameness of
entities typically occurring in the compositional structures for activity models.
Fortunately, recent work by the group of Hitzler [8] has established ”Nominal
Schemas” as a well-founded way to express sameness by identical variable names,
similar to variables in Datalog. We adopt Nominal Schemas for our work.

Learning from examples within a DL framework has been investigated before
[6, 12], and it is well understood how concept expressions can be generalized or
refined if they must be adapted to new examples. In principle, Version Space
Learning as introduced in [14] can be applied to define the space of concepts
which correctly classify positive and negative examples. In our approach, con-
cept learning has been designed as a cognitively plausible strategy for ontology
evolution without bookkeeping of version space boundaries. This is achieved by
a learning curriculum essentially based on careful generalizations and avoiding
disjunctive expressions. Correspondences between concepts and examples are
established following the structure-mapping theory of Cognitive Science [9].

In Section 2, following this introduction, we describe the knowledge repre-
sentation conventions adopted for our learning work. In Section 3, we present
our learning approach, called Ontology-based Learning from Examples (OLE),
in detail. This allows the robot to form a new activity concept from examples, to
adapt an existing concept to cover a new task, or to refine a concept based on a
negative example. In Section 4, we evaluate OLE using several other scenarios in
the restaurant domain. It will be shown that the learning procedure can lead to
desirable activity models with very few examples, given an appropriate ontology.
More examples may be required, however, if learning examples contain many ir-
relevant details, initially leading to overly restricted concepts. The paper ends
with conclusions, summarizing the work and pointing out some open problems
for future research. Future work will also cover research on the formal properties
of the presented algorithm, such as consistency, completeness, or complexity.

2 Knowledge Representation Conventions

Concepts in OLE are represented in an ontology using a restricted version of the
Web Ontology Language OWL 2 and Protégé as an editor. The concept defini-
tions are also the basis for a hierarchical planner as well as other components of
the robotic system realized in RACE [16]. For textual concept representations,
we use the Manchester Syntax4 in this paper. Following the conventions of OWL,
a concept will be often called ’class’ when we deal with OWL representations.
As an example of an activity class, the definitions of PlaceObject1-A and classes
used as property fillers are listed below.

Listing 1.1: Class definitions of PlaceObject1-A and its property fillers

Class: PlaceObject1 -A
SubclassOf: PlaceObject

4 http://www.w3.org/TR/owl2-manchester-syntax/

4 Learning Robot Activities from Experiences

that hasHolding exactly 1 {?Holding1 -A}
and hasOn exactly 1 {?On1 -A}
and hasBefore exactly 1 Before1 -A

Class: Holding1 -A
SubClassOf: Holding
EquivalentTo: {?Holding1 -A}

that hasRobot value trixi
and hasPassiveObject {?Mug1 -A}

Class: On1 -A
SubclassOf: On
EquivalentTo: {?On1 -A}

that hasPhysicalEntity {?Mug1 -A}
and hasArea value paWest1

Class: Before1 -A
SubclassOf: Before

that hasFirst exactly 1 {?Holding1 -A}
and hasSecond exactly 1 {?On1 -A}
and hasBeforeRange exactly 1 TimeRange

Class names begin with upper-case, individuals with lower-case letters, prop-
erty names with the prefix ’has’. The postfix ’-A’ is part of the class names and
used here to mark classes conceptualized from the robot’s recording of Scenario
A (see Figure 1). In addition to the properties spelled out above, the concepts
inherit properties from the ontological ancestor Occurrence:

and hasStartTime only TimeRange
and hasFinishTime only TimeRange
and hasDuration only TimeRange

The datatype TimeRange is used to express an uncertainty range of a time
point and is a shorthand for two separate properties with numerical fillers, e.g.

and hasStartTimeLowerBound only Int
and hasStartTimeUpperBound only Int

We currently use only a subset of OWL 2 with the syntax shown in Listing 2.
In DL terminology, the syntax corresponds to an Attribute Language with full
existential quantification and number restriction (ALEN).

Note the restrictive use of class expressions for property fillers: If a filler
requires a more expressive definition, a class name must be introduced and de-
fined in a separate class definition, as shown for Holding1-A and On1-A. The
reason for this restrictive grammar is our interest in keeping a simple syntactical
correspondence between class definitions and the constituents of episodes, see
below. It is apparent that named concepts as property fillers can be replaced by
their definitions, creating nested concept definitions and a reduced number of
names. Also note the absence of negation. This is motivated by our primary in-
terest in modelling conceptualizations of episodes recorded under an open-world
assumption (OWA).

Listing 1.2: Syntax of restricted grammar for concept definitions

Class: <className >
SubclassOf: <className >

[’that ’ [inverse] <propertyName > <restriction >
{ ’and ’ [inverse] <propertyName > <restriction > }]

<restriction > ::= ’only ’ <classExpression > |
’some ’ <classExpression > |

A Robot Waiter Learning from Experiences 5

’exactly ’ <integer > [<classExpression >] |
’min ’ <integer > [<classExpression >] |
’max ’ <integer > [<classExpression >] |
’value ’ <individual >

<classExpression > ::= <className > |
<nominalSchema >

<nominalSchema > ::= ’{’ <individualVariable > ’}’

Class definitions can represent hierarchical compositional structures by let-
ting a parent class (an aggregate) refer to its components via partonomical prop-
erties. These properties have the common parent property ’hasPart’. We often
refer to the root of a compositional hierarchy as root concept or root class.

We now explicate the use of Nominal Schemas as property fillers. A Nominal
Schema specifies an individual of a particular class with a variable name which
may reoccur as a property filler in several places and must be instantiated with
the same known individual [11] which may be, however, any value of its class,
different from the usual individuals. As pointed out in the introduction, express-
ing sameness of individuals is important for compositional hierarchies. For our
knowledge representation purposes, the class of the individuals of a Nominal
Schema ?X is represented by a class definition with the additional axiom Equiv-
alentTo: ?X. The scope of a Nominal Schema is taken to be the ontology of the
domain. In the examples above, ?Holding1-A, ?Mug1-A, and On1-A are Nominal
Schemas.

The assertional knowledge of a robot comprises episodes which are stored
as experiences in the robot memory. An episode consists of dynamic factual
knowledge which describes spatially and temporally coherent occurrences in the
restaurant as viewed by the robot, and permanent (or background) knowledge
about the robot’s environment which is assumed to be valid for all times. Asser-
tional knowledge is stored in triplets relating individuals via properties to other
individuals, as customary for DL languages.

3 Concept Formation and Adaption

As illustrated by the scenarios shown in Figure 1, the OLE approach to concept
learning includes a supervised learning task where an instructor provides a name
for a new concept (ServeACoffee in Scenarios A and B) and its essential compo-
nents, and an unsupervised learning task where the robot must adapt a concept
to a new situation (Scenario C). We believe that learning situations of this kind
may play a key role when employing service robots in new domains. Technically,
we realize both learning tasks by two procedures: conceptualizing an example
and adapting a concept to a conceptualized positive example or, more gener-
ally, finding a common subsumer for two corresponding concepts. In effect, this
approach allows to formulate learning solely based on conceptual expressions,
known as the ”single-representation trick” [5]. We also sketch a procedure for
refining a concept in order to exclude a negative example.

6 Learning Robot Activities from Experiences

3.1 Conceptualizing Examples

Conceptualize Episode
Input: - Ontology

- Episode, background knowledge (recorded by the robot)
- Robot activities from episode constituting a new concept

(specified by instructor)
Process: - Determine relevant assertions from episode

- Conceptualize assertions
- Create new class definitions

Output: - New class definitions updating the ontology

Conceptualizing a robot activity carried out in a scenario amounts to establishing
a generic description for the ontology of the robot with the purpose that it can
be used as a template for future robot activities and other cognitive tasks. The
conceptualization procedure is structured as shown above.

In the following, we describe an approach for extracting the assertions rele-
vant for a concept from an episode E. Let A be the high-level robot activities
specified by the instructor as constituents of an instance c of the new concept C.
We define the support of c as the assertions involving A, and all assertions in E
connected to A. This can be visualized by a property graph with individuals as
nodes, c as root node, and properties as directed edges. Figure 2 shows the prop-
erty graph for placeObject1-A, using definitions of Listing 1, among others. As
constituents A, this robot activity comprises a precondition holding1-A with the
properties hasRobot and hasPO (hasPassiveObject), and a postcondition on1-A
with the properties hasPE (hasPhysicalEntity) and hasArea. Temporal proper-
ties of occurrences, specifying start time and finish time, are not included for
clarity. The graph also shows some of the observations which the robot has made:
guest1-A at the sitting area saWest1, right of the manipulation area maSouth1
and left of the manipulation area maNorth1. Permanent knowledge includes the
robot trixi, table1, its sitting areas saWest1 and saEast1, the corresponding plac-
ing areas, manipulation areas and premanipulation areas (not all shown). Class
information for individuals are not represented in the graph, but are of course
available.

We define the direct support of c to comprise all nodes which can be reached
from the root node via directed partonomical properties (the components of the
aggregate hierarchy), and in addition all property fillers of these nodes which
have been part of the activity plan and hence included in the episode. In Figure
2, the nodes of the direct support of placeObject1-A are shown in bold, all other
nodes are indirect support. In general, an episode may contain many details
experienced by the robot and connected to the direct support, e.g. by spatial or
temporal relations.

To filter out irrelevant information, we make use of a heuristic which mea-
sures relevance in terms of the smallest semantical distance of a node to any of
the nodes of the direct support. Distance is determined by counting the number
of property edges irrespective of their direction. In our experiments we have in-
cluded nodes within a distance of 2, whereby connections via the two legs of a
reified relation (e.g. at, on) where counted as 1. Figure 2 shows that the impor-

A Robot Waiter Learning from Experiences 7

tant instances table1, guest1-A and saWest1 (the sitting area west of table1) are
included as a result of the relevance analysis, whereas saEast1 (the sitting area
east of table1) is deemed irrelevant.

The next step in the conceptualization procedure is to transform relevant
assertional knowledge into conceptual descriptions. We take a strictly conser-
vative approach regarding generalizations and let a conceptualization represent
exactly the same activities, however at an arbitrary time (modulo some toler-
ance regarding durations). Hence given the same environment and the updated
ontology, the robot will be able to carry out the learnt activities. Permanent as-
sertional knowledge remains assertional and is associated with the new concept
via the relevant property graph. The exact rules for transforming assertional
knowledge into conceptual representations are described in [15].

Fig. 2: Property graph for an instance of the concept PlaceObject with related perma-
nent knowledge and observations.

3.2 Adapting a Concept to a Positive Example

Modifying an existing concept such that it covers a new example is a frequent
step in a learning curriculum. This can be done by conceptualizing the example
(as described in the preceding subsection) and then computing the Least Com-
mon Subsumer (LCS) of the old concept and the conceptualized example. An
effective way to do this for Description Logics (DL) similar to our sublanguage of
OWL has been presented in [1]. Computing the LCS of two concepts essentially
amounts to determining the product tree of the description trees corresponding
to the concepts, and intersecting the subclass memberships. In view of the fact
that a formal LCS may not always exist, and following similar ideas as in [2], we
will be content to compute a cognitively plausible ”good” common consumer,
abbreviated GCS.

The adaptation procedure has the following structure:

8 Learning Robot Activities from Experiences

Input: - Ontology
- Old concept
- Positive example (complete or incomplete)

Process: - Conceptualize example
- Align example to old concept
- Compute "Good Common Subsumer" (GCS)

Output: - New concept subsuming conceptualized example and old concept
- Updated ontology

The scenarios in Figure 1 exemplify two different learning situations. One is
the creation of a concept for ServeACoffee after experiencing Scenarios A and
B, this can be done based on episodes describing complete examples. When the
robot is asked, however, to perform a ServeACoffee for a guest in Scenario C, the
existing concept has to be adapted on-line to be applicable to partially unfolded
scene where only the situation before performing the task is available for concept
adaptation. We will refer to this task as adaptation to an incomplete example.
Both tasks, adaptation of a concept to a complete and adaptation to an incom-
plete example, can be performed by essentially the same GCS computations,
while requiring different alignment procedures.

Alignment In order to perform component-based generalization of two con-
cepts, they must be structurally aligned. We adopt ideas of analogical reasoning
[9] where structure mapping has been investigated in detail in a cognitive con-
text. As one of the key principles, analogical structures require a tight agreement
of corresponding relations but little or no agreement between corresponding en-
tities. Accordingly, our alignment process follows the property structure and es-
tablishes correspondence mainly based on coinciding property names. Differently
from analogy construction, however, classes do play a role, and corresponding
classes should not be taxonomically distant.

For adaptation to complete examples, we may assume that both conceptual
descriptions have identical single roots which necessarily form a corresponding
pair. Further correspondences can then be determined by following the property
graphs. For adaptation to incomplete examples, alignment may be more diffi-
cult. Roughly, it amounts to searching for large coinciding property structures,
similar to searching for graph isomorphisms, except for the specific tolerance re-
quirements. Computational aspects of searching for isomorphisms in conceptual
graphs are treated thoroughly in [4].

If a conceptualized example cannot be perfectly aligned with an existing con-
cept because of non-corresponding reified spatial or temporal relations, these are
treated as irrelevant and omitted. If a discrepancy is due to non-corresponding
robot activities, however, alignment fails and the conceptualized example is made
a new concept.

GCS of Corresponding Classes The GCS computation of two concepts takes
the two property graphs of the concepts as input. Hence each concept description
typically comprises several class definitions and related permanent knowledge.

A Robot Waiter Learning from Experiences 9

The generalization steps are comparable to LCS computation in DLs, however
due to our interest in compact descriptions and the use of restricted concept
expressions, there are some differences, manifest in more numerous but shorter
class definitions. In Table 1, we list key generalization rules of our GCS. The
entities refer to the grammatical structure of properties as described in Section
2. LNCS stands for least named common subsumer, i.e. the closest taxonomical
parent. MSC is the most specific concept for an individual.

Table 1: Key generalization rules for the Good Common Subsumer (GCS)

Property Graph 1 Property Graph 2 Element of resulting property graph (GCS)
<className1> <className2> <newClassName>

subclassOf LNCS (<className1>, <className2>)
<className1> <individual2> <newClassName>

subclassOf LNCS (<className1>, MSC(<individual2>))
<individual1> <individual2> if <individual1> = <individual2>: <individual1>

else: <newClassName>
subclassOf MSC(<individual1>, <individual2>)
universal restriction ’only’

’max’ <int1> ’max’ <int2> ’max’ max(<int1>, <int2>)
’min’ <int1> ’min’ <int2> ’min’ min(<int1>, <int2>)
interval [<int1> <int2>] interval
[<int3> <int4>] interval [min(<int1>, <int3>), max(<int2>, <int4>)]
<propertyName1> <propertyName2> LNCS (<propertyName1>, <propertyName2>)

Restrictions by Nominal Schemas are in principle treated the same way as
restrictions by class names. A common new variable name is used for all occur-
rences of a Nominal Schema. Furthermore, the new class definition corresponding
to a Nominal Schema has the conjunct ’EquivalentTo:’ <ominalSchema>. Indi-
viduals generalized to a class give rise to a new Nominal Schema, if they are
property fillers for more than one class definition.

After the generalization phase, a cleaning-up process is carried out to avoid
unnecessary new class names. This pertains to class definitions where the gener-
alization has led to a class already existing in the ontology. Illustrating examples
for GCS computations are provided in Section 4.

3.3 Adapting a Concept to a Negative Example

Learning from positive examples as described in the preceding section is con-
servative in the sense that unnecessary taxonomical generalizations are avoided.
Nevertheless, conceptualizations may prove too general, and instructions may
inform the robot about situations which are negative examples for an existing
concept. There may be several reasons:

1. The existing taxonomy is too coarse, preventing a necessary differentiation.
For example, there may be no class for standard table items such as pepper,
salt and decoration.

2. There are no useful properties which could help to distinguish the positive
and negative examples.

3. There are distinguishing features, but the heuristically determined support
of a learnt concept has not included this information.

10 Learning Robot Activities from Experiences

In this section, we sketch two re-learning procedures which resort to recorded
episodes in order to adapt a concept to a negative example. This requires, of
course, that a learnt concept is linked with its positive examples.

Adding an Affordance Property It is well-established in robotics to char-
acterize physical or conceptual entities by ways to make use of them, called
affordances. For example, if one can sit on an object, it is characterized by the
affordance ’sittable’. In the learning situation addressed above in (ii), an affor-
dance property can be added to establish the necessary distinguishing property.
To provide a solution where the robot need not invent new names, we intro-
duce the meta-concept ’ActivityName’ with all acitivity names of the ontology
as possible instances, and postulate that all scene objects have the property
’hasAffordance only ActivityName’. This way, the affordance ’sittable’ can be
expressed in a concept as the property ’hasAffordance value sit’ where ’sit’ is an
activity name. Hence, if a concept needs refinement, it must receive the appro-
priate affordance property, and all recorded positive examples must be extended
accordingly.

Extending the Support As a second way of distinguishing positive from
negative examples one can search for additional features (properties or scene
components) which have not been included in the original conceptualization, but
may be recorded in the episodes which have provided the positive examples. For
example, if a guest had not been included in the ServeACoffee conceptualization
of Scenarios A and B, the impoverished concept would have allowed to place
a coffee at any placement area, provoking a negative example. By revisiting
Episodes A and B and extending the support to include a guest, the necessary
differentiation can be achieved.

4 Experimental Results

In this section, we describe experimental learning results achieved with differ-
ent learning tasks in various scenarios. Because of the large data volumes we
cannot provide a complete coverage but restrict our documentation to the most
interesting generalizations resulting from the GCS.

4.1 ServeACoffee Scenarios

The GCS of the conceptualizations of Scenarios A and B produces several gen-
eralizations concerning robot destination, placement area, manipulation area,
premanipulation area, mug, and spatial relations of the guest. Table 2 shows
interesting examples, new concepts are marked with the postfix ’-AB’.

Comments to Table 2:
Rows 1 and 2: After applying ServeACoffee to two different premanipulation

areas and placing areas of table1, respectively, the concept is generalized to apply
to all such areas of table1. The corresponding area concepts are represented by

A Robot Waiter Learning from Experiences 11

Table 2: Generalizations by combining conceptualizations of Scenarios A and B

Conceptualization A Conceptualization B ServeACoffee-AB
1 . . . hasToArea value pmaSouth1 . . . hasToArea value pmaNorth1 . . . hasToArea only ?PMA1-AB
2 . . . hasArea value paWest1 . . . hasArea value paEast1 . . . hasArea only ?PA1-AB
3 maWest1 hasPMA pmaWest1 maEast1 hasPMA pmaEast1 Class: MA1-AB

EquivalentTo: ?MA1-AB
SubclassOf: MA
that hasPMA only ?PMA1-AB

4 Class Instance: [EastWestTable, Class Instance: [EastWestTable, Class: SA1-AB
table1] table1] EquivalentTo: ?SA1-AB
Properties: [hasSA, SA, saWest1] Properties: [hasSA, SA, saEast1] SubclassOf: SA

that inverse hasSA value table1
5 Class: At1-A Class: At1-B Class: At1-AB
SubclassOf: At SubclassOf: At SubclassOf: At
that hasArea value saWest1 that hasArea value saEast1 that hasArea only ?SA1-AB
and hasPE exactly 1 Guest and hasPE exactly 1 Guest and hasPE exactly 1 Guest

6 Class: RightOf1-A Class: RightOf1-B Class: RightOf1-AB
SubclassOf: RightOf SubclassOf: RightOf SubclassOf: RightOf
that hasFirst value maSouth1 that hasFirst value maNorth1 that hasFirst only ?MA1-AB
and hasSecond exactly 1 Guest and hasSecond exactly 1 Guest and hasSecond exactly 1 Guest

Nominal Schemas because the same instances occur as fillers of several properties
within the support of ServeACoffee.

Row 4: The new concept for representing all sitting areas of table1 must be
related to table1 with the inverse of the existing property hasSA.

Rows 5 and 6: The spatial relations involving a guest now refer to the same
sitting areas and manipulation areas of table1 which are also the destination of
ServeACoffee.

In Scenario C, the learnt concepts must be applied to a new situation where
the guest sits at another table (table2) in a sitting area distinct from any previ-
ously encountered sitting areas. The property graph for this situation is shown
in Figure 3.

paSouth2

maEast2

rightOf1‐C

hasFirst

guest1‐C

saSouth2

at1‐C

hasArea

hasPE

hasSecond

table2

hasSA

hasPA

paNorth2

hasPA

hasMA

maWest2

hasMA

saNorth2

Fig. 3: Property graph of Scenario C before performing ServeACoffee

After conceptualization, it is correctly aligned with the property graph of
ServeACoffee-AB and the adapted concept SeveACoffee-ABC is determined,
with key generalizations shown in Table 3.

12 Learning Robot Activities from Experiences

Table 3: Generalizations by combining the conceptualization of Scenarios A and B with
the conceptualization of Scenario C.

ServeACoffee-AB Conceptualization C ServeACoffee-ABC
1 Class: SA1-AB Class Instance: [Table, table2] Class: SA
EquivalentTo: ?SA1-AB Properties: EquivalentTo: ?SA1-ABC
SubclassOf: SA - [hasSa, SA, saSouth2] SubclassOf: SA
that inverse hasSA value table1 that inverse hasSA only Table

2 Class: At1-AB Class: At1-C Class: At1-ABC
SubclassOf: At SubclassOf: At SubclassOf: At
that hasArea only ?SA1-AB that hasArea value saSouth2 that hasArea only ?SA1-ABC
and hasPE exactly 1 Guest and hasPE exactly 1 Guest and hasPE exactly 1 Guest

3 Class: RightOf1-AB Class: RightOf1-C Class: RightOf1-ABC
SubclassOf: RightOf SubclassOf: RightOf SubclassOf: RightOf
that hasFirst only ?MA1-AB that hasFirst value maEast2 that hasFirst only ?MA1-ABC
and hasSecond exactly 1 Guest and hasSecond exactly 1 Guest and hasSecond exactly 1 Guest

Comments to Table 3:
Row 1: The sitting area saSouth2 of table2 in Conceptualization C causes a

generalization of table1 to an arbitrary table.
Rows 2 and 3: The spatial relations involving a guest now refer to sitting areas

and manipulation areas of any table which is the destination of ServeACoffee.
ServeACoffee-ABC can be paraphrased as follows: Move to counter1, grasp a

mug, move to a premanipulation area belonging to a manipulation area right of
the guest, place the mug on the placing area belonging to the sitting area where
the guest is located.

4.2 Deal-with-obstacles Scenarios

In these scenarios, illustrated in Figure 4, it is assumed that the robot has learnt
a ServeACoffee as described in the previous subsection. The robot has again the
task to serve a coffee to a guest west of table1, but encounters an obstacle in the
southern manipulation area from which a coffee is normally served.

Fig. 4: Scenarios D and E

In Scenario D, this obstacle is a person, and the robot is instructed to wait
until the person has moved away. The robot follows the instruction and learns

A Robot Waiter Learning from Experiences 13

a new concept ServeACoffeeBlocked-D. In Scenario E, a sidetable blocks the
manipulation area, and the robot tries to apply the learnt concept, generalizing
it to subsume any physical entity as obstacle. As the robot waits for the sidetable
to move away, the instructor tells the robot not to wait in this case but to move to
the northern premanipulation area and place the coffee on the western placement
area.

Both learning situations feature a negative example for an existing concept
and require a structurally modified new concept. In Scenario D, the robot first
follows a plan based on the existing concept ServeACoffee which fails because of
the obstacle. The robot continues following the instructions, records the episode
and after conceptualization creates the new concept ServeACoffeeBlocked-D.
Parts of the property graph are shown in Figure 5. The temporal relations,
omitted for graphical clarity, require that a PutObject1-D is carried out after
the blocking event At1-D has terminated.

Drive1‐D Grasp1‐D At1‐DRightOf1‐DAt1‐D

maSouth1

Drive2‐D

hasToArea

pmaSouth1

hasPE

Person

ServeACoffeeBlocked‐D

PutObject1‐D

hasToArea

paWest1 Guest

saWest1
hasArea

hasArea

hasPE

hasFirst hasSecondhasPA

hasMA
hasPMA

Fig. 5: Conceptualization of Episode D. PutObject1-D begins when At1-D ends.

In Scenario E, the robot first applies ServeACoffee unaware of the obstacle
and, after failure, adapts ServeACoffeeBlocked-D by generalizing Person to Phys-
icalEntity (PE) in order to cover the new situation with the sidetable as obstacle
(procedure presented in Section 3.2). Following the instructions, the robot does
not wait but proceeds to pmaNorth1 at the north of the table and performs the
putObject. The conceptualization of this episode results in ServeACoffeeBlocked-
E, parts of the property graph are shown in Figure 6. The three concepts, ServeA-
Coffee, ServeACoffeeBlocked-D, and ServeACoffeeBlocked-E are preserved, while
the concept with the tentative generalization of Person to PhysicalEntity is aban-
doned.

In a further experimental scenario, Clear-table-smartly, the robot learns to
clear all items from a table except for a vase. The initial concept ClearTable lets
the robot clear all passive objects (POs). When the robot clears the vase, the

14 Learning Robot Activities from Experiences

Drive1‐E Grasp1‐E At1‐DRightOf1‐EAt‐E

maSouth1

Drive2‐E

hasToArea

pmaSouth1

hasPE

Sidetable

ServeACoffeeBlocked‐E

PutObject1‐E

paWest1
Guest

saWest1
hasArea

hasArea

hasPE

hasFirst
hasSecond

hasPA

hasMA

hasPMA

Drive3‐E

pmaNorth1

hasToArea

maNorth1
hasPMA

Fig. 6: Conceptualization of Episode E. An additional Drive3-E begins after observing
At1-E. PutObject1-E begins after Drive3-E.

instructor marks this as a negative example. To adapt to the negative exam-
ple, the robot refines PO in the concept ClearTable by the affordance property
’hasAffordance value clearTable’ and extends the positive examples accordingly.
For details see [15].

5 Conclusions

We have presented several methods for learning or refining conceptual descrip-
tions based on examples, formalized within an OWL-based knowledge repre-
sentation framework. While the principles of conceptual learning are well un-
derstood for many years, our approach deals with several new aspects. Firstly,
our representation formalism is used by an integrated robot system operating
in real-world scenarios, collecting experiences in a robot memory, and sharing
a common ontology for recording experiences, learning, planning, scene inter-
pretation, and other reasoning tasks. Hence the robot can make immediate use
of learning results. Representations include quantitative spatial and temporal
information for real-world grounding.

Secondly, we have shown that concepts and episodes represented in a re-
stricted OWL 2 dialect can be conveniently transformed into property graphs as
a basis for structural matching. Thus, ideas of analogical reasoning can be real-
ized, allowing complex conceptual descriptions to be applied to new situations.

Thirdly, our approach considers realistic learning scenarios where instructions
may be vague and the robot may be uncertain about relevant scene components.
We have therefore proposed relevance analysis based on the semantic distance
between contextual scene components and robot activities.

Finally, due to the experiences stored in the robot memory, the framework
can be smoothly extended from learning based on single examples to learning
based on a large body of experiences with statistically relevant features.

A Robot Waiter Learning from Experiences 15

References

1. Baader, F., Küsters, R., Molitor, R.: Computing Least Common Subsumers in
Description Logics with Existential Restrictions. In: In Proceedings of the 16th
International Joint Conference on Artificial Intelligence (IJCAI-99). vol. 1, pp.
96–101. Morgan Kaufmann (1999)

2. Baader, F., Sertkaya, B., Turhan, A.Y.: Computing the least common subsumer
w.r.t. a background terminology. Journal of Applied Logic 5(3) (2007)

3. Bohlken, W., Koopmann, P., Hotz, L., Neumann, B.: Towards ontology-based real-
time behaviour interpretation. In: Guesgen, H., Marsland, S. (eds.) Human Behav-
ior Recognition Technologies: Intelligent Applications for Monitoring and Security.
pp. 33–64. IGI Global (2013)

4. Chein, M., Mugnier, M.L.: Graph-based Knowledge Representation. Springer
(2009)

5. Cohen, W., Feigenbaum, E.: The Handbook of Artificial Intelligence, vol. 3.
William Kaufmann (1982)

6. Cohen, W., Hirsh, H.: Learning the classic description logic: Theoretical and exper-
imental results. In: Proc. Principles of Knowledge Representation and Reasoning
(KR-94) (1994)

7. Günther, M., Hertzberg, J., Mansouri, M., Pecora, F., Saffiotti, A.: Hybrid reason-
ing in perception: A case study. In: Proc. SYROCO. IFAC, Dubrovnik (Sep 5-7
2012)

8. Hitzler, P., Krötzsch, M., Rudolph, R., Sure, Y.: Semantic Web (2008)
9. Holyoak, K., Gentner, D., Kokinov, B.: Introduction: The place of analogy in cog-

nition. In: Gentner, D., Holyoak, K., Kokinov, B. (eds.) The Analogical Mind. pp.
1–20. The MIT Press (2001)

10. Keane, M., Costello, F.: Setting limits on analogy: Why conceptual combination
is not structural alignment. In: Holyoak, K., Gentner, D., Kokinov, B. (eds.) The
Analogical Mind. pp. 287–312. The MIT Press (2001)

11. Krötzsch, M., Maier, F., Krisnadhi, A., Hitzler, P.: A better uncle for owl. In: In
Proc. of the World Wide Web Conference (WWW 2011). pp. 645–654 (2011)

12. Lehmann, J.: Dl-learner: Learning concepts in description logics. Journal of Ma-
chine Learning Research (JMLR) 10 (2009)

13. Lutz, C.: Description logics with concrete domains - a survey. Advances in Modal
Logic 4 (2003)

14. Mitchell, T.: Generalization as search. Artificial Intelligence 18(2), 203–226 (1982)
15. Neumann, B., Hotz, L., Günter, A.: Learning robot activities from experiences: An

ontology-based approach. Tech. Rep. TR FBI-HH-B-300/13, University of Ham-
burg, Department of Informatics Cognitive Systems Laboratory (2013)

16. Rockel, S., Neuman, B., Zhang, J., Dubba, K.S.R., Cohn, A.G., S̆. Konec̆ný, Man-
souri, M., Pecora, F., Saffiotti, A., Günther, M., Stock, S., Hertzberg, J., Tomé,
A.M., Pinho, A.J., Lopes, L.S., von Riegen, S., Hotz, L.: An ontology-based multi-
level robot architecture for learning from experiences. In: Designing Intelligent
Robots: Reintegrating AI II, AAAI Spring Symposium. Stanford (USA) (March
2013)

17. Wilson, W., Halford, G., Gray, B., Phillips, S.: The star-2 model for mapping
hierarchically structured analogs. In: Holyoak, K., Gentner, D., Kokinov, B. (eds.)
The Analogical Mind. pp. 125–160. The MIT Press (2001)

18. Winston, P.: The Psychology of Computer Vision, chap. Learning structural de-
scriptions from examples, pp. 157–209. McGraw-Hill, New York (1975)

